Novel Strategy for the Formulation of High‐Energy‐Density Cathodes via Porous Carbon for Li‐S Batteries

Porous carbon is considered an attractive host material for high‐energy sulfur electrodes. This study concerns the design of a porous carbon‐based sulfur electrode for the formulation of high‐energy Li−S batteries. The porous carbon is impregnated with up to 80 vol.% of sulfur and a reduction in bot...

Full description

Saved in:
Bibliographic Details
Published in:ChemSusChem Vol. 16; no. 10; pp. e202202009 - n/a
Main Authors: Kim, Dae‐Seong, Woo, Sang‐Gil, Kang, Cheon‐Ju, Lee, Ju‐Hee, Lee, Je‐Nam, Yu, Ji‐Sang, Kim, Young‐Jun
Format: Journal Article
Language:English
Published: Germany Wiley Subscription Services, Inc 19-05-2023
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Porous carbon is considered an attractive host material for high‐energy sulfur electrodes. This study concerns the design of a porous carbon‐based sulfur electrode for the formulation of high‐energy Li−S batteries. The porous carbon is impregnated with up to 80 vol.% of sulfur and a reduction in both the conductive agent and binder content. Therefore, less solvent can be used during slurry casting to inhibit crack formation following electrode drying. In addition, the utilization of two distinct electrically conducting networks enables reduced battery polarization, resulting in a battery with a capacity of 690 mAh g−1 (even after 100 cycles). Finally, pouch cells are prepared to characterize the practical performance of the optimized cathode. This yields a capacity of 741 mAh and a cathode energy density of 1001 Wh kg−1. These findings are expected to guide the further development of high‐energy‐density cathode materials for Li−S batteries. Get in the C: A micro‐scale active material is prepared by infiltrating sulfur into porous carbon material, and by combining carbon nanotubes and carbon black to increase sulfur content. The active material is incorporated into a lithium−sulfur battery with high‐energy and enhanced electron conductivity.
AbstractList Porous carbon is considered an attractive host material for high‐energy sulfur electrodes. This study concerns the design of a porous carbon‐based sulfur electrode for the formulation of high‐energy Li−S batteries. The porous carbon is impregnated with up to 80 vol.% of sulfur and a reduction in both the conductive agent and binder content. Therefore, less solvent can be used during slurry casting to inhibit crack formation following electrode drying. In addition, the utilization of two distinct electrically conducting networks enables reduced battery polarization, resulting in a battery with a capacity of 690 mAh g−1 (even after 100 cycles). Finally, pouch cells are prepared to characterize the practical performance of the optimized cathode. This yields a capacity of 741 mAh and a cathode energy density of 1001 Wh kg−1. These findings are expected to guide the further development of high‐energy‐density cathode materials for Li−S batteries.
Porous carbon is considered an attractive host material for high‐energy sulfur electrodes. This study concerns the design of a porous carbon‐based sulfur electrode for the formulation of high‐energy Li−S batteries. The porous carbon is impregnated with up to 80 vol.% of sulfur and a reduction in both the conductive agent and binder content. Therefore, less solvent can be used during slurry casting to inhibit crack formation following electrode drying. In addition, the utilization of two distinct electrically conducting networks enables reduced battery polarization, resulting in a battery with a capacity of 690 mAh g −1 (even after 100 cycles). Finally, pouch cells are prepared to characterize the practical performance of the optimized cathode. This yields a capacity of 741 mAh and a cathode energy density of 1001 Wh kg −1 . These findings are expected to guide the further development of high‐energy‐density cathode materials for Li−S batteries.
Porous carbon is considered an attractive host material for high‐energy sulfur electrodes. This study concerns the design of a porous carbon‐based sulfur electrode for the formulation of high‐energy Li−S batteries. The porous carbon is impregnated with up to 80 vol.% of sulfur and a reduction in both the conductive agent and binder content. Therefore, less solvent can be used during slurry casting to inhibit crack formation following electrode drying. In addition, the utilization of two distinct electrically conducting networks enables reduced battery polarization, resulting in a battery with a capacity of 690 mAh g−1 (even after 100 cycles). Finally, pouch cells are prepared to characterize the practical performance of the optimized cathode. This yields a capacity of 741 mAh and a cathode energy density of 1001 Wh kg−1. These findings are expected to guide the further development of high‐energy‐density cathode materials for Li−S batteries. Get in the C: A micro‐scale active material is prepared by infiltrating sulfur into porous carbon material, and by combining carbon nanotubes and carbon black to increase sulfur content. The active material is incorporated into a lithium−sulfur battery with high‐energy and enhanced electron conductivity.
