Gain-Assisted Optical Pulling Force on Plasmonic Graded Nano-Shell with Equivalent Medium Theory

The tunable optical pulling force on a graded plasmonic core-shell nanoparticle consisting of a gain dielectric core and graded plasmonic shell is investigated in the illumination of a plane wave. In this paper, the electrostatic polarizability and the equivalent permittivity of the core-shell spher...

Full description

Saved in:
Bibliographic Details
Published in:Physics (Online) Vol. 3; no. 4; pp. 955 - 967
Main Authors: Wu, Yamin, Huang, Yang, Ma, Pujuan, Gao, Lei
Format: Journal Article
Language:English
Published: Basel MDPI AG 01-12-2021
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The tunable optical pulling force on a graded plasmonic core-shell nanoparticle consisting of a gain dielectric core and graded plasmonic shell is investigated in the illumination of a plane wave. In this paper, the electrostatic polarizability and the equivalent permittivity of the core-shell sphere are derived and the plasmonic enhanced optical pulling force in the antibonding and bonding dipole modes of the graded nanoparticle are demonstrated. Additionally, the resonant pulling force occurring on the dipole mode is shown to be dependent on the aspect ratio of the core-shell particle, which is illustrated by the obtained equivalent permittivity. This shows that the gradation of the graded shell will influence the plasmonic feature of the particle, thus further shifting the resonant optical force peaks and strengthening the pulling force. The obtained results provide an additional degree of freedom to manipulate nanoparticles and give a deep insight into light–matter interaction.
ISSN:2624-8174
2624-8174
DOI:10.3390/physics3040060