Effect of occupation of the excited states and phonon broadening on the determination of the hot carrier temperature from continuous wave photoluminescence in InGaAsP quantum well absorbers

An InGaAsP quantum well with a type‐II band alignment is studied using continuous wave power and temperature dependent photoluminescence (PL) spectroscopy. The small energy separation between the ground state and first excited state results in significant thermal carrier redistribution and excited s...

Full description

Saved in:
Bibliographic Details
Published in:Progress in photovoltaics Vol. 25; no. 9; pp. 782 - 790
Main Authors: Esmaielpour, Hamidreza, Whiteside, Vincent R., Hirst, Louise C., Tischler, Joseph G., Ellis, Chase T., Lumb, Matthew P., Forbes, David V., Walters, Robert J., Sellers, Ian R.
Format: Journal Article
Language:English
Published: Bognor Regis Wiley Subscription Services, Inc 01-09-2017
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract An InGaAsP quantum well with a type‐II band alignment is studied using continuous wave power and temperature dependent photoluminescence (PL) spectroscopy. The small energy separation between the ground state and first excited state results in significant thermal carrier redistribution and excited state occupation, particularly, with increasing excitation power and temperature. This state filling is evident as a high‐energy shoulder in the PL spectra, the same energy region where in the simplest Planck‐description the gradient is considered inversely proportional to carrier temperature. The outcome of an excited state occupation in broadening the high‐energy PL tail is to perturb the temperature extracted using this analysis; therefore, the true temperature of carriers is not properly evaluated when significant state filling occurs. In addition, broadening of the PL due to phonons at higher temperatures also distorts (or falsely increases) the non‐equilibrium “hot” carrier temperature and as such should be considered when using Planck's relation. The role of these two effects is considered and their mutual effect on the analysis of the extracted hot carrier temperature discussed. Copyright © 2017 John Wiley & Sons, Ltd. In this manuscript we explicitly investigate the effects of state filling and phonon broadening on the temperature and power dependent photoluminescence spectra‐enabling the contribution of these two important effects when extracting the hot carrier temperature. By carefully studying the relative contributions of these effects (state filling and phonons), their role and contribution to the shape of the photoluminescence spectra can be assessed such that the conditions for realistic hot carrier extraction can be determined.
AbstractList An InGaAsP quantum well with a type-II band alignment is studied using continuous wave power and temperature dependent photoluminescence (PL) spectroscopy. The small energy separation between the ground state and first excited state results in significant thermal carrier redistribution and excited state occupation, particularly, with increasing excitation power and temperature. This state filling is evident as a high-energy shoulder in the PL spectra, the same energy region where in the simplest Planck-description the gradient is considered inversely proportional to carrier temperature. The outcome of an excited state occupation in broadening the high-energy PL tail is to perturb the temperature extracted using this analysis; therefore, the true temperature of carriers is not properly evaluated when significant state filling occurs. In addition, broadening of the PL due to phonons at higher temperatures also distorts (or falsely increases) the non-equilibrium "hot" carrier temperature and as such should be considered when using Planck's relation. The role of these two effects is considered and their mutual effect on the analysis of the extracted hot carrier temperature discussed. Copyright © 2017 John Wiley & Sons, Ltd.
An InGaAsP quantum well with a type‐II band alignment is studied using continuous wave power and temperature dependent photoluminescence (PL) spectroscopy. The small energy separation between the ground state and first excited state results in significant thermal carrier redistribution and excited state occupation, particularly, with increasing excitation power and temperature. This state filling is evident as a high‐energy shoulder in the PL spectra, the same energy region where in the simplest Planck‐description the gradient is considered inversely proportional to carrier temperature. The outcome of an excited state occupation in broadening the high‐energy PL tail is to perturb the temperature extracted using this analysis; therefore, the true temperature of carriers is not properly evaluated when significant state filling occurs. In addition, broadening of the PL due to phonons at higher temperatures also distorts (or falsely increases) the non‐equilibrium “hot” carrier temperature and as such should be considered when using Planck's relation. The role of these two effects is considered and their mutual effect on the analysis of the extracted hot carrier temperature discussed. Copyright © 2017 John Wiley & Sons, Ltd. In this manuscript we explicitly investigate the effects of state filling and phonon broadening on the temperature and power dependent photoluminescence spectra‐enabling the contribution of these two important effects when extracting the hot carrier temperature. By carefully studying the relative contributions of these effects (state filling and phonons), their role and contribution to the shape of the photoluminescence spectra can be assessed such that the conditions for realistic hot carrier extraction can be determined.
