Some Extensions of Loewner's Theory of Monotone Operator Functions

Several extensions of Loewner's theory of monotone operator functions are given. These include a theorem on boundary interpolation for matrix-valued functions in the generalized Nevanlinna class. The theory of monotone operator functions is generalized from scalar-to matrix-valued functions of...

Full description

Saved in:
Bibliographic Details
Published in:Journal of functional analysis Vol. 189; no. 1; pp. 1 - 20
Main Authors: Alpay, D., Bolotnikov, V., Dijksma, A., Rovnyak, J.
Format: Journal Article
Language:English
Published: Elsevier Inc 20-02-2002
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Several extensions of Loewner's theory of monotone operator functions are given. These include a theorem on boundary interpolation for matrix-valued functions in the generalized Nevanlinna class. The theory of monotone operator functions is generalized from scalar-to matrix-valued functions of an operator argument. A notion of κ-monotonicity is introduced and characterized in terms of classical Nevanlinna functions with removable singularities on a real interval. Corresponding results for Stieltjes functions are presented.
ISSN:0022-1236
1096-0783
DOI:10.1006/jfan.2001.3856