Porous carbon is considered an attractive host material for high-energy sulfur electrodes. This study concerns the design of a porous carbon-based sulfur electrode for the formulation of high-energy Li-S batteries. The porous carbon is impregnated with up to 80 vol.% of sulfur and a reduction in both the conductive agent and binder content. Therefore, less solvent can be used during slurry casting to inhibit crack formation following electrode drying. In addition, the utilization of two distinct electrically conducting networks enables reduced battery polarization, resulting in a battery with a capacity of 690 mAh g (even after 100 cycles). Finally, pouch cells are prepared to characterize the practical performance of the optimized cathode. This yields a capacity of 741 mAh and a cathode energy density of 1001 Wh kg . These findings are expected to guide the further development of high-energy-density cathode materials for Li-S batteries.
Author Kang, Cheon‐Ju
Kim, Dae‐Seong
Lee, Ju‐Hee
Lee, Je‐Nam
Yu, Ji‐Sang
Kim, Young‐Jun
Woo, Sang‐Gil
Author_xml – sequence: 1
  givenname: Dae‐Seong
  surname: Kim
  fullname: Kim, Dae‐Seong
  organization: Sungkyunkwan University Seobu-ro 2066, Jangan-gu
– sequence: 2
  givenname: Sang‐Gil
  surname: Woo
  fullname: Woo, Sang‐Gil
  email: blackdragon@keti.re.kr
  organization: Korea Electronics Technology Institute
– sequence: 3
  givenname: Cheon‐Ju
  surname: Kang
  fullname: Kang, Cheon‐Ju
  organization: Korea Electronics Technology Institute
– sequence: 4
  givenname: Ju‐Hee
  surname: Lee
  fullname: Lee, Ju‐Hee
  organization: Korea Electronics Technology Institute
– sequence: 5
  givenname: Je‐Nam
  surname: Lee
  fullname: Lee, Je‐Nam
  organization: Korea Electronics Technology Institute
– sequence: 6
  givenname: Ji‐Sang
  surname: Yu
  fullname: Yu, Ji‐Sang
  organization: Korea Electronics Technology Institute
– sequence: 7
  givenname: Young‐Jun
  orcidid: 0000-0002-9801-3066
  surname: Kim
  fullname: Kim, Young‐Jun
  email: yjkim68@skku.edu
  organization: Sungkyunkwan University Seobu-ro 2066, Jangan-gu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36577695$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1r3DAQhkVJaT6aa49F0Esvu9WHLVvH1kmawtIWNoHchCyPdhVsK5XkFN_6E_ob-0uqZdMt9FIYmEE88zDoPUVHox8BoVeULCkh7J2J0SwZYbkIkc_QCa1FsShFcXd0mDk9Rqcx3hMiiBTiBTrmoqwqIcsTNHz2j9DjdQo6wWbG1gectoCvfBimXifnR-wtvnab7a8fPy9HCJs5DxcwRpdm3Oi09R1E_Og0_uqDn2J-C23e2plWLrNr_EGnBMFBfImeW91HOH_qZ-j26vKmuV6svnz81LxfLQxntVwIY0rgvOOat5J2HFrRVlAyacGKoq27lteFZawyZWUKVrdWV7SrgRGwhWDAz9Dbvfch-G8TxKQGFw30vR4hn6hYVUomCkplRt_8g977KYz5OsVqWlLGpCgztdxTJvgYA1j1ENygw6woUbsg1C4IdQgiL7x-0k7tAN0B__PzGZB74LvrYf6PTjXrdfNX_hveV5nw
