Novel Strategy for the Formulation of High‐Energy‐Density Cathodes via Porous Carbon for Li‐S Batteries
Porous carbon is considered an attractive host material for high‐energy sulfur electrodes. This study concerns the design of a porous carbon‐based sulfur electrode for the formulation of high‐energy Li−S batteries. The porous carbon is impregnated with up to 80 vol.% of sulfur and a reduction in bot...
Saved in:
Published in: | ChemSusChem Vol. 16; no. 10; pp. e202202009 - n/a |
---|---|
Main Authors: | , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Germany
Wiley Subscription Services, Inc
19-05-2023
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Porous carbon is considered an attractive host material for high‐energy sulfur electrodes. This study concerns the design of a porous carbon‐based sulfur electrode for the formulation of high‐energy Li−S batteries. The porous carbon is impregnated with up to 80 vol.% of sulfur and a reduction in both the conductive agent and binder content. Therefore, less solvent can be used during slurry casting to inhibit crack formation following electrode drying. In addition, the utilization of two distinct electrically conducting networks enables reduced battery polarization, resulting in a battery with a capacity of 690 mAh g−1 (even after 100 cycles). Finally, pouch cells are prepared to characterize the practical performance of the optimized cathode. This yields a capacity of 741 mAh and a cathode energy density of 1001 Wh kg−1. These findings are expected to guide the further development of high‐energy‐density cathode materials for Li−S batteries.
Get in the C: A micro‐scale active material is prepared by infiltrating sulfur into porous carbon material, and by combining carbon nanotubes and carbon black to increase sulfur content. The active material is incorporated into a lithium−sulfur battery with high‐energy and enhanced electron conductivity. |
---|---|
AbstractList | Porous carbon is considered an attractive host material for high‐energy sulfur electrodes. This study concerns the design of a porous carbon‐based sulfur electrode for the formulation of high‐energy Li−S batteries. The porous carbon is impregnated with up to 80 vol.% of sulfur and a reduction in both the conductive agent and binder content. Therefore, less solvent can be used during slurry casting to inhibit crack formation following electrode drying. In addition, the utilization of two distinct electrically conducting networks enables reduced battery polarization, resulting in a battery with a capacity of 690 mAh g−1 (even after 100 cycles). Finally, pouch cells are prepared to characterize the practical performance of the optimized cathode. This yields a capacity of 741 mAh and a cathode energy density of 1001 Wh kg−1. These findings are expected to guide the further development of high‐energy‐density cathode materials for Li−S batteries. Porous carbon is considered an attractive host material for high‐energy sulfur electrodes. This study concerns the design of a porous carbon‐based sulfur electrode for the formulation of high‐energy Li−S batteries. The porous carbon is impregnated with up to 80 vol.