Chemical‐treated sisal fiber reinforcement in red mud composites: Advancing mechanical strength and environmental sustainability

The use of industrial waste red mud in polymer composites promotes environmental sustainability by mitigating the environmental impacts associated with landfill disposal. Previous research by the authors on red mud sisal fiber composites resulted in increased strength; it is expected that the streng...

Full description

Saved in:
Bibliographic Details
Published in:Polymer composites Vol. 45; no. 3; pp. 2759 - 2766
Main Authors: J., Aravind Kumar, Sankaran, Sakthivel, Veerasimman, Arumugaprabu, Marimuthu, Uthayakumar, Palani, Geetha, Rajendran, Sundarakannan, Shanmugam, Vigneshwaran
Format: Journal Article
Language:English
Published: Hoboken, USA John Wiley & Sons, Inc 20-02-2024
Blackwell Publishing Ltd
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The use of industrial waste red mud in polymer composites promotes environmental sustainability by mitigating the environmental impacts associated with landfill disposal. Previous research by the authors on red mud sisal fiber composites resulted in increased strength; it is expected that the strength can be increased further through fiber treatment. As a result, the current study sought to examine the effects of chemical‐treated sisal fiber reinforcement on the mechanical properties of red mud composites. Alkaline treatment and silane treatment were both used as chemical treatment methods. Red mud was added in three different weight percentages, and composites were built using the compression molding method and tested for hardness, tensile strength, flexural strength, and impact strength. The findings indicate that the strength of the composite increases with the incorporation of treated fibers, silane‐treated 30% red mud composites showed a maximum hardness of around 92 shore D. The tensile strength of the composites containing 20% red mud and treated with silane was the highest, reaching ca. 63 MPa. This significant increase in strength was attributed to the formation of strong interfacial bonding between the red mud, fiber, and matrix. Furthermore, the silane‐treated 20 wt% red mud composites have the highest flexural strength (ca. 244 MPa) and impact strength (ca. 26 J/m). However, increasing the red mud content above 20 wt% resulted in decreased tensile, flexural, and impact strength due to poor bond development, and red mud agglomeration. The findings of this study are beneficial for the design and development of composites based on red mud, as well as for promoting sustainable waste management practices. Highlights Red mud composites achieve superior mechanical strength. Chemical treatment enhances sisal fiber reinforcement. Sustainable waste management promoted through composite utilization. Strong interfacial bonding improves composite performance. This investigation sought to examine the effects of chemical‐treated sisal fiber reinforcement on the mechanical properties of red mud composites. The findings of this study are beneficial for the design and development of composites based on red mud, as well as for promoting sustainable waste management practices.
ISSN:0272-8397
1548-0569
DOI:10.1002/pc.27955