Cites_doi 10.1039/C6CS00776G
10.1002/advs.202103910
10.1016/j.jpowsour.2015.04.103
10.1016/j.jpowsour.2012.12.102
10.1016/j.electacta.2012.03.081
10.1021/nn503220h
10.1016/j.electacta.2013.02.101
10.1002/aenm.201401752
10.1016/j.joule.2021.05.001
10.1002/adfm.201801188
10.1002/adma.202201555
10.1016/j.electacta.2019.134697
10.1002/advs.201600101
10.1038/srep01910
10.1016/j.est.2019.101022
10.1016/j.energy.2009.11.022
10.1016/j.ensm.2017.09.001
10.1016/j.energy.2020.117718
10.1002/adfm.201502251
10.1002/aenm.201402290
10.1016/j.ssi.2008.01.015
10.1021/ja308170k
10.1002/smll.202004372
10.1007/s41918-018-0010-3
10.1039/C5TA08999A
10.1039/C6TA02680J
10.1016/j.jechem.2020.01.003
10.1016/j.matt.2019.07.002
10.1002/ente.201900625
10.1039/C5RA19056H
10.1038/nmat2460
10.1039/C6TA03187K
10.1016/j.jpowsour.2012.02.001
10.1016/j.jpowsour.2014.03.052
10.1038/ncomms3985
10.1016/j.electacta.2017.03.023
10.1016/j.coelec.2017.10.007
10.1016/j.joule.2019.07.011
10.1142/S1793292017500217
10.1126/sciadv.aay2757
10.1038/ncomms8278
10.1021/acsami.8b05166
10.1039/C7TA00799J
10.1038/srep14949
10.1016/j.jpowsour.2018.04.022
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
2022 Wiley-VCH GmbH.
2023 Wiley‐VCH GmbH
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
– notice: 2022 Wiley-VCH GmbH.
– notice: 2023 Wiley‐VCH GmbH
DBID NPM
AAYXX
CITATION
7SR
8BQ
8FD
JG9
K9.
7X8
DOI 10.1002/cssc.202202009
DatabaseName PubMed
CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database
CrossRef

PubMed
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1864-564X
EndPage n/a
ExternalDocumentID 10_1002_cssc_202202009
36577695
CSSC202202009
Genre article
Journal Article
GrantInformation_xml – fundername: Technology Innovation Program
  funderid: 20011173
– fundername: Ministry of Trade, Industry, & Energy
– fundername: National Research Foundation of Korea
  funderid: NRF-2021M3H4A3A02086213
– fundername: Technology Innovation Program
  grantid: 20011173
– fundername: National Research Foundation of Korea
  grantid: NRF-2021M3H4A3A02086213
GroupedDBID ---
05W
0R~
1OC
29B
33P
4.4
5GY
5VS
66C
77Q
8-1
A00
AAESR
AAHHS
AAIHA
AANLZ
AAXRX
AAZKR
ABCUV
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
AZVAB
BDRZF
BFHJK
BRXPI
CS3
DCZOG
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EMOBN
F5P
G-S
HGLYW
HZ~
IX1
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY~
O9-
OIG
P2W
P4E
PQQKQ
ROL
SUPJJ
SV3
W99
WBKPD
WOHZO
WXSBR
WYJ
XV2
ZZTAW
~S-
NPM
AAMNL
AAYXX
CITATION
7SR
8BQ
8FD
JG9
K9.
7X8
ID FETCH-LOGICAL-c3289-6cc5e33d3a3b91d3eb6b7e529fef64b8db384f227c57c428bfa71d8e20ef462e3
IEDL.DBID 33P
ISSN 1864-5631
IngestDate Wed Jul 24 16:33:02 EDT 2024
Thu Oct 10 18:25:59 EDT 2024
Thu Nov 21 22:30:13 EST 2024
Sat Sep 28 08:18:03 EDT 2024
Sat Aug 24 00:54:10 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords lithium−sulfur batteries
energy storage
carbon
mesoporous materials
electrode materials
Language English
License 2022 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3289-6cc5e33d3a3b91d3eb6b7e529fef64b8db384f227c57c428bfa71d8e20ef462e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-9801-3066
PMID 36577695
PQID 2815122965
PQPubID 986333
PageCount 9
ParticipantIDs proquest_miscellaneous_2759264119
proquest_journals_2815122965
crossref_primary_10_1002_cssc_202202009
pubmed_primary_36577695
wiley_primary_10_1002_cssc_202202009_CSSC202202009
PublicationCentury 2000
PublicationDate May 19, 2023
PublicationDateYYYYMMDD 2023-05-19
PublicationDate_xml – month: 05