% of sulfur and a reduction in both the conductive agent and binder content. Therefore, less solvent can be used during slurry casting to inhibit crack formation following electrode drying. In addition, the utilization of two distinct electrically conducting networks enables reduced battery polarization, resulting in a battery with a capacity of 690 mAh g −1 (even after 100 cycles). Finally, pouch cells are prepared to characterize the practical performance of the optimized cathode. This yields a capacity of 741 mAh and a cathode energy density of 1001 Wh kg −1 . These findings are expected to guide the further development of high‐energy‐density cathode materials for Li−S batteries. Porous carbon is considered an attractive host material for high‐energy sulfur electrodes. This study concerns the design of a porous carbon‐based sulfur electrode for the formulation of high‐energy Li−S batteries. The porous carbon is impregnated with up to 80 vol.% of sulfur and a reduction in both the conductive agent and binder content. Therefore, less solvent can be used during slurry casting to inhibit crack formation following electrode drying. In addition, the utilization of two distinct electrically conducting networks enables reduced battery polarization, resulting in a battery with a capacity of 690 mAh g−1 (even after 100 cycles). Finally, pouch cells are prepared to characterize the practical performance of the optimized cathode. This yields a capacity of 741 mAh and a cathode energy density of 1001 Wh kg−1. These findings are expected to guide the further development of high‐energy‐density cathode materials for Li−S batteries. Get in the C: A micro‐scale active material is prepared by infiltrating sulfur into porous carbon material, and by combining carbon nanotubes and carbon black to increase sulfur content. The active material is incorporated into a lithium−sulfur battery with high‐energy and enhanced electron conductivity. Porous carbon is considered an attractive host material for high-energy sulfur electrodes. This study concerns the design of a porous carbon-based sulfur electrode for the formulation of high-energy Li-S batteries. The porous carbon is impregnated with up to 80 vol.% of sulfur and a reduction in both the conductive agent and binder content. Therefore, less solvent can be used during slurry casting to inhibit crack formation following electrode drying. In addition, the utilization of two distinct electrically conducting networks enables reduced battery polarization, resulting in a battery with a capacity of 690 mAh g (even after 100 cycles). Finally, pouch cells are prepared to characterize the practical performance of the optimized cathode. This yields a capacity of 741 mAh and a cathode energy density of 1001 Wh kg . These findings are expected to guide the further development of high-energy-density cathode materials for Li-S batteries. |
Author | Kang, Cheon‐Ju Kim, Dae‐Seong Lee, Ju‐Hee Lee, Je‐Nam Yu, Ji‐Sang Kim, Young‐Jun Woo, Sang‐Gil |
