Predicting Potential Spawning Habitat by Ensemble Species Distribution Models: The Case Study of European Anchovy (Engraulis encrasicolus) in the Strait of Sicily

Species distribution models (SDMs) are important tools for exploring the complex association between species and habitats. Here, we applied six SDMs combining 1946 pieces of presence/absence data regarding European anchovy eggs with environmental parameters from surveys conducted in the Strait of Si...

Full description

Saved in:
Bibliographic Details
Published in:Water (Basel) Vol. 14; no. 9; p. 1400
Main Authors: Enza Maria Quinci, Marco Torri, Angela Cuttitta, Bernardo Patti
Format: Journal Article
Language:English
Published: MDPI AG 01-05-2022
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Species distribution models (SDMs) are important tools for exploring the complex association between species and habitats. Here, we applied six SDMs combining 1946 pieces of presence/absence data regarding European anchovy eggs with environmental parameters from surveys conducted in the Strait of Sicily from 1998 to 2016. We aimed to investigate the mechanisms influencing spawning habitat suitability for anchovy (Engraulis encrasicolus). The dataset was split into a training subset (75%) and a test subset (25%) for evaluating the predictive performance of the models. The results suggested the role of environmental parameters in explaining egg occurrence, model accuracy and spatial predictions. Bottom depth consistently had the highest importance, followed by absolute dynamic topography, which gives insights about local mesoscale oceanographic features. Each modelling method, except the linear model, produced successful performance for both the training and the test datasets. The spatial predictions were estimated as weighted averages of single-model predictions, with weights based on discriminatory power measured by the area under the receiver operating characteristic curve (AUC). This ensemble approach often provided more robust predictions than a single model. The coastal waters were identified as the most favorable for anchovy spawning, especially the south-central sector and the area around the southern-most tip of Sicily.
AbstractList Species distribution models (SDMs) are important tools for exploring the complex association between species and habitats. Here, we applied six SDMs combining 1946 pieces of presence/absence data regarding European anchovy eggs with environmental parameters from surveys conducted in the Strait of Sicily from 1998 to 2016. We aimed to investigate the mechanisms influencing spawning habitat suitability for anchovy (Engraulis encrasicolus). The dataset was split into a training subset (75%) and a test subset (25%) for evaluating the predictive performance of the models. The results suggested the role of environmental parameters in explaining egg occurrence, model accuracy and spatial predictions. Bottom depth consistently had the highest importance, followed by absolute dynamic topography, which gives insights about local mesoscale oceanographic features. Each modelling method, except the linear model, produced successful performance for both the training and the test datasets. The spatial predictions were estimated as weighted averages of single-model predictions, with weights based on discriminatory power measured by the area under the receiver operating characteristic curve (AUC). This ensemble approach often provided more robust predictions than a single model. The coastal waters were identified as the most favorable for anchovy spawning, especially the south-central sector and the area around the southern-most tip of Sicily.
Author Enza Maria Quinci
Angela Cuttitta
Bernardo Patti
Marco Torri
Author_xml – sequence: 1
  fullname: Enza Maria Quinci
  organization: Institute of Anthropic Impacts and Sustainability in Marine Environment (IAS), National Research Council of Italy, 91021 Trapani, Italy
– sequence: 2
  fullname: Marco Torri
  organization: Institute for Studies on the MEDiterranean (ISMED), National Research Council of Italy, 90145 Palermo, Italy
