Effect of occupation of the excited states and phonon broadening on the determination of the hot carrier temperature from continuous wave photoluminescence in InGaAsP quantum well absorbers
An InGaAsP quantum well with a type‐II band alignment is studied using continuous wave power and temperature dependent photoluminescence (PL) spectroscopy. The small energy separation between the ground state and first excited state results in significant thermal carrier redistribution and excited s...
Saved in:
Published in: | Progress in photovoltaics Vol. 25; no. 9; pp. 782 - 790 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Bognor Regis
Wiley Subscription Services, Inc
01-09-2017
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | An InGaAsP quantum well with a type‐II band alignment is studied using continuous wave power and temperature dependent photoluminescence (PL) spectroscopy. The small energy separation between the ground state and first excited state results in significant thermal carrier redistribution and excited state occupation, particularly, with increasing excitation power and temperature. This state filling is evident as a high‐energy shoulder in the PL spectra, the same energy region where in the simplest Planck‐description the gradient is considered inversely proportional to carrier temperature. The outcome of an excited state occupation in broadening the high‐energy PL tail is to perturb the temperature extracted using this analysis; therefore, the true temperature of carriers is not properly evaluated when significant state filling occurs. In addition, broadening of the PL due to phonons at higher temperatures also distorts (or falsely increases) the non‐equilibrium “hot” carrier temperature and as such should be considered when using Planck's relation. The role of these two effects is considered and their mutual effect on the analysis of the extracted hot carrier temperature discussed. Copyright © 2017 John Wiley & Sons, Ltd.
In this manuscript we explicitly investigate the effects of state filling and phonon broadening on the temperature and power dependent photoluminescence spectra‐enabling the contribution of these two important effects when extracting the hot carrier temperature. By carefully studying the relative contributions of these effects (state filling and phonons), their role and contribution to the shape of the photoluminescence spectra can be assessed such that the conditions for realistic hot carrier extraction can be determined. |
---|---|
AbstractList | An InGaAsP quantum well with a type-II band alignment is studied using continuous wave power and temperature dependent photoluminescence (PL) spectroscopy. The small energy separation between the ground state and first excited state results in significant thermal carrier redistribution and excited state occupation, particularly, with increasing excitation power and temperature. This state filling is evident as a high-energy shoulder in the PL spectra, the same energy region where in the simplest Planck-description the gradient is considered inversely proportional to carrier temperature. The outcome of an excited state occupation in broadening the high-energy PL tail is to perturb the temperature extracted using this analysis; therefore, the true temperature of carriers is not properly evaluated when significant state filling occurs. In addition, broadening of the PL due to phonons at higher temperatures also distorts (or falsely increases) the non-equilibrium "hot" carrier temperature and as such should be considered when using Planck's relation. The role of these two effects is considered