Author_xml | – sequence: 1 givenname: Dae‐Seong surname: Kim fullname: Kim, Dae‐Seong organization: Sungkyunkwan University Seobu-ro 2066, Jangan-gu – sequence: 2 givenname: Sang‐Gil surname: Woo fullname: Woo, Sang‐Gil email: blackdragon@keti.re.kr organization: Korea Electronics Technology Institute – sequence: 3 givenname: Cheon‐Ju surname: Kang fullname: Kang, Cheon‐Ju organization: Korea Electronics Technology Institute – sequence: 4 givenname: Ju‐Hee surname: Lee fullname: Lee, Ju‐Hee organization: Korea Electronics Technology Institute – sequence: 5 givenname: Je‐Nam surname: Lee fullname: Lee, Je‐Nam organization: Korea Electronics Technology Institute – sequence: 6 givenname: Ji‐Sang surname: Yu fullname: Yu, Ji‐Sang organization: Korea Electronics Technology Institute – sequence: 7 givenname: Young‐Jun orcidid: 0000-0002-9801-3066 surname: Kim fullname: Kim, Young‐Jun email: yjkim68@skku.edu organization: Sungkyunkwan University Seobu-ro 2066, Jangan-gu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36577695$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1r3DAQhkVJaT6aa49F0Esvu9WHLVvH1kmawtIWNoHchCyPdhVsK5XkFN_6E_ob-0uqZdMt9FIYmEE88zDoPUVHox8BoVeULCkh7J2J0SwZYbkIkc_QCa1FsShFcXd0mDk9Rqcx3hMiiBTiBTrmoqwqIcsTNHz2j9DjdQo6wWbG1gectoCvfBimXifnR-wtvnab7a8fPy9HCJs5DxcwRpdm3Oi09R1E_Og0_uqDn2J-C23e2plWLrNr_EGnBMFBfImeW91HOH_qZ-j26vKmuV6svnz81LxfLQxntVwIY0rgvOOat5J2HFrRVlAyacGKoq27lteFZawyZWUKVrdWV7SrgRGwhWDAz9Dbvfch-G8TxKQGFw30vR4hn6hYVUomCkplRt_8g977KYz5OsVqWlLGpCgztdxTJvgYA1j1ENygw6woUbsg1C4IdQgiL7x-0k7tAN0B__PzGZB74LvrYf6PTjXrdfNX_hveV5nw |
Cites_doi | 10.1039/C6CS00776G 10.1002/advs.202103910 10.1016/j.jpowsour.2015.04.103 10.1016/j.jpowsour.2012.12.102 10.1016/j.electacta.2012.03.081 10.1021/nn503220h 10.1016/j.electacta.2013.02.101 10.1002/aenm.201401752 10.1016/j.joule.2021.05.001 10.1002/adfm.201801188 10.1002/adma.202201555 10.1016/j.electacta.2019.134697 10.1002/advs.201600101 10.1038/srep01910 10.1016/j.est.2019.101022 10.1016/j.energy.2009.11.022 10.1016/j.ensm.2017.09.001 10.1016/j.energy.2020.117718 10.1002/adfm.201502251 10.1002/aenm.201402290 10.1016/j.ssi.2008.01.015 10.1021/ja308170k 10.1002/smll.202004372 10.1007/s41918-018-0010-3 10.1039/C5TA08999A 10.1039/C6TA02680J 10.1016/j.jechem.2020.01.003 10.1016/j.matt.2019.07.002 10.1002/ente.201900625 10.1039/C5RA19056H 10.1038/nmat2460 10.1039/C6TA03187K 10.1016/j.jpowsour.2012.02.001 10.1016/j.jpowsour.2014.03.052 10.1038/ncomms3985 10.1016/j.electacta.2017.03.023 10.1016/j.coelec.2017.10.007 10.1016/j.joule.2019.07.011 10.1142/S1793292017500217 10.1126/sciadv.aay2757 10.1038/ncomms8278 10.1021/acsami.8b05166 10.1039/C7TA00799J 10.1038/srep14949 10.1016/j.jpowsour.2018.04.022 |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH 2022 Wiley-VCH GmbH. 2023 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH – notice: 2022 Wiley-VCH GmbH. – notice: 2023 Wiley‐VCH GmbH |
DBID | NPM AAYXX CITATION 7SR 8BQ 8FD JG9 K9. 7X8 |
DOI | 10.1002/cssc.202202009 |
DatabaseName | PubMed CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | PubMed CrossRef Materials Research Database ProQuest Health & Medical Complete (Alumni) Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database CrossRef PubMed |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1864-564X |
EndPage | n/a |
ExternalDocumentID | 10_1002_cssc_202202009 36577695 CSSC202202009 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Technology Innovation Program funderid: 20011173 – fundername: Ministry of Trade, Industry, & Energy – fundername: National Research Foundation of Korea funderid: NRF-2021M3H4A3A02086213 – fundername: Technology Innovation Program grantid: 20011173 – fundername: National Research Foundation of Korea grantid: NRF-2021M3H4A3A02086213 |