  year: 2023
  text: May 19, 2023
  day: 19
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle ChemSusChem
PublicationTitleAlternate ChemSusChem
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 5
2017; 6
2019; 7
2018; 28
2021; 5
2015; 6
2013; 3
2013; 4
2015; 5
2019; 3
2010; 35
2019; 1
2015; 288
2017; 46
2020; 381
2018; 389
2020; 16
2020; 201
2017; 235
2019; 321
2012; 208
2016; 4
2020; 6
2012; 70
2015; 25
2012; 134
2016; 3
2020; 30
2018; 1
2019; 26
2013; 97
2022; 9
2017; 12
2022; 34
2020; 48
2009; 8
2014; 261
2013; 231
2008; 179
2010; 3
2018; 11
2014; 8
2018; 10
e_1_2_8_28_1
e_1_2_8_24_2
e_1_2_8_26_1
e_1_2_8_47_2
Yang T. (e_1_2_8_23_2) 2020; 381
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_2
e_1_2_8_41_2
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_43_2
e_1_2_8_1_1
e_1_2_8_17_2
e_1_2_8_38_2
e_1_2_8_19_1
e_1_2_8_59_1
e_1_2_8_13_2
e_1_2_8_15_1
e_1_2_8_36_2
e_1_2_8_57_2
e_1_2_8_32_1
e_1_2_8_30_2
e_1_2_8_55_2
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_2
e_1_2_8_29_1
e_1_2_8_46_2
e_1_2_8_25_1
e_1_2_8_48_2
e_1_2_8_27_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_42_2
e_1_2_8_21_2
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_39_1
Zhang B. (e_1_2_8_11_2) 2010; 3
e_1_2_8_18_2
e_1_2_8_12_2
e_1_2_8_58_2
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_37_2
e_1_2_8_16_1
Huang L. (e_1_2_8_49_1) 2020; 30
e_1_2_8_31_2
e_1_2_8_54_2
e_1_2_8_10_1
e_1_2_8_56_1
e_1_2_8_52_2
e_1_2_8_33_1
e_1_2_8_50_1
References_xml – volume: 5
  start-page: 1644
  year: 2021
  end-page: 1659
  publication-title: Joule
– volume: 381
  year: 2020
  publication-title: Chem. Eng. J.
– volume: 10
  start-page: 23094
  year: 2018
  end-page: 23102
  publication-title: ACS Appl. Mater. Interfaces
– volume: 11
  start-page: 24
  year: 2018
  end-page: 29
  publication-title: Energy Storage Mater.
– volume: 4
  start-page: 1653
  year: 2016
  end-page: 1662
  publication-title: J. Mater. Chem. A
– volume: 4
  start-page: 12319
  year: 2016
  end-page: 12327
  publication-title: J. Mater. Chem. A
– volume: 6
  year: 2020
  publication-title: Sci. Adv.
– volume: 231
  start-page: 153
  year: 2013
  end-page: 162
  publication-title: J. Power Sources
– volume: 1
  start-page: 239
  year: 2018
  end-page: 293
  publication-title: Electrochem. Energy Rev.
– volume: 5
  start-page: 95073
  year: 2015
  end-page: 95078
  publication-title: RSC Adv.
– volume: 1
  start-page: 1047
  year: 2019
  end-page: 1060
  publication-title: Matter
– volume: 288
  start-page: 115
  year: 2015
  end-page: 120
  publication-title: J. Power Sources
– volume: 321
  year: 2019
  publication-title: Electrochim. Acta
– volume: 3
  year: 2016
  publication-title: Adv. Sci.
– volume: 6
  start-page: 92
  year: 2017
  end-page: 99
  publication-title: Curr. Opin. Electrochem.
– volume: 8
  start-page: 9295
  year: 2014
  end-page: 9303
  publication-title: ACS Nano
– volume: 9
  year: 2022
  publication-title: Adv. Sci.
– volume: 8
  start-page: 500
  year: 2009
  end-page: 506
  publication-title: Nat. Mater.
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 3
  start-page: 2086
  year: 2019
  end-page: 2102
  publication-title: Joule
– volume: 48
  start-page: 109
  year: 2020
  end-page: 115
  publication-title: J. Energy Chem.
– volume: 25
  start-page: 5285
  year: 2015
  end-page: 5291
  publication-title: Adv. Funct. Mater.
– volume: 46
  start-page: 3529
  year: 2017
  end-page: 3614
  publication-title: Chem. Soc. Rev.