Author Hirst, Louise C.
Tischler, Joseph G.
Forbes, David V.
Sellers, Ian R.
Lumb, Matthew P.
Whiteside, Vincent R.
Esmaielpour, Hamidreza
Walters, Robert J.
Ellis, Chase T.
Author_xml – sequence: 1
  givenname: Hamidreza
  orcidid: 0000-0002-9432-8861
  surname: Esmaielpour
  fullname: Esmaielpour, Hamidreza
  organization: University of Oklahoma
– sequence: 2
  givenname: Vincent R.
  surname: Whiteside
  fullname: Whiteside, Vincent R.
  organization: University of Oklahoma
– sequence: 3
  givenname: Louise C.
  surname: Hirst
  fullname: Hirst, Louise C.
  organization: U.S. Naval Research Laboratory
– sequence: 4
  givenname: Joseph G.
  surname: Tischler
  fullname: Tischler, Joseph G.
  organization: U.S. Naval Research Laboratory
– sequence: 5
  givenname: Chase T.
  surname: Ellis
  fullname: Ellis, Chase T.
  organization: U.S. Naval Research Laboratory
– sequence: 6
  givenname: Matthew P.
  surname: Lumb
  fullname: Lumb, Matthew P.
  organization: The George Washington University
– sequence: 7
  givenname: David V.
  surname: Forbes
  fullname: Forbes, David V.
  organization: Rochester Institute of Technology
– sequence: 8
  givenname: Robert J.
  surname: Walters
  fullname: Walters, Robert J.
  organization: U.S. Naval Research Laboratory
– sequence: 9
  givenname: Ian R.
  surname: Sellers
  fullname: Sellers, Ian R.
  email: sellers@ou.edu
  organization: University of Oklahoma
BookMark eNp1kctO3DAUhi1EpQKt1Ec4UjfdBOxkcvESITqMhMQsQOoucuxjxiixgy8deDjeDYfppgtW5xz50_fL-k_JsXUWCfnB6DmjtLyYzXxedpwekRNGOS9Yzf8cL3tTFi3n9VdyGsITpazteHNC3q61RhnBaXBSpllE4-xyxR0CvkgTUUGIImIAYRXMO5cDYfBOKLTGPkK-FlZhRD8Z-59g5yJI4b1BDxGnGb2IySNo7yaQzkZjk0sB9uIvLuroxpQdGCRaiWAsbOxaXIYtPCdhY5pgj-MIYgjOD-jDN_JFizHg93_zjDz8vr6_uilu79abq8vbQlZlSwvVCiZqudKi0nX-9qrsWt7qqkbBauy00h1F1TVKNl0juWpZfpblamg7OnC6qs7Iz4N39u45YYj9k0ve5sie8ZyQjRXP1K8DJb0LwaPuZ28m4V97RvulnD6X0y_lZLQ4oHsz4uunXL_dbD_4d7-Ql0Y
CitedBy_id crossref_primary_10_1021_acsaem_8b01882
crossref_primary_10_1088_1361_6528_abbce8
crossref_primary_10_1103_PhysRevB_109_235303
crossref_primary_10_1002_pssr_202300077
crossref_primary_10_1016_j_mssp_2022_107149
crossref_primary_10_1039_C8TC04641G
crossref_primary_10_1103_PhysRevMaterials_5_095402
crossref_primary_10_1021_acs_jpcc_9b12032
crossref_primary_10_1088_1361_6641_ab8171
crossref_primary_10_1088_1361_6641_ab312d
crossref_primary_10_1088_1361_6641_ab312b
crossref_primary_10_1038_s41560_018_0106_3
crossref_primary_10_1038_s41598_018_30894_9
crossref_primary_10_1109_JPHOTOV_2022_3189781
crossref_primary_10_1021_acs_chemrev_2c00843
crossref_primary_10_1039_D2TC00266C
crossref_primary_10_1002_pip_3116
crossref_primary_10_1002_pip_3557
crossref_primary_10_1002_pip_3777
crossref_primary_10_1021_acsenergylett_1c02581