GroupedDBID | --- 05W 0R~ 1OC 29B 33P 4.4 5GY 5VS 66C 77Q 8-1 A00 AAESR AAHHS AAIHA AANLZ AAXRX AAZKR ABCUV ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB AZVAB BDRZF BFHJK BRXPI CS3 DCZOG DR2 DRFUL DRSTM DU5 EBD EBS EMOBN F5P G-S HGLYW HZ~ IX1 LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MY~ O9- OIG P2W P4E PQQKQ ROL SUPJJ SV3 W99 WBKPD WOHZO WXSBR WYJ XV2 ZZTAW ~S- NPM AAMNL AAYXX CITATION 7SR 8BQ 8FD JG9 K9. 7X8 |
ID | FETCH-LOGICAL-c3289-6cc5e33d3a3b91d3eb6b7e529fef64b8db384f227c57c428bfa71d8e20ef462e3 |
IEDL.DBID | 33P |
ISSN | 1864-5631 |
IngestDate | Wed Jul 24 16:33:02 EDT 2024 Thu Oct 10 18:25:59 EDT 2024 Thu Nov 21 22:30:13 EST 2024 Sat Sep 28 08:18:03 EDT 2024 Sat Aug 24 00:54:10 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | lithium−sulfur batteries energy storage carbon mesoporous materials electrode materials |
Language | English |
License | 2022 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3289-6cc5e33d3a3b91d3eb6b7e529fef64b8db384f227c57c428bfa71d8e20ef462e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-9801-3066 |
PMID | 36577695 |
PQID | 2815122965 |
PQPubID | 986333 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2759264119 proquest_journals_2815122965 crossref_primary_10_1002_cssc_202202009 pubmed_primary_36577695 wiley_primary_10_1002_cssc_202202009_CSSC202202009 |
PublicationCentury | 2000 |
PublicationDate | May 19, 2023 |
PublicationDateYYYYMMDD | 2023-05-19 |
PublicationDate_xml | – month: 05 year: 2023 text: May 19, 2023 day: 19 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | ChemSusChem |
PublicationTitleAlternate | ChemSusChem |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 5 2017; 6 2019; 7 2018; 28 2021; 5 2015; 6 2013; 3 2013; 4 2015; 5 2019; 3 2010; 35 2019; 1 2015; 288 2017; 46 2020; 381 2018; 389 2020; 16 2020; 201 2017; 235 2019; 321 2012; 208 2016; 4 2020; 6 2012; 70 2015; 25 2012; 134 2016; 3 2020; 30 2018; 1 2019; 26 2013; 97 2022; 9 2017; 12 2022; 34 2020; 48 2009; 8 2014; 261 2013; 231 2008; 179 2010; 3 2018; 11 2014; 8 2018; 10 e_1_2_8_28_1 e_1_2_8_24_2 e_1_2_8_26_1 e_1_2_8_47_2 Yang T. (e_1_2_8_23_2) 2020; 381 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_2 e_1_2_8_41_2 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_43_2 e_1_2_8_1_1 e_1_2_8_17_2 e_1_2_8_38_2 e_1_2_8_19_1 e_1_2_8_59_1 e_1_2_8_13_2 e_1_2_8_15_1 e_1_2_8_36_2 e_1_2_8_57_2 e_1_2_8_32_1 e_1_2_8_30_2 e_1_2_8_55_2 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_2 e_1_2_8_29_1 e_1_2_8_46_2 e_1_2_8_25_1 e_1_2_8_48_2 e_1_2_8_27_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_42_2 e_1_2_8_21_2 e_1_2_8_44_1 e_1_2_8_40_1 e_1_2_8_39_1 Zhang B. (e_1_2_8_11_2) 2010; 3 e_1_2_8_18_2 e_1_2_8_12_2 e_1_2_8_58_2 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_37_2 e_1_2_8_16_1 Huang L. (e_1_2_8_49_1) 2020; 30 e_1_2_8_31_2 e_1_2_8_54_2 e_1_2_8_10_1 e_1_2_8_56_1 e_1_2_8_52_2 e_1_2_8_33_1 e_1_2_8_50_1 |
