Fiber nonlinearity pre- and post-compensation for long-haul optical links using OFDM

The nonlinear power limit of optical links using optical Orthogonal Frequency Division Multiplexing (OFDM) for dispersion compensation can be significantly improved using an optimum combination of nonlinearity precompensation and postcompensation. The compensation is implemented at the transmitter a...

Full description

Saved in:
Bibliographic Details
Published in:Optics express Vol. 15; no. 20; pp. 12965 - 12970
Main Author: Lowery, Arthur J
Format: Journal Article
Language:English
Published: United States 01-10-2007
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The nonlinear power limit of optical links using optical Orthogonal Frequency Division Multiplexing (OFDM) for dispersion compensation can be significantly improved using an optimum combination of nonlinearity precompensation and postcompensation. The compensation is implemented at the transmitter and at the receiver as computationally-efficient power-dependent phase shifts with a single tuning parameter. The system is robust against the exact details of the fiber plant's dispersion and power levels. Using an optimum combination of pre and post compensation allows a 2-dB increase in launch power for 2000-km standard single-mode fiber (S-SMF) systems and 5-dB when 6 ps/nm/km fibers are used. Using pre or post compensation alone approximately halves these values.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1094-4087
1094-4087
DOI:10.1364/OE.15.012965