crossref_primary_10_1021_acs_jpcc_1c02173
crossref_primary_10_1002_adfm_202404299
crossref_primary_10_1088_2053_1591_aaddd2
crossref_primary_10_1038_s41560_020_0602_0
crossref_primary_10_1063_5_0022277
crossref_primary_10_1063_1_4985614
crossref_primary_10_1038_s41598_023_32125_2
crossref_primary_10_1088_1361_6641_aae4c3
Cites_doi 10.1117/12.964654
10.1117/12.940890
10.1016/S0928-4931(02)00101-7
10.1063/1.368275
10.1109/JQE.1986.1073164
10.1103/PhysRevB.50.4463
10.1103/PhysRevB.84.045302
10.1103/PhysRevB.54.11548
10.1039/c2ee02843c
10.1016/j.solmat.2008.09.034
10.1007/BF00323895
10.1016/j.solmat.2014.11.015
10.1002/pip.2763
10.1063/1.4907630
10.1103/PhysRevB.57.9050
10.1103/PhysRevB.24.1134
10.1063/1.331124
10.1016/0031-8914(67)90062-6
10.1016/j.physe.2009.12.032
10.1063/1.336476
10.1109/JPHOTOV.2013.2289321
10.1103/PhysRevB.33.5512
ContentType Journal Article
Copyright Copyright © 2017 John Wiley & Sons, Ltd.
Copyright_xml – notice: Copyright © 2017 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SP
7TB
8FD
FR3
L7M
DOI 10.1002/pip.2890
DatabaseName CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Engineering Research Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1099-159X
EndPage 790
ExternalDocumentID 10_1002_pip_2890
PIP2890
Genre article
GrantInformation_xml – fundername: Office of Naval Research (ONR)
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BNHUX
BROTX
BRXPI
BY8
CMOOK
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EDH
EJD
F00
F01
F04
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HF~
HGLYW
HHY
HVGLF
HZ~
I-F
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M59
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RX1
SAMSI
SUPJJ
TWZ
UB1
V2E
W8V
W99
WBKPD
WIH
WIK
WLBEL
WOHZO
WQJ
WRC
WWI
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~IA
~WT
AAMNL
AAYXX
CITATION
7SP
7TB
8FD
FR3
L7M
ID FETCH-LOGICAL-c3270-d7a1a5c4fa3f5896428797f35ea15e8fdf80ed86dc686c9d71797c24b780b9043
IEDL.DBID 33P
ISSN 1062-7995
IngestDate Thu Oct 10 19:42:13 EDT 2024
Thu Nov 21 21:30:10 EST 2024
Sat Aug 24 00:55:18 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3270-d7a1a5c4fa3f5896428797f35ea15e8fdf80ed86dc686c9d71797c24b780b9043
ORCID 0000-0002-9432-8861
PQID 1927064239
PQPubID 1016445
PageCount 9
ParticipantIDs proquest_journals_1927064239
crossref_primary_10_1002_pip_2890
wiley_primary_10_1002_pip_2890_PIP2890
PublicationCentury 2000
PublicationDate September 2017
2017-09-00
20170901
PublicationDateYYYYMMDD 2017-09-01
PublicationDate_xml – month: 09
  year: 2017
  text: September 2017
PublicationDecade 2010
PublicationPlace Bognor Regis
PublicationPlace_xml – name: Bognor Regis
PublicationTitle Progress in photovoltaics
PublicationYear 2017
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2012