and their mutual effect on the analysis of the extracted hot carrier temperature discussed. Copyright © 2017 John Wiley & Sons, Ltd. An InGaAsP quantum well with a type‐II band alignment is studied using continuous wave power and temperature dependent photoluminescence (PL) spectroscopy. The small energy separation between the ground state and first excited state results in significant thermal carrier redistribution and excited state occupation, particularly, with increasing excitation power and temperature. This state filling is evident as a high‐energy shoulder in the PL spectra, the same energy region where in the simplest Planck‐description the gradient is considered inversely proportional to carrier temperature. The outcome of an excited state occupation in broadening the high‐energy PL tail is to perturb the temperature extracted using this analysis; therefore, the true temperature of carriers is not properly evaluated when significant state filling occurs. In addition, broadening of the PL due to phonons at higher temperatures also distorts (or falsely increases) the non‐equilibrium “hot” carrier temperature and as such should be considered when using Planck's relation. The role of these two effects is considered and their mutual effect on the analysis of the extracted hot carrier temperature discussed. Copyright © 2017 John Wiley & Sons, Ltd. In this manuscript we explicitly investigate the effects of state filling and phonon broadening on the temperature and power dependent photoluminescence spectra‐enabling the contribution of these two important effects when extracting the hot carrier temperature. By carefully studying the relative contributions of these effects (state filling and phonons), their role and contribution to the shape of the photoluminescence spectra can be assessed such that the conditions for realistic hot carrier extraction can be determined. |
Author | Hirst, Louise C. Tischler, Joseph G. Forbes, David V. Sellers, Ian R. Lumb, Matthew P. Whiteside, Vincent R. Esmaielpour, Hamidreza Walters, Robert J. Ellis, Chase T. |
Author_xml | – sequence: 1 givenname: Hamidreza orcidid: 0000-0002-9432-8861 surname: Esmaielpour fullname: Esmaielpour, Hamidreza organization: University of Oklahoma – sequence: 2 givenname: Vincent R. surname: Whiteside fullname: Whiteside, Vincent R. organization: University of Oklahoma – sequence: 3 givenname: Louise C. surname: Hirst fullname: Hirst, Louise C. organization: U.S. Naval Research Laboratory – sequence: 4 givenname: Joseph G. surname: Tischler fullname: Tischler, Joseph G. organization: U.S. Naval Research Laboratory – sequence: 5 givenname: Chase T. surname: Ellis fullname: Ellis, Chase T. organization: U.S. Naval Research Laboratory – sequence: 6 givenname: Matthew P. surname: Lumb fullname: Lumb, Matthew P. organization: The George Washington University – sequence: 7 givenname: David V. surname: Forbes fullname: Forbes, David V. organization: Rochester Institute of Technology – sequence: 8 givenname: Robert J. surname: Walters fullname: Walters, Robert J. organization: U.S. Naval Research Laboratory – sequence: 9 givenname: Ian R. surname: Sellers fullname: Sellers, Ian R. email: sellers@ou.edu organization: University of Oklahoma |
BookMark | eNp1kctO3DAUhi1EpQKt1Ec4UjfdBOxkcvESITqMhMQsQOoucuxjxiixgy8deDjeDYfppgtW5xz50_fL-k_JsXUWCfnB6DmjtLyYzXxedpwekRNGOS9Yzf8cL3tTFi3n9VdyGsITpazteHNC3q61RhnBaXBSpllE4-xyxR0CvkgTUUGIImIAYRXMO5cDYfBOKLTGPkK-FlZhRD8Z-59g5yJI4b1BDxGnGb2IySNo7yaQzkZjk0sB9uIvLuroxpQdGCRaiWAsbOxaXIYtPCdhY5pgj-MIYgjOD-jDN_JFizHg93_zjDz8vr6_uilu79abq8vbQlZlSwvVCiZqudKi0nX-9qrsWt7qqkbBauy00h1F1TVKNl0juWpZfpblamg7OnC6qs7Iz4N39u45YYj9k0ve5sie8ZyQjRXP1K8DJb0LwaPuZ28m4V97RvulnD6X0y_lZLQ4oHsz4uunXL_dbD_4d7-Ql0Y |