– sequence: 3
  fullname: Angela Cuttitta
  organization: Institute for Studies on the MEDiterranean (ISMED), National Research Council of Italy, 90145 Palermo, Italy
– sequence: 4
  fullname: Bernardo Patti
  organization: Institute of Anthropic Impacts and Sustainability in Marine Environment (IAS), National Research Council of Italy, 90149 Palermo, Italy
BookMark eNotTMtqGzEUFaGFpKkX_QMt04UbaSRbM9kF120CDgnEXQ9X0h37holkJE3N_E6_tOMkBw4HzusL-xRiQMa-SfFDqUZcH6UWzURxxi4qYdRcay3P2SznFzFBN3W9EBfs31NCT65Q2PGnWDAUgp4_H-AYTtYdWCpQuB35OmR8tT1OITrCzH9SLonsUCgG_hA99vmGb_fIV5CnVhn8yGPH10OKB4TAb4Pbx78jv1qHXYKhp8wxuASZXOyH_J1T4GV_Wiagcpo-k6N-_Mo-d9BnnH3oJfvza71d3c03j7_vV7ebuVOVKfPOmmXnK5S-gU6CcXVjpVNWa9NJiWIhfWeVq9F4h0K6BoQD68RCNNYb69Ulu3__9RFe2kOiV0hjG4HaNyOmXQupkOux1V4bvbRYKQOTitpU03e1BGs6X0Oj_gNdAXye
CitedBy_id crossref_primary_10_1016_j_seares_2023_102460
crossref_primary_10_1007_s10651_024_00618_6
crossref_primary_10_3389_fmars_2022_1065514
crossref_primary_10_3390_rs14205278
crossref_primary_10_3389_fmars_2024_1383063
crossref_primary_10_3389_fmars_2022_960929
ContentType Journal Article
DBID DOA
DOI 10.3390/w14091400
DatabaseName Directory of Open Access Journals
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: http://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2073-4441
ExternalDocumentID oai_doaj_org_article_4d4746be237a46b0872fb326ab7fd8a9
GroupedDBID 2XV
5VS
7XC
8CJ
8FE
8FH
A8Z
AADQD
AAFWJ
AAHBH
ADBBV
AENEX
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BCNDV
BENPR
BHPHI
BKSAR
CCPQU
D1J
E3Z
ECGQY
EDH
ESTFP
GROUPED_DOAJ
GX1
HCIFZ
IAO
ITC
KQ8
MODMG
M~E
OK1
OZF
PATMY
PCBAR
PIMPY
PROAC
PYCSY
RIG
ID FETCH-LOGICAL-c327t-fb76fd2e1d9af1a7c89b1c3b447f11e051dfb3c8e7dce01c9a0cabc0509bd7bd3
IEDL.DBID DOA
IngestDate Tue Oct 22 15:16:58 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c327t-fb76fd2e1d9af1a7c89b1c3b447f11e051dfb3c8e7dce01c9a0cabc0509bd7bd3
OpenAccessLink https://doaj.org/article/4d4746be237a46b0872fb326ab7fd8a9
ParticipantIDs doaj_primary_oai_doaj_org_article_4d4746be237a46b0872fb326ab7fd8a9
PublicationCentury 2000
PublicationDate 2022-05-01
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-01
  day: 01
PublicationDecade 2020
PublicationTitle Water (Basel)
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
SSID ssj0000498850
Score 2.323059
Snippet Species distribution models (SDMs) are important tools for exploring the complex association between species and habitats. Here, we applied six SDMs combining...
SourceID doaj
SourceType Open Website
StartPage 1400
SubjectTerms anchovy
ensemble distribution modelling
machine-learning methods
regression models
spawning habitat
Strait of Sicily
Title Predicting Potential Spawning Habitat by Ensemble Species Distribution Models: The Case Study of European Anchovy (Engraulis encrasicolus) in the Strait of Sicily
URI https://doaj.org/article/4d4746be237a46b0872fb326ab7fd8a9
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF5BTnBAlIeg0GoOHOBgxY91ZsOtj1Q5oUoBiVs0sw8pKDhRnFDl7_SXMmOnVTn1wsG2ZHm9q5mxZ3Z35vuM-ZTECxTRxqxyvs5sZMq4zkPGBWPNiMyoxcnTGX776S4nCpNzT_WlOWE9PHAvuKENFu2IY1khyTV3WCaWmIMYU3DUl-7l-GAy9auPe52r8x5KqJJ5_fBGkZ3kyP8B5--8yNVL8-IQ_sFZ3-2ReRKbV-b5A1DA1-b2eqObJ5qODNerrWbzSIvZmm50CQOmxFoWBryHSdPG37yM0JHIxxYuFQX3QGAFynK2bL-CGAJciK8CTRncwyrB3Qo8nDXy8_uzh88ygA0pNTqI0W6oVfPYtV9g0YAEiKAQtoutNp0t_GK5f2N-XE2-X0yzA5NC5qsSt1liHKVQxiKMKRWE3o258BVbi0lUJR9mEKF6FzH4mBd-TLkn9ooNwwE5VG_NoFk18Z2B3FGV5MkoJ5sKR8xjctZTTRhjie_NuYp3vu7BMuYKX93dEKXOD0qdP6bU4__xkg_mWam1Cl124kcz2G528cQ8bcPutDOWv_4AyrQ
link.rule.ids 315,782,786,866,2107,27934,27935
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+Potential+Spawning+Habitat+by+Ensemble+Species+Distribution+Models%3A+The+Case+Study+of+European+Anchovy+%28Engraulis+encrasicolus%29+in+the+Strait+of+Sicily&rft.jtitle=Water+%28Basel%29&rft.au=Enza+Maria+Quinci&rft.au=Marco+Torri&rft.au=Angela+Cuttitta&rft.au=Bernardo+Patti&rft.date=2022-05-01&rft.pub=MDPI+AG&rft.eissn=2073-4441&rft.volume=14&rft.issue=9&rft.spage=1400&rft_id=info:doi/10.3390%2Fw14091400&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_4d4746be237a46b0872fb326ab7fd8a9