1986; 33
1982; 53
2011; 84
1986; 59
1981; 24
2015; 106
1992; 54
1998; 84
1996; 54
2010; 42
2014; 4
2000
2015; 135
2009; 93
1986; 22
1967; 34
2002; 21
1987
2015
2014
2016; 29
1994; 50
2012; 5
2016; 24
1998; 57
e_1_2_5_25_1
e_1_2_5_26_1
e_1_2_5_23_1
e_1_2_5_24_1
e_1_2_5_21_1
e_1_2_5_22_1
Gibelli F (e_1_2_5_27_1) 2016; 29
e_1_2_5_20_1
e_1_2_5_15_1
e_1_2_5_14_1
e_1_2_5_17_1
e_1_2_5_9_1
e_1_2_5_16_1
e_1_2_5_8_1
e_1_2_5_11_1
e_1_2_5_7_1
e_1_2_5_10_1
e_1_2_5_6_1
e_1_2_5_5_1
e_1_2_5_12_1
e_1_2_5_4_1
e_1_2_5_3_1
e_1_2_5_2_1
e_1_2_5_19_1
e_1_2_5_18_1
Gfroerer TH (e_1_2_5_13_1) 2000
References_xml – volume: 84
  start-page: 2138
  issue: 4
  year: 1998
  end-page: 2145
  article-title: Photoluminescence study of the interface in type II InAlAs–InP heterostructures
  publication-title: Journal of applied physics
– volume: 33
  start-page: 5512
  issue: 8
  year: 1986
  end-page: 5516
  article-title: Luminescence linewidths of excitons in GaAs quantum wells below 150 k
  publication-title: Physical Review B
– volume: 22
  start-page: 1728
  issue: 9
  year: 1986
  end-page: 1743
  article-title: Hot carriers in quasi‐2‐d polar semiconductors
  publication-title: IEEE Journal of Quantum Electronics
– volume: 54
  start-page: 11 548
  issue: 16
  year: 1996
  end-page: 11 553
  article-title: State filling and time‐resolved photoluminescence of excited states in In Ga As/GaAs self‐assembled quantum dots
  publication-title: Physical Review B
– volume: 4
  start-page: 244
  issue: 1
  year: 2014
  end-page: 252
  article-title: Hot carriers in quantum wells for photovoltaic efficiency enhancement
  publication-title: IEEE Journal of Photovoltaics
– year: 2000
– start-page: 1
  year: 2015
  end-page: 3
– volume: 34
  start-page: 149
  issue: 1
  year: 1967
  end-page: 154
  article-title: Temperature dependence of the energy gap in semiconductors
  publication-title: Physica
– volume: 59
  start-page: 1633
  issue: 5
  year: 1986
  end-page: 1640
  article-title: Photoluminescence study of interface defects in high‐quality GaAs‐GaAlAs superlattices
  publication-title: Journal of applied physics
– volume: 54
  start-page: 109
  issue: 2
  year: 1992
  end-page: 114
  article-title: Verification of a generalized Planck law for luminescence radiation from silicon solar cells
  publication-title: Applied Physics A
– volume: 50
  start-page: 4463
  issue: 7
  year: 1994
  end-page: 4469
  article-title: Investigation of the photoluminescence‐linewidth broadening in periodic multiple narrow asymmetric coupled quantum wells
  publication-title: Physical Review B
– volume: 24
  start-page: 1134
  issue: 2
  year: 1981
  end-page: 1136
  article-title: Observation of the excited level of excitons in GaAs quantum wells