References_xml | – volume: 5 start-page: 1644 year: 2021 end-page: 1659 publication-title: Joule – volume: 381 year: 2020 publication-title: Chem. Eng. J. – volume: 10 start-page: 23094 year: 2018 end-page: 23102 publication-title: ACS Appl. Mater. Interfaces – volume: 11 start-page: 24 year: 2018 end-page: 29 publication-title: Energy Storage Mater. – volume: 4 start-page: 1653 year: 2016 end-page: 1662 publication-title: J. Mater. Chem. A – volume: 4 start-page: 12319 year: 2016 end-page: 12327 publication-title: J. Mater. Chem. A – volume: 6 year: 2020 publication-title: Sci. Adv. – volume: 231 start-page: 153 year: 2013 end-page: 162 publication-title: J. Power Sources – volume: 1 start-page: 239 year: 2018 end-page: 293 publication-title: Electrochem. Energy Rev. – volume: 5 start-page: 95073 year: 2015 end-page: 95078 publication-title: RSC Adv. – volume: 1 start-page: 1047 year: 2019 end-page: 1060 publication-title: Matter – volume: 288 start-page: 115 year: 2015 end-page: 120 publication-title: J. Power Sources – volume: 321 year: 2019 publication-title: Electrochim. Acta – volume: 3 year: 2016 publication-title: Adv. Sci. – volume: 6 start-page: 92 year: 2017 end-page: 99 publication-title: Curr. Opin. Electrochem. – volume: 8 start-page: 9295 year: 2014 end-page: 9303 publication-title: ACS Nano – volume: 9 year: 2022 publication-title: Adv. Sci. – volume: 8 start-page: 500 year: 2009 end-page: 506 publication-title: Nat. Mater. – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 3 start-page: 2086 year: 2019 end-page: 2102 publication-title: Joule – volume: 48 start-page: 109 year: 2020 end-page: 115 publication-title: J. Energy Chem. – volume: 25 start-page: 5285 year: 2015 end-page: 5291 publication-title: Adv. Funct. Mater. – volume: 46 start-page: 3529 year: 2017 end-page: 3614 publication-title: Chem. Soc. Rev. – volume: 16 year: 2020 publication-title: Small – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 26 year: 2019 publication-title: J. Energy Storage – volume: 389 start-page: 198 year: 2018 end-page: 213 publication-title: J. Power Sources – volume: 70 start-page: 344 year: 2012 end-page: 348 publication-title: Electrochim. Acta – volume: 5 year: 2015 publication-title: Adv. Energy Mater. – volume: 5 start-page: 17734 year: 2017 end-page: 17776 publication-title: J. Mater. Chem. A – volume: 179 start-page: 263 year: 2008 end-page: 268 publication-title: Solid State Ionics – volume: 3 year: 2010 publication-title: Energy Environ. Sci. – volume: 4 start-page: 2985 year: 2013 publication-title: Nat. Commun. – volume: 4 start-page: 9526 year: 2016 end-page: 9535 publication-title: J. Mater. Chem. A – volume: 5 start-page: 14949 year: 2015 publication-title: Sci. Rep. – volume: 97 start-page: 42 year: 2013 end-page: 51 publication-title: Electrochim. Acta – volume: 35 start-page: 1368 year: 2010 end-page: 1380 publication-title: Energy – volume: 261 start-page: 363 year: 2014 end-page: 370 publication-title: J. Power Sources – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 12 year: 2017 publication-title: NANO – volume: 235 start-page: 399 year: 2017 end-page: 408 publication-title: Electrochim. Acta – volume: 134 start-page: 18510 year: 2012 end-page: 18513 publication-title: J. Am. Chem. Soc. – volume: 7 year: 2019 publication-title: Energy Technol. – volume: 201 year: 2020 publication-title: Energy – volume: 6 start-page: 7278 year: 2015 publication-title: Nat. Commun. – volume: 208 start-page: 52 year: 2012 end-page: 57 publication-title: J. Power Sources – volume: 3 start-page: 1910 year: 2013 publication-title: Sci. Rep. – ident: e_1_2_8_4_1 doi: 10.1039/C6CS00776G – ident: e_1_2_8_45_1 – ident: e_1_2_8_25_1 doi: 