– volume: 16
  year: 2020
  publication-title: Small
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 26
  year: 2019
  publication-title: J. Energy Storage
– volume: 389
  start-page: 198
  year: 2018
  end-page: 213
  publication-title: J. Power Sources
– volume: 70
  start-page: 344
  year: 2012
  end-page: 348
  publication-title: Electrochim. Acta
– volume: 5
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 5
  start-page: 17734
  year: 2017
  end-page: 17776
  publication-title: J. Mater. Chem. A
– volume: 179
  start-page: 263
  year: 2008
  end-page: 268
  publication-title: Solid State Ionics
– volume: 3
  year: 2010
  publication-title: Energy Environ. Sci.
– volume: 4
  start-page: 2985
  year: 2013
  publication-title: Nat. Commun.
– volume: 4
  start-page: 9526
  year: 2016
  end-page: 9535
  publication-title: J. Mater. Chem. A
– volume: 5
  start-page: 14949
  year: 2015
  publication-title: Sci. Rep.
– volume: 97
  start-page: 42
  year: 2013
  end-page: 51
  publication-title: Electrochim. Acta
– volume: 35
  start-page: 1368
  year: 2010
  end-page: 1380
  publication-title: Energy
– volume: 261
  start-page: 363
  year: 2014
  end-page: 370
  publication-title: J. Power Sources
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 12
  year: 2017
  publication-title: NANO
– volume: 235
  start-page: 399
  year: 2017
  end-page: 408
  publication-title: Electrochim. Acta
– volume: 134
  start-page: 18510
  year: 2012
  end-page: 18513
  publication-title: J. Am. Chem. Soc.
– volume: 7
  year: 2019
  publication-title: Energy Technol.
– volume: 201
  year: 2020
  publication-title: Energy
– volume: 6
  start-page: 7278
  year: 2015
  publication-title: Nat. Commun.
– volume: 208
  start-page: 52
  year: 2012
  end-page: 57
  publication-title: J. Power Sources
– volume: 3
  start-page: 1910
  year: 2013
  publication-title: Sci. Rep.
– ident: e_1_2_8_4_1
  doi: 10.1039/C6CS00776G
– ident: e_1_2_8_45_1
– ident: e_1_2_8_25_1
  doi: 10.1002/advs.202103910
– ident: e_1_2_8_58_2
  doi: 10.1016/j.jpowsour.2015.04.103
– ident: e_1_2_8_24_2
  doi: 10.1016/j.jpowsour.2012.12.102
– ident: e_1_2_8_30_2
  doi: 10.1016/j.electacta.2012.03.081
– ident: e_1_2_8_22_1
– ident: e_1_2_8_36_2
  doi: 10.1021/nn503220h
– ident: e_1_2_8_18_2
  doi: 10.1016/j.electacta.2013.02.101
– ident: e_1_2_8_48_2
  doi: 10.1002/aenm.201401752
– ident: e_1_2_8_2_1
  doi: 10.1016/j.joule.2021.05.001
– ident: e_1_2_8_40_1
– volume: 381
  year: 2020
  ident: e_1_2_8_23_2
  publication-title: Chem. Eng. J.
  contributor:
    fullname: Yang T.
– ident: e_1_2_8_8_1
  doi: 10.1002/adfm.201801188
– ident: e_1_2_8_6_1
  doi: 10.1002/adma.202201555
– ident: e_1_2_8_10_1
– ident: e_1_2_8_26_1
  doi: 10.1016/j.electacta.2019.134697
– ident: e_1_2_8_55_2
  doi: 10.1002/advs.201600101
– ident: e_1_2_8_33_1
  doi: 10.1038/srep01910
– ident: e_1_2_8_1_1
  doi: 10.1016/j.est.2019.101022
– ident: e_1_2_8_7_1
  doi: 10.1016/j.energy.2009.11.022
– ident: e_1_2_8_31_2
  doi: 10.1016/j.ensm.2017.09.001
– ident: e_1_2_8_5_1
  doi: 10.1016/j.energy.2020.117718
– ident: e_1_2_8_27_1
  doi: 10.1002/adfm.201502251
– ident: e_1_2_8_38_2
  doi: 10.1002/aenm.201402290
– ident: e_1_2_8_52_2
  doi: 10.1016/j.ssi.2008.01.015
– ident: e_1_2_8_47_2
  doi: 10.1021/ja308170k
– ident: e_1_2_8_53_1
– ident: e_1_2_8_28_1
  doi: 10.1002/smll.202004372
– ident: e_1_2_8_29_1
– ident: e_1_2_8_43_2
  doi: 10.1007/s41918-018-0010-3
– ident: e_1_2_8_50_1
– ident: e_1_2_8_39_1
  doi: 10.1039/C5TA08999A
– ident: e_1_2_8_21_2
  doi: 10.1039/C6TA02680J
– ident: e_1_2_8_13_2
  doi: 10.1016/j.jechem.2020.01.003
– ident: e_1_2_8_56_1
– ident: e_1_2_8_20_2
  doi: 10.1016/j.matt.2019.07.002
– volume: 30
  year: 2020
  ident: e_1_2_8_49_1
  publication-title: Adv. Funct. Mater.
  contributor:
    fullname: Huang L.