  publication-title: Physical Review B
– volume: 53
  start-page: 3813
  issue: 5
  year: 1982
  end-page: 3818
  article-title: Efficiency of hot‐carrier solar energy converters
  publication-title: Journal of Applied Physics
– year: 2014
– volume: 29
  start-page: 1
  year: 2016
  end-page: 6
  article-title: Accurate radiation temperature and chemical potential from quantitative photoluminescence analysis of hot carrier populations
  publication-title: Journal of Physics: Condensed Matter
– volume: 21
  start-page: 231
  issue: 1
  year: 2002
  end-page: 236
  article-title: Optical properties of InP/InAlAs/InP grown by MOCVD on (100) substrates: influence of v/iii molar ratio
  publication-title: Materials Science and Engineering: C
– volume: 93
  start-page: 713
  issue: 6
  year: 2009
  end-page: 719
  article-title: Progress on hot carrier cells
  publication-title: Solar Energy Materials and Solar Cells
– volume: 24
  start-page: 591
  year: 2016
  end-page: 599
  article-title: Suppression of phonon‐mediated hot carrier relaxation in type‐II InAs/AlAs Sb quantum wells: a practical route to hot carrier solar cells
  publication-title: Progress in Photovoltaics: Research and Applications
– volume: 135
  start-page: 124
  year: 2015
  end-page: 129
  article-title: Hot carrier solar cell absorber prerequisites and candidate material systems
  publication-title: Solar Energy Materials and Solar Cells
– volume: 5
  start-page: 6225
  issue: 3
  year: 2012
  end-page: 6232
  article-title: Thermalisation rate study of GaSb‐based heterostructures by continuous wave photoluminescence and their potential as hot carrier solar cell absorbers
  publication-title: Energy & Environmental Science
– start-page: 44
  year: 1987
  end-page: 49
– volume: 42
  start-page: 2862
  issue: 10
  year: 2010
  end-page: 2866
  article-title: Hot carrier solar cells: principles, materials and design
  publication-title: Physica E: Low‐dimensional Systems and Nanostructures
– volume: 57
  start-page: 9050
  issue: 15
  year: 1998
  end-page: 9060
  article-title: Excited states and energy relaxation in stacked InAs/GaAs quantum dots
  publication-title: Physical Review B
– start-page: 84710A
  year: 2012
  end-page: 84710A
– volume: 84
  issue: 4
  year: 2011
  article-title: Charge separation and temperature‐induced carrier migration in Ga In N As multiple quantum wells
  publication-title: Physical Review B
– volume: 106
  start-page: 061902
  issue: 6
  year: 2015
  end-page: 1 to 061902‐4
  article-title: Effects of localization on hot carriers in InAs/AlAs Sb quantum wells
  publication-title: Applied Physics Letters
– ident: e_1_2_5_21_1
  doi: 10.1117/12.964654
– ident: e_1_2_5_14_1