CitedBy_id | crossref_primary_10_1021_acsaem_8b01882 crossref_primary_10_1088_1361_6528_abbce8 crossref_primary_10_1103_PhysRevB_109_235303 crossref_primary_10_1002_pssr_202300077 crossref_primary_10_1016_j_mssp_2022_107149 crossref_primary_10_1039_C8TC04641G crossref_primary_10_1103_PhysRevMaterials_5_095402 crossref_primary_10_1021_acs_jpcc_9b12032 crossref_primary_10_1088_1361_6641_ab8171 crossref_primary_10_1088_1361_6641_ab312d crossref_primary_10_1088_1361_6641_ab312b crossref_primary_10_1038_s41560_018_0106_3 crossref_primary_10_1038_s41598_018_30894_9 crossref_primary_10_1109_JPHOTOV_2022_3189781 crossref_primary_10_1021_acs_chemrev_2c00843 crossref_primary_10_1039_D2TC00266C crossref_primary_10_1002_pip_3116 crossref_primary_10_1002_pip_3557 crossref_primary_10_1002_pip_3777 crossref_primary_10_1021_acsenergylett_1c02581 crossref_primary_10_1021_acs_jpcc_1c02173 crossref_primary_10_1002_adfm_202404299 crossref_primary_10_1088_2053_1591_aaddd2 crossref_primary_10_1038_s41560_020_0602_0 crossref_primary_10_1063_5_0022277 crossref_primary_10_1063_1_4985614 crossref_primary_10_1038_s41598_023_32125_2 crossref_primary_10_1088_1361_6641_aae4c3 |
Cites_doi | 10.1117/12.964654 10.1117/12.940890 10.1016/S0928-4931(02)00101-7 10.1063/1.368275 10.1109/JQE.1986.1073164 10.1103/PhysRevB.50.4463 10.1103/PhysRevB.84.045302 10.1103/PhysRevB.54.11548 10.1039/c2ee02843c 10.1016/j.solmat.2008.09.034 10.1007/BF00323895 10.1016/j.solmat.2014.11.015 10.1002/pip.2763 10.1063/1.4907630 10.1103/PhysRevB.57.9050 10.1103/PhysRevB.24.1134 10.1063/1.331124 10.1016/0031-8914(67)90062-6 10.1016/j.physe.2009.12.032 10.1063/1.336476 10.1109/JPHOTOV.2013.2289321 10.1103/PhysRevB.33.5512 |
ContentType | Journal Article |
Copyright | Copyright © 2017 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: Copyright © 2017 John Wiley & Sons, Ltd. |
DBID | AAYXX CITATION 7SP 7TB 8FD FR3 L7M |
DOI | 10.1002/pip.2890 |
DatabaseName | CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Engineering Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1099-159X |
EndPage | 790 |
ExternalDocumentID | 10_1002_pip_2890 PIP2890 |
Genre | article |
GrantInformation_xml | – fundername: Office of Naval Research (ONR) |
GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 123 1L6 1OB 1OC 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BNHUX BROTX BRXPI BY8 CMOOK CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EDH EJD F00 F01 F04 FEDTE G-S G.N GNP GODZA H.T H.X HF~ HGLYW HHY HVGLF HZ~ I-F IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M59 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWI RX1 SAMSI SUPJJ TWZ UB1 V2E W8V W99 WBKPD WIH WIK WLBEL WOHZO WQJ WRC WWI WXSBR WYISQ XG1 XPP XV2 ZZTAW ~IA ~WT AAMNL AAYXX CITATION 7SP 7TB 8FD FR3 L7M |
ID | FETCH-LOGICAL-c3270-d7a1a5c4fa3f5896428797f35ea15e8fdf80ed86dc686c9d71797c24b780b9043 |
IEDL.DBID | 33P |
ISSN | 1062-7995 |
IngestDate | Thu Oct 10 19:42:13 EDT 2024 Thu Nov 21 21:30:10 EST 2024 Sat Aug 24 00:55:18 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3270-d7a1a5c4fa3f5896428797f35ea15e8fdf80ed86dc686c9d71797c24b780b9043 |
ORCID | 0000-0002-9432-8861 |
PQID | 1927064239 |
PQPubID | 1016445 |
PageCount | 9 |
ParticipantIDs | proquest_journals_1927064239 crossref_primary_10_1002_pip_2890 wiley_primary_10_1002_pip_2890_PIP2890 |
PublicationCentury | 2000 |
PublicationDate | September 2017 2017-09-00 20170901 |
PublicationDateYYYYMMDD | 2017-09-01 |
PublicationDate_xml | – month: 09 year: 2017 text: September 2017 |