10.1002/advs.202103910 – ident: e_1_2_8_58_2 doi: 10.1016/j.jpowsour.2015.04.103 – ident: e_1_2_8_24_2 doi: 10.1016/j.jpowsour.2012.12.102 – ident: e_1_2_8_30_2 doi: 10.1016/j.electacta.2012.03.081 – ident: e_1_2_8_22_1 – ident: e_1_2_8_36_2 doi: 10.1021/nn503220h – ident: e_1_2_8_18_2 doi: 10.1016/j.electacta.2013.02.101 – ident: e_1_2_8_48_2 doi: 10.1002/aenm.201401752 – ident: e_1_2_8_2_1 doi: 10.1016/j.joule.2021.05.001 – ident: e_1_2_8_40_1 – volume: 381 year: 2020 ident: e_1_2_8_23_2 publication-title: Chem. Eng. J. contributor: fullname: Yang T. – ident: e_1_2_8_8_1 doi: 10.1002/adfm.201801188 – ident: e_1_2_8_6_1 doi: 10.1002/adma.202201555 – ident: e_1_2_8_10_1 – ident: e_1_2_8_26_1 doi: 10.1016/j.electacta.2019.134697 – ident: e_1_2_8_55_2 doi: 10.1002/advs.201600101 – ident: e_1_2_8_33_1 doi: 10.1038/srep01910 – ident: e_1_2_8_1_1 doi: 10.1016/j.est.2019.101022 – ident: e_1_2_8_7_1 doi: 10.1016/j.energy.2009.11.022 – ident: e_1_2_8_31_2 doi: 10.1016/j.ensm.2017.09.001 – ident: e_1_2_8_5_1 doi: 10.1016/j.energy.2020.117718 – ident: e_1_2_8_27_1 doi: 10.1002/adfm.201502251 – ident: e_1_2_8_38_2 doi: 10.1002/aenm.201402290 – ident: e_1_2_8_52_2 doi: 10.1016/j.ssi.2008.01.015 – ident: e_1_2_8_47_2 doi: 10.1021/ja308170k – ident: e_1_2_8_53_1 – ident: e_1_2_8_28_1 doi: 10.1002/smll.202004372 – ident: e_1_2_8_29_1 – ident: e_1_2_8_43_2 doi: 10.1007/s41918-018-0010-3 – ident: e_1_2_8_50_1 – ident: e_1_2_8_39_1 doi: 10.1039/C5TA08999A – ident: e_1_2_8_21_2 doi: 10.1039/C6TA02680J – ident: e_1_2_8_13_2 doi: 10.1016/j.jechem.2020.01.003 – ident: e_1_2_8_56_1 – ident: e_1_2_8_20_2 doi: 10.1016/j.matt.2019.07.002 – volume: 30 year: 2020 ident: e_1_2_8_49_1 publication-title: Adv. Funct. Mater. contributor: fullname: Huang L. – ident: e_1_2_8_54_2 doi: 10.1002/ente.201900625 – ident: e_1_2_8_51_2 doi: 10.1039/C5RA19056H – ident: e_1_2_8_34_1 doi: 10.1038/nmat2460 – ident: e_1_2_8_37_2 doi: 10.1039/C6TA03187K – ident: e_1_2_8_57_2 doi: 10.1016/j.jpowsour.2012.02.001 – ident: e_1_2_8_12_2 doi: 10.1016/j.jpowsour.2014.03.052 – volume: 3 year: 2010 ident: e_1_2_8_11_2 publication-title: Energy Environ. Sci. contributor: fullname: Zhang B. – ident: e_1_2_8_17_2 doi: 10.1038/ncomms3985 – ident: e_1_2_8_16_1 – ident: e_1_2_8_42_2 doi: 10.1016/j.electacta.2017.03.023 – ident: e_1_2_8_19_1 – ident: e_1_2_8_35_1 – ident: e_1_2_8_9_1 doi: 10.1016/j.coelec.2017.10.007 – ident: e_1_2_8_59_1 doi: 10.1016/j.joule.2019.07.011 – ident: e_1_2_8_46_2 doi: 10.1142/S1793292017500217 – ident: e_1_2_8_15_1 doi: 10.1126/sciadv.aay2757 – ident: e_1_2_8_32_1 doi: 10.1038/ncomms8278 – ident: e_1_2_8_14_1 doi: 10.1021/acsami.8b05166 – ident: e_1_2_8_41_2 doi: 10.1039/C7TA00799J – ident: e_1_2_8_44_1 doi: 10.1038/srep14949 – ident: e_1_2_8_3_1 doi: 10.1016/j.jpowsour.2018.04.022 |
SSID | ssj0060966 |
Score | 2.4368017 |
Snippet | Porous carbon is considered an attractive host material for high‐energy sulfur electrodes. This study concerns the design of a porous carbon‐based sulfur... Porous carbon is considered an attractive host material for high-energy sulfur electrodes. This study concerns the design of a porous carbon-based sulfur... |
SourceID | proquest crossref pubmed wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | e202202009 |