  doi: 10.1117/12.940890
– ident: e_1_2_5_23_1
  doi: 10.1016/S0928-4931(02)00101-7
– ident: e_1_2_5_24_1
  doi: 10.1063/1.368275
– volume-title: Encyclopedia of Analytical Chemistry
  year: 2000
  ident: e_1_2_5_13_1
  contributor:
    fullname: Gfroerer TH
– ident: e_1_2_5_10_1
  doi: 10.1109/JQE.1986.1073164
– ident: e_1_2_5_26_1
– ident: e_1_2_5_17_1
  doi: 10.1103/PhysRevB.50.4463
– ident: e_1_2_5_25_1
  doi: 10.1103/PhysRevB.84.045302
– ident: e_1_2_5_7_1
– ident: e_1_2_5_20_1
  doi: 10.1103/PhysRevB.54.11548
– ident: e_1_2_5_11_1
  doi: 10.1039/c2ee02843c
– ident: e_1_2_5_3_1
  doi: 10.1016/j.solmat.2008.09.034
– ident: e_1_2_5_12_1
  doi: 10.1007/BF00323895
– ident: e_1_2_5_5_1
  doi: 10.1016/j.solmat.2014.11.015
– ident: e_1_2_5_8_1
  doi: 10.1002/pip.2763
– ident: e_1_2_5_6_1
  doi: 10.1063/1.4907630
– ident: e_1_2_5_18_1
  doi: 10.1103/PhysRevB.57.9050
– ident: e_1_2_5_19_1
  doi: 10.1103/PhysRevB.24.1134
– ident: e_1_2_5_2_1
  doi: 10.1063/1.331124
– ident: e_1_2_5_22_1
  doi: 10.1016/0031-8914(67)90062-6
– ident: e_1_2_5_4_1
  doi: 10.1016/j.physe.2009.12.032
– volume: 29
  start-page: 1
  year: 2016
  ident: e_1_2_5_27_1
  article-title: Accurate radiation temperature and chemical potential from quantitative photoluminescence analysis of hot carrier populations
  publication-title: Journal of Physics: Condensed Matter
  contributor:
    fullname: Gibelli F
– ident: e_1_2_5_15_1
  doi: 10.1063/1.336476
– ident: e_1_2_5_9_1
  doi: 10.1109/JPHOTOV.2013.2289321
– ident: e_1_2_5_16_1
  doi: 10.1103/PhysRevB.33.5512
SSID ssj0017896
Score 2.4010015
Snippet An InGaAsP quantum well with a type‐II band alignment is studied using continuous wave power and temperature dependent photoluminescence (PL) spectroscopy. The...
An InGaAsP quantum well with a type-II band alignment is studied using continuous wave power and temperature dependent photoluminescence (PL) spectroscopy. The...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Publisher
StartPage 782
SubjectTerms Alignment
carrier temperature
Continuous radiation
Distortion
Energy consumption
Excitation
Gallium indium arsenide phosphide
Ground state
Occupations
phononic broadening
Phonons
Photoluminescence
Quantum wells
Spectroscopic analysis
Spectrum analysis
state filling
Temperature
Wave power
Title Effect of occupation of the excited states and phonon broadening on the determination of the hot carrier temperature from continuous wave photoluminescence in InGaAsP quantum well absorbers
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpip.2890
https://www.proquest.com/docview/1927064239