PublicationDecade | 2010 |
PublicationPlace | Bognor Regis |
PublicationPlace_xml | – name: Bognor Regis |
PublicationTitle | Progress in photovoltaics |
PublicationYear | 2017 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2012 1986; 33 1982; 53 2011; 84 1986; 59 1981; 24 2015; 106 1992; 54 1998; 84 1996; 54 2010; 42 2014; 4 2000 2015; 135 2009; 93 1986; 22 1967; 34 2002; 21 1987 2015 2014 2016; 29 1994; 50 2012; 5 2016; 24 1998; 57 e_1_2_5_25_1 e_1_2_5_26_1 e_1_2_5_23_1 e_1_2_5_24_1 e_1_2_5_21_1 e_1_2_5_22_1 Gibelli F (e_1_2_5_27_1) 2016; 29 e_1_2_5_20_1 e_1_2_5_15_1 e_1_2_5_14_1 e_1_2_5_17_1 e_1_2_5_9_1 e_1_2_5_16_1 e_1_2_5_8_1 e_1_2_5_11_1 e_1_2_5_7_1 e_1_2_5_10_1 e_1_2_5_6_1 e_1_2_5_5_1 e_1_2_5_12_1 e_1_2_5_4_1 e_1_2_5_3_1 e_1_2_5_2_1 e_1_2_5_19_1 e_1_2_5_18_1 Gfroerer TH (e_1_2_5_13_1) 2000 |
References_xml | – volume: 84 start-page: 2138 issue: 4 year: 1998 end-page: 2145 article-title: Photoluminescence study of the interface in type II InAlAs–InP heterostructures publication-title: Journal of applied physics – volume: 33 start-page: 5512 issue: 8 year: 1986 end-page: 5516 article-title: Luminescence linewidths of excitons in GaAs quantum wells below 150 k publication-title: Physical Review B – volume: 22 start-page: 1728 issue: 9 year: 1986 end-page: 1743 article-title: Hot carriers in quasi‐2‐d polar semiconductors publication-title: IEEE Journal of Quantum Electronics – volume: 54 start-page: 11 548 issue: 16 year: 1996 end-page: 11 553 article-title: State filling and time‐resolved photoluminescence of excited states in In Ga As/GaAs self‐assembled quantum dots publication-title: Physical Review B – volume: 4 start-page: 244 issue: 1 year: 2014 end-page: 252 article-title: Hot carriers in quantum wells for photovoltaic efficiency enhancement publication-title: IEEE Journal of Photovoltaics – year: 2000 – start-page: 1 year: 2015 end-page: 3 – volume: 34 start-page: 149 issue: 1 year: 1967 end-page: 154 article-title: Temperature dependence of the energy gap in semiconductors publication-title: Physica – volume: 59 start-page: 1633 issue: 5 year: 1986 end-page: 1640 article-title: Photoluminescence study of interface defects in high‐quality GaAs‐GaAlAs superlattices publication-title: Journal of applied physics – volume: 54 start-page: 109 issue: 2 year: 1992 end-page: 114 article-title: Verification of a generalized Planck law for luminescence radiation from silicon solar cells publication-title: Applied Physics A – volume: 50 start-page: 4463 issue: 7 year: 1994 end-page: 4469 article-title: Investigation of the photoluminescence‐linewidth broadening in periodic multiple narrow asymmetric coupled quantum wells publication-title: Physical Review B – volume: 24 start-page: 1134 issue: 2 year: 1981 end-page: 1136 article-title: Observation of the excited level of excitons in GaAs quantum wells publication-title: Physical Review B – volume: 53 start-page: 3813 issue: 5 year: 1982 end-page: 3818 article-title: Efficiency of hot‐carrier solar energy converters publication-title: Journal of Applied Physics – year: 2014 – volume: 29 start-page: 1 year: 2016 end-page: 6 article-title: Accurate radiation temperature and chemical potential from quantitative photoluminescence analysis of hot carrier populations publication-title: Journal of Physics: Condensed Matter – volume: 21 start-page: 231 issue: 1 year: 2002 end-page: 236 article-title: Optical properties of InP/InAlAs/InP grown by MOCVD on (100) substrates: influence of v/iii molar ratio publication-title: Materials Science and Engineering: C – volume: 93 start-page: 713 issue: 6 year: 2009 end-page: 719 article-title: Progress on hot carrier cells publication-title: Solar Energy Materials and Solar Cells – volume: 24 start-page: 591 year: 2016 end-page: 599 article-title: Suppression of phonon‐mediated hot carrier relaxation in type‐II InAs/AlAs Sb quantum wells: a practical route to hot carrier solar cells publication-title: Progress in Photovoltaics: Research and Applications – volume: 135 start-page: 124 year: 2015 end-page: 129 article-title: Hot carrier solar cell absorber prerequisites and candidate material systems publication-title: Solar Energy Materials and Solar Cells – volume: 5 start-page: 6225 issue: 3 year: 2012 end-page: 6232 article-title: Thermalisation rate study of GaSb‐based heterostructures by continuous wave photoluminescence and their potential as hot carrier solar cell absorbers publication-title: Energy & Environmental Science – start-page: 44 year: 1987 end-page: 49 – volume: 42 start-page: 2862 issue: 10 year: 2010 end-page: 2866 article-title: Hot carrier solar cells: principles, materials and design publication-title: Physica E: Low‐dimensional Systems and Nanostructures – volume: 57 start-page: 9050 issue: 15 year: 1998 end-page: 9060 article-title: Excited states and energy relaxation in stacked InAs/GaAs quantum dots publication-title: Physical Review B – start-page: 84710A year: 2012 end-page: 84710A – volume: 84 issue: 4 year: 2011 article-title: Charge separation and temperature‐induced carrier migration in Ga In N As multiple quantum wells publication-title: Physical Review B – volume: 106 start-page: 061902 issue: 6 year: 2015 end-page: 1 to 061902‐4 article-title: Effects of localization on hot carriers in InAs/AlAs Sb quantum wells publication-title: Applied Physics Letters – ident: e_1_2_5_21_1 doi: 10.1117/12.964654 – ident: e_1_2_5_14_1 doi: 10.1117/12.940890 – ident: e_1_2_5_23_1 doi: 10.1016/S0928-4931(02)00101-7 – ident: e_1_2_5_24_1 doi: 10.1063/1.368275 – volume-title: Encyclopedia of Analytical Chemistry year: 2000 ident: e_1_2_5_13_1 contributor: fullname: Gfroerer TH – ident: e_1_2_5_10_1 doi: 10.1109/JQE.1986.1073164 – ident: e_1_2_5_26_1 – ident: e_1_2_5_17_1 doi: 10.1103/PhysRevB.50.4463 – ident: e_1_2_5_25_1 doi: 10.1103/PhysRevB.84.045302 – ident: e_1_2_5_7_1 – ident: e_1_2_5_20_1 doi: 10.1103/PhysRevB.54.11548 – ident: e_1_2_5_11_1 doi: 10.1039/c2ee02843c – ident: e_1_2_5_3_1 doi: 10.1016/j.solmat.2008.09.034 – ident: e_1_2_5_12_1 doi: 10.1007/BF00323895 – ident: e_1_2_5_5_1 doi: 10.1016/j.solmat.2014.11.015 – ident: e_1_2_5_8_1 doi: 10.1002/pip.2763 – ident: e_1_2_5_6_1 doi: 10.1063/1.4907630 – ident: e_1_2_5_18_1 doi: 10.1103/PhysRevB.57.9050 – ident: e_1_2_5_19_1 doi: 10.1103/PhysRevB.24.1134 – ident: e_1_2_5_2_1 doi: 10.1063/1.331124 – ident: e_1_2_5_22_1 doi: 10.1016/0031-8914(67)90062-6 – ident: e_1_2_5_4_1 doi: 10.1016/j.physe.2009.12.032 – volume: 29 start-page: 1 year: 2016 ident: e_1_2_5_27_1 article-title: Accurate radiation temperature and chemical potential from quantitative photoluminescence analysis of hot carrier populations publication-title: Journal of Physics: Condensed Matter contributor: fullname: Gibelli F – ident: e_1_2_5_15_1 doi: 10.1063/1.336476 – ident: e_1_2_5_9_1 doi: 10.1109/JPHOTOV.2013.2289321 – ident: e_1_2_5_16_1 doi: 10.1103/PhysRevB.33.5512 |
SSID | ssj0017896 |
Score | 2.4010015 |
Snippet | An InGaAsP quantum well with a type‐II band alignment is studied using continuous wave power and temperature dependent photoluminescence (PL) spectroscopy. The... An InGaAsP quantum well with a type-II band alignment is studied using continuous wave power and temperature dependent photoluminescence (PL) spectroscopy. The... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Publisher |