– ident: e_1_2_8_54_2
  doi: 10.1002/ente.201900625
– ident: e_1_2_8_51_2
  doi: 10.1039/C5RA19056H
– ident: e_1_2_8_34_1
  doi: 10.1038/nmat2460
– ident: e_1_2_8_37_2
  doi: 10.1039/C6TA03187K
– ident: e_1_2_8_57_2
  doi: 10.1016/j.jpowsour.2012.02.001
– ident: e_1_2_8_12_2
  doi: 10.1016/j.jpowsour.2014.03.052
– volume: 3
  year: 2010
  ident: e_1_2_8_11_2
  publication-title: Energy Environ. Sci.
  contributor:
    fullname: Zhang B.
– ident: e_1_2_8_17_2
  doi: 10.1038/ncomms3985
– ident: e_1_2_8_16_1
– ident: e_1_2_8_42_2
  doi: 10.1016/j.electacta.2017.03.023
– ident: e_1_2_8_19_1
– ident: e_1_2_8_35_1
– ident: e_1_2_8_9_1
  doi: 10.1016/j.coelec.2017.10.007
– ident: e_1_2_8_59_1
  doi: 10.1016/j.joule.2019.07.011
– ident: e_1_2_8_46_2
  doi: 10.1142/S1793292017500217
– ident: e_1_2_8_15_1
  doi: 10.1126/sciadv.aay2757
– ident: e_1_2_8_32_1
  doi: 10.1038/ncomms8278
– ident: e_1_2_8_14_1
  doi: 10.1021/acsami.8b05166
– ident: e_1_2_8_41_2
  doi: 10.1039/C7TA00799J
– ident: e_1_2_8_44_1
  doi: 10.1038/srep14949
– ident: e_1_2_8_3_1
  doi: 10.1016/j.jpowsour.2018.04.022
SSID ssj0060966
Score 2.4368017
Snippet Porous carbon is considered an attractive host material for high‐energy sulfur electrodes. This study concerns the design of a porous carbon‐based sulfur...
Porous carbon is considered an attractive host material for high-energy sulfur electrodes. This study concerns the design of a porous carbon-based sulfur...
SourceID proquest
crossref
pubmed
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage e202202009
SubjectTerms Carbon
Cathodes
Electrode materials
Electrode polarization
Electrodes
energy storage
lithium−sulfur batteries
mesoporous materials
Sulfur
Title Novel Strategy for the Formulation of High‐Energy‐Density Cathodes via Porous Carbon for Li‐S Batteries
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcssc.202202009
https://www.ncbi.nlm.nih.gov/pubmed/36577695
https://www.proquest.com/docview/2815122965
https://search.proquest.com/docview/2759264119
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Li9swEBZtLu2l23ezTYsKhZ5MIsmS7GNxEnIoIeAWejOWNIJAG5d4E8htf8L-xv0lO_KrhB4WuuCDXyPLmpH0ja35hpDPljMzc1BGPFYyinEOiows0ZYt84l2XoMNjuIq1-ufyXwRaHKGKP6WH2L44BZ6RjNehw5emnr6lzTU1nWgIOS4tRF86Co0MRxi0w_FCvF5E16UqDiSSrCetXHGp-fi57PSP1DzHLk2U8_y4uGVfk6edbCTfm3t5AV5BLuX5EnWZ3t7RX6vqyP8oh1Z7YkilqWIDekSMW2X4YtWnoZlIbfXN4smYhB35mH9-9WJhkDCykFNj9uSbqp9dajx3N6gVCjp2xbvzWlL5om--WvyY7n4nq2iLhVDZAW6ZJGyVoIQTpTCpMwJMMpokDz14FVsEmdEEnvOtZXaokdjfKmZS4DPwMeKg3hDRrtqB-8IdWgKEr0yH4ePmT4Q3EMCzCOO1IY7PiZfelUUf1rGjaLlVuZFaL5iaL4xmfSaKrqeVxc8CRiGp0qOyafhMjZm-BFS7gDfv-BYAQSCjGERb1sND48SSmqtUpTmjSLvqUOR5Xk2HF3-j9B78jTksA9LElg6IaOr_QE-kMe1O3xsrPkOYQf2Rw