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA66Jz34FtcXI4i3ardtmtSb-L7IggreSpoH7sF23W7VP-d_c6bdrutBEDyVQBIaJpl8XzLzhbFD5bQSvlWe7UUBEhRlvcwanMuGc-16TmhDN7o39-LuSV5ckkzOaZsL0-hDTA_caGXU_poWuMrKk2_R0OFgeEy3ZOh-kSTU2Rthf3qBIGT9NBcSHgSQScJb3Vk_OGkb_tyJvuHlLEitd5mr5f_83wpbmmBLOGsmwyqbs_kaW5xRHFxnn41aMRQOiqm-MJUQB4L90ARAoU4yKkHlBihyHStko0Khg8IuAEtU17RhNLMdPBdj0GpEj-ABaV5NBJuBcliAguIHeVVUJbyrN0tdj8k1Uty9Jv8Cgxxu82t1VvbhtUKLVy9AR4uAIy5GGeLUDfZ4dflwfuNNXnDwdBgI3zNC9RTXkVOh42gR4meJcCG3qsetdMZJ3xoZGx3LWCcGuWUidBBlQvpZ4kfhJuvgKO0WA2SGDr0RVzEPIhFKaVUWG26DzCCDi12XHbTWTIeNUEfaSDIHKZoiJVN02W5r5nSyVMsUIa4gFhYmXXZUG_TX9mn_tk_f7b9W3GELAcGAOiZtl3XGo8rusfnSVPv1dP0CKfPy4g
link.rule.ids 315,782,786,1408,27933,27934,46064,46488
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB71cYAeSnmpW0qZShW30GwSx444VdB2V5RqJYrELXL8EHtost1sgD_Hf2Mm2WyXAxJST5El20r0jSff2DOfAU60N1qGTgdumEQUoGgXFM6SLVshjB96aSyf6I6-yOtv6uM5y-S872thOn2I1YYbr4zWX_MC5w3p03vV0Nl09o6PyTZhO0nJDrl-I56sjhCkai_nopCHKGSWiV55NoxO-5F__4vuCeY6TW3_MxdPHvSGe7C7pJd41tnDU9hw5TPYWRMdfA6_O8FirDxWK4lhbhEVRPfLMAfFts6oRl1a5OR16lDMK00-iqZAanFf22fSrE_wvVqg0XO-Bw9Z9mqp2YxcxoKcFz8tm6qp8af-4XjqBXtHTr037GJwWuK4vNRn9QTvGgK9uUXeXURd1NW8IKr6Ar5enN98GAXLSxwCE0cyDKzUQy1M4nXsBUHCIVomfSycHgqnvPUqdFal1qQqNZml8DKTJkoKqcIiC5P4JWzRV7p9QAoOPTkkoVMRJTJWyukitcJFhaUgLvUDOO7hzGedVkfeqTJHOUGRMxQDOOxxzpertc6J5UoOxOJsAG9bRP85Pp-MJ_w8-N-Ob-DR6ObzVX41vv70Ch5HzAraFLVD2FrMG_caNmvbHLW2-wdsOvcK
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB31Q0JwgPKlbmnLICFuodkkjh1uFe22K1AVCZC4RY4_xB6aLJsN9M_x35hJNtvlgFSpp8iSbSV69vi9ePwM8FZ7o2XodODGSUQCRbugdJbGshXC-LGXxvKO7uUXefVdnZ2zTc6H4SxM7w-x_uHGM6OL1zzB59af3JqGzmfz97xLtg27CbFw9s2P43y9gyBVdzcXKR5ikFkmBuPZMDoZWv67FN3yy02W2i0zkyf3ecE9eLwil3jaj4ansOWqZ_Bow3LwOfzp7Yqx9livDYa5REQQ3Y1hBordKaMGdWWRU9epQrmoNUUo6gKpxHXtkEez2cGPeolGL_gWPGTTq5VjM_IhFuSs-FnV1m2Dv_Uvx10vOTZy4r3hAIOzCqfVhT5tcvzZEuTtNfK_RdRlUy9KIqov4Nvk_OvHy2B1hUNg4kiGgZV6rIVJvI69IERYoGXSx8LpsXDKW69CZ1VqTapSk1kSl5k0UVJKFZZZmMQvYYe-0u0DkjT0FI6ETkWUyFgpp8vUCheVliRc6kfwZkCzmPdOHUXvyRwVBEXBUIzgcIC5WM3VpiCOK1mGxdkI3nWA_rd9kU9zfh7cteJreJCfTYrP06tPr-BhxJSgy087hJ3lonVHsN3Y9rgbuX8BhM71sA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+occupation+of+the+excited+states+and+phonon+broadening+on+the+determination+of+the+hot+carrier+temperature+from+continuous+wave+photoluminescence+in+InGaAsP+quantum+well+absorbers&rft.jtitle=Progress+in+photovoltaics&rft.au=Esmaielpour%2C+Hamidreza&rft.au=Whiteside%2C+Vincent+R.&rft.au=Hirst%2C+Louise+C.&rft.au=Tischler%2C+Joseph+G.&rft.date=2017-09-01&rft.issn=1062-7995&rft.eissn=1099-159X&rft.volume=25&rft.issue=9&rft.spage=782&rft.epage=790&rft_id=info:doi/10.1002%2Fpip.2890&rft.externalDBID=10.1002%252Fpip.2890&rft.externalDocID=PIP2890
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1062-7995&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1062-7995&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1062-7995&client=summon