StartPage | 782 |
SubjectTerms | Alignment carrier temperature Continuous radiation Distortion Energy consumption Excitation Gallium indium arsenide phosphide Ground state Occupations phononic broadening Phonons Photoluminescence Quantum wells Spectroscopic analysis Spectrum analysis state filling Temperature Wave power |
Title | Effect of occupation of the excited states and phonon broadening on the determination of the hot carrier temperature from continuous wave photoluminescence in InGaAsP quantum well absorbers |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpip.2890 https://www.proquest.com/docview/1927064239 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA66Jz34FtcXI4i3ardtmtSb-L7IggreSpoH7sF23W7VP-d_c6bdrutBEDyVQBIaJpl8XzLzhbFD5bQSvlWe7UUBEhRlvcwanMuGc-16TmhDN7o39-LuSV5ckkzOaZsL0-hDTA_caGXU_poWuMrKk2_R0OFgeEy3ZOh-kSTU2Rthf3qBIGT9NBcSHgSQScJb3Vk_OGkb_tyJvuHlLEitd5mr5f_83wpbmmBLOGsmwyqbs_kaW5xRHFxnn41aMRQOiqm-MJUQB4L90ARAoU4yKkHlBihyHStko0Khg8IuAEtU17RhNLMdPBdj0GpEj-ABaV5NBJuBcliAguIHeVVUJbyrN0tdj8k1Uty9Jv8Cgxxu82t1VvbhtUKLVy9AR4uAIy5GGeLUDfZ4dflwfuNNXnDwdBgI3zNC9RTXkVOh42gR4meJcCG3qsetdMZJ3xoZGx3LWCcGuWUidBBlQvpZ4kfhJuvgKO0WA2SGDr0RVzEPIhFKaVUWG26DzCCDi12XHbTWTIeNUEfaSDIHKZoiJVN02W5r5nSyVMsUIa4gFhYmXXZUG_TX9mn_tk_f7b9W3GELAcGAOiZtl3XGo8rusfnSVPv1dP0CKfPy4g |
link.rule.ids | 315,782,786,1408,27933,27934,46064,46488 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB71cYAeSnmpW0qZShW30GwSx444VdB2V5RqJYrELXL8EHtost1sgD_Hf2Mm2WyXAxJST5El20r0jSff2DOfAU60N1qGTgdumEQUoGgXFM6SLVshjB96aSyf6I6-yOtv6uM5y-S872thOn2I1YYbr4zWX_MC5w3p03vV0Nl09o6PyTZhO0nJDrl-I56sjhCkai_nopCHKGSWiV55NoxO-5F__4vuCeY6TW3_MxdPHvSGe7C7pJd41tnDU9hw5TPYWRMdfA6_O8FirDxWK4lhbhEVRPfLMAfFts6oRl1a5OR16lDMK00-iqZAanFf22fSrE_wvVqg0XO-Bw9Z9mqp2YxcxoKcFz8tm6qp8af-4XjqBXtHTr037GJwWuK4vNRn9QTvGgK9uUXeXURd1NW8IKr6Ar5enN98GAXLSxwCE0cyDKzUQy1M4nXsBUHCIVomfSycHgqnvPUqdFal1qQqNZml8DKTJkoKqcIiC5P4JWzRV7p9QAoOPTkkoVMRJTJWyukitcJFhaUgLvUDOO7hzGedVkfeqTJHOUGRMxQDOOxxzpertc6J5UoOxOJsAG9bRP85Pp-MJ_w8-N-Ob-DR6ObzVX41vv70Ch5HzAraFLVD2FrMG_caNmvbHLW2-wdsOvcK |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB31Q0JwgPKlbmnLICFuodkkjh1uFe22K1AVCZC4RY4_xB6aLJsN9M_x35hJNtvlgFSpp8iSbSV69vi9ePwM8FZ7o2XodODGSUQCRbugdJbGshXC-LGXxvKO7uUXefVdnZ2zTc6H4SxM7w-x_uHGM6OL1zzB59af3JqGzmfz97xLtg27CbFw9s2P43y9gyBVdzcXKR5ikFkmBuPZMDoZWv67FN3yy02W2i0zkyf3ecE9eLwil3jaj4ansOWqZ_Bow3LwOfzp7Yqx9livDYa5REQQ3Y1hBordKaMGdWWRU9epQrmoNUUo6gKpxHXtkEez2cGPeolGL_gWPGTTq5VjM_IhFuSs-FnV1m2Dv_Uvx10vOTZy4r3hAIOzCqfVhT5tcvzZEuTtNfK_RdRlUy9KIqov4Nvk_OvHy2B1hUNg4kiGgZV6rIVJvI69IERYoGXSx8LpsXDKW69CZ1VqTapSk1kSl5k0UVJKFZZZmMQvYYe-0u0DkjT0FI6ETkWUyFgpp8vUCheVliRc6kfwZkCzmPdOHUXvyRwVBEXBUIzgcIC5WM3VpiCOK1mGxdkI3nWA_rd9kU9zfh7cteJreJCfTYrP06tPr-BhxJSgy087hJ3lonVHsN3Y9rgbuX8BhM71sA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+occupation+of+the+excited+states+and+phonon+broadening+on+the+determination+of+the+hot+carrier+temperature+from+continuous+wave+photoluminescence+in+InGaAsP+quantum+well+absorbers&rft.jtitle=Progress+in+photovoltaics&rft.au=Esmaielpour%2C+Hamidreza&rft.au=Whiteside%2C+Vincent+R.&rft.au=Hirst%2C+Louise+C.&rft.au=Tischler%2C+Joseph+G.&rft.date=2017-09-01&rft.issn=1062-7995&rft.eissn=1099-159X&rft.volume=25&rft.issue=9&rft.spage=782&rft.epage=790&rft_id=info:doi/10.1002%2Fpip.2890&rft.externalDBID=10.1002%252Fpip.2890&rft.externalDocID=PIP2890 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1062-7995&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1062-7995&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1062-7995&client=summon |