link.rule.ids 315,782,786,1408,27933,27934,46064,46488
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBZpckgvbdJHummaqlDoyWQlWZJ9DJtdNmS7BDaF3oT1gkCyLutsILf-hP7G_pLM-BWWHgql4INfY8uakfSNrPmGkM-OMzv0oUh4qmSSwhiUWFmALTsWM-2jDg4dxelCz79nZ2OkyTntYmEafoh-wg1bRt1fYwPHCemTJ9ZQV1XIQchhq0P4dlIF1ohRHOKy64wVIPQ6wChTaSKVYB1v45CfbMpvjkt_gM1N7FoPPpOX_6HYe-RFizzpaWMq-2QrLF-R3VGX8O01uZ2X9-GGtny1DxTgLAV4SCcAa9skX7SMFFeG_P75a1wHDcLOGS6Bv3ugGEtY-lDR--uCXparcl3BuZUFKXzS7BruXdCGzxPc8zfk22R8NZombTaGxAnwyhLlnAxCeFEImzMvglVWB8nzGKJKbeatyNLIuXZSO3BqbCw081ngwxBTxYN4S7aX5TK8I9SDNUhwzGKK85kROe5DFlgEKKkt93xAvnS6MD8a0g3T0Ctzg9Vn-uobkKNOVaZtfJXhGcIYnis5IJ_6y1CZ-C-kWAb4fsOhAIAFGYNHHDQq7l8llNRa5SDNa03-pQxmtFiM-qPDfxH6SHanV19nZnY-v3hPnmNKe1yhwPIjsn23WocP5Fnl18e1aT8C8d76bw
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBZtCm0vTV9ptklaFQo9mawkS7KPZR-kNCwLm0BvwpJGEEjWYZ0N5Jaf0N_YX9KRX2HJIZCAD36NLGtG0je25htCvjvO7NBDkfBUySTFOSixskBbdixk2gcNLjqKRws9-5ONJ5Emp4_ib_gh-g9usWfU43Xs4Jc-HN6RhrqqihSEHLc6gu9Filg8sucLMe_GYoUAvY4vylSaSCVYR9s45Ieb8pvT0j2suQld67lnuv30Wr8lb1rcSX82hvKOPIPle_Jq1KV7-0AuZuU1nNOWrfaGIpilCA7pFEFtm-KLloHGdSH_bv9O6pBB3BnHBfBXNzRGEpYeKnp9VtB5uSrXFZ5bWZSKJR2f4b0L2rB5onP-kZxOJyejo6TNxZA4gT5ZopyTIIQXhbA58wKsshokzwMEldrMW5GlgXPtpHbo0thQaOYz4EMIqeIgdsjWslzCLqEebUGiWxbS-DUzRIZ7yIAFBJLacs8H5EenCnPZUG6YhlyZm9h8pm--AdnvNGXarlcZnkUQw3MlB-RbfxkbM_4JKZaA7284VgCRIGNYxKdGw_2jhJJaqxylea3IB-pgRovFqD_6_Bihr-TlfDw1x79mv_fI65jPPi5PYPk-2bpareGAPK_8-ktt2P8B6Sz5FQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Novel+Strategy+for+the+Formulation+of+High%E2%80%90Energy%E2%80%90Density+Cathodes+via+Porous+Carbon+for+Li%E2%80%90S+Batteries&rft.jtitle=ChemSusChem&rft.au=Kim%2C+Dae%E2%80%90Seong&rft.au=Woo%2C+Sang%E2%80%90Gil&rft.au=Kang%2C+Cheon%E2%80%90Ju&rft.au=Lee%2C+Ju%E2%80%90Hee&rft.date=2023-05-19&rft.issn=1864-5631&rft.eissn=1864-564X&rft.volume=16&rft.issue=10&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fcssc.202202009&rft.externalDBID=10.1002%252Fcssc.202202009&rft.externalDocID=CSSC202202009
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1864-5631&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1864-5631&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1864-5631&client=summon