SubjectTerms | Carbon Cathodes Electrode materials Electrode polarization Electrodes energy storage lithium−sulfur batteries mesoporous materials Sulfur |
Title | Novel Strategy for the Formulation of High‐Energy‐Density Cathodes via Porous Carbon for Li‐S Batteries |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcssc.202202009 https://www.ncbi.nlm.nih.gov/pubmed/36577695 https://www.proquest.com/docview/2815122965 https://search.proquest.com/docview/2759264119 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Li9swEBZtLu2l23ezTYsKhZ5MIsmS7GNxEnIoIeAWejOWNIJAG5d4E8htf8L-xv0lO_KrhB4WuuCDXyPLmpH0ja35hpDPljMzc1BGPFYyinEOiows0ZYt84l2XoMNjuIq1-ufyXwRaHKGKP6WH2L44BZ6RjNehw5emnr6lzTU1nWgIOS4tRF86Co0MRxi0w_FCvF5E16UqDiSSrCetXHGp-fi57PSP1DzHLk2U8_y4uGVfk6edbCTfm3t5AV5BLuX5EnWZ3t7RX6vqyP8oh1Z7YkilqWIDekSMW2X4YtWnoZlIbfXN4smYhB35mH9-9WJhkDCykFNj9uSbqp9dajx3N6gVCjp2xbvzWlL5om--WvyY7n4nq2iLhVDZAW6ZJGyVoIQTpTCpMwJMMpokDz14FVsEmdEEnvOtZXaokdjfKmZS4DPwMeKg3hDRrtqB-8IdWgKEr0yH4ePmT4Q3EMCzCOO1IY7PiZfelUUf1rGjaLlVuZFaL5iaL4xmfSaKrqeVxc8CRiGp0qOyafhMjZm-BFS7gDfv-BYAQSCjGERb1sND48SSmqtUpTmjSLvqUOR5Xk2HF3-j9B78jTksA9LElg6IaOr_QE-kMe1O3xsrPkOYQf2Rw |
link.rule.ids | 315,782,786,1408,27933,27934,46064,46488 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBZpckgvbdJHummaqlDoyWQlWZJ9DJtdNmS7BDaF3oT1gkCyLutsILf-hP7G_pLM-BWWHgql4INfY8uakfSNrPmGkM-OMzv0oUh4qmSSwhiUWFmALTsWM-2jDg4dxelCz79nZ2OkyTntYmEafoh-wg1bRt1fYwPHCemTJ9ZQV1XIQchhq0P4dlIF1ohRHOKy64wVIPQ6wChTaSKVYB1v45CfbMpvjkt_gM1N7FoPPpOX_6HYe-RFizzpaWMq-2QrLF-R3VGX8O01uZ2X9-GGtny1DxTgLAV4SCcAa9skX7SMFFeG_P75a1wHDcLOGS6Bv3ugGEtY-lDR--uCXparcl3BuZUFKXzS7BruXdCGzxPc8zfk22R8NZombTaGxAnwyhLlnAxCeFEImzMvglVWB8nzGKJKbeatyNLIuXZSO3BqbCw081ngwxBTxYN4S7aX5TK8I9SDNUhwzGKK85kROe5DFlgEKKkt93xAvnS6MD8a0g3T0Ctzg9Vn-uobkKNOVaZtfJXhGcIYnis5IJ_6y1CZ-C-kWAb4fsOhAIAFGYNHHDQq7l8llNRa5SDNa03-pQxmtFiM-qPDfxH6SHanV19nZnY-v3hPnmNKe1yhwPIjsn23WocP5Fnl18e1aT8C8d76bw |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBZtCm0vTV9ptklaFQo9mawkS7KPZR-kNCwLm0BvwpJGEEjWYZ0N5Jaf0N_YX9KRX2HJIZCAD36NLGtG0je25htCvjvO7NBDkfBUySTFOSixskBbdixk2gcNLjqKRws9-5ONJ5Emp4_ib_gh-g9usWfU43Xs4Jc-HN6RhrqqihSEHLc6gu9Filg8sucLMe_GYoUAvY4vylSaSCVYR9s45Ieb8pvT0j2suQld67lnuv30Wr8lb1rcSX82hvKOPIPle_Jq1KV7-0AuZuU1nNOWrfaGIpilCA7pFEFtm-KLloHGdSH_bv9O6pBB3BnHBfBXNzRGEpYeKnp9VtB5uSrXFZ5bWZSKJR2f4b0L2rB5onP-kZxOJyejo6TNxZA4gT5ZopyTIIQXhbA58wKsshokzwMEldrMW5GlgXPtpHbo0thQaOYz4EMIqeIgdsjWslzCLqEebUGiWxbS-DUzRIZ7yIAFBJLacs8H5EenCnPZUG6YhlyZm9h8pm--AdnvNGXarlcZnkUQw3MlB-RbfxkbM_4JKZaA7284VgCRIGNYxKdGw_2jhJJaqxylea3IB-pgRovFqD_6_Bihr-TlfDw1x79mv_fI65jPPi5PYPk-2bpareGAPK_8-ktt2P8B6Sz5FQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Novel+Strategy+for+the+Formulation+of+High%E2%80%90Energy%E2%80%90Density+Cathodes+via+Porous+Carbon+for+Li%E2%80%90S+Batteries&rft.jtitle=ChemSusChem&rft.au=Kim%2C+Dae%E2%80%90Seong&rft.au=Woo%2C+Sang%E2%80%90Gil&rft.au=Kang%2C+Cheon%E2%80%90Ju&rft.au=Lee%2C+Ju%E2%80%90Hee&rft.date=2023-05-19&rft.issn=1864-5631&rft.eissn=1864-564X&rft.volume=16&rft.issue=10&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fcssc.202202009&rft.externalDBID=10.1002%252Fcssc.202202009&rft.externalDocID=CSSC202202009 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1864-5631&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1864-5631&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1864-5631&client=summon |