Dynamic Clustering of Interval-Valued Data Based on Adaptive Quadratic Distances

This paper presents partitioning dynamic clustering methods for interval-valued data based on suitable adaptive quadratic distances. These methods furnish a partition and a prototype for each cluster by optimizing an adequacy criterion that measures the fitting between the clusters and their represe...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on systems, man and cybernetics. Part A, Systems and humans Vol. 39; no. 6; pp. 1295 - 1306
Main Authors: de A.T. de Carvalho, F., Lechevallier, Y.
Format: Journal Article
Language:English
Published: IEEE 01-11-2009
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This paper presents partitioning dynamic clustering methods for interval-valued data based on suitable adaptive quadratic distances. These methods furnish a partition and a prototype for each cluster by optimizing an adequacy criterion that measures the fitting between the clusters and their representatives. These adaptive quadratic distances change at each algorithm iteration and can either be the same for all clusters or different from one cluster to another. Moreover, various tools for the partition and cluster interpretation of interval-valued data are also presented. Experiments with real and synthetic interval-valued data sets show the usefulness of these adaptive clustering methods and the merit of the partition and cluster interpretation tools.
AbstractList This paper presents partitioning dynamic clustering methods for interval-valued data based on suitable adaptive quadratic distances. These methods furnish a partition and a prototype for each cluster by optimizing an adequacy criterion that measures the fitting between the clusters and their representatives. These adaptive quadratic distances change at each algorithm iteration and can either be the same for all clusters or different from one cluster to another. Moreover, various tools for the partition and cluster interpretation of interval-valued data are also presented. Experiments with real and synthetic interval-valued data sets show the usefulness of these adaptive clustering methods and the merit of the partition and cluster interpretation tools.
Author Lechevallier, Y.
de A.T. de Carvalho, F.
Author_xml – sequence: 1
  givenname: F.
  surname: de A.T. de Carvalho
  fullname: de A.T. de Carvalho, F.
  organization: Center of Inf., Fed. Univ. of Pernambuco, Recife, Brazil
– sequence: 2
  givenname: Y.
  surname: Lechevallier
  fullname: Lechevallier, Y.
  organization: Inst. Nat. de Rech. en Inf. et en Autom. Paris-Rocquencourt, Paris, France
BookMark eNo9kEtPwkAUhScGExH9A7rpzlVx3o8lgg8SjBrR7eTS3pqaMsVOS8K_twhxc89ZnO8uvnMyCHVAQq4YHTNG3e3y_Xk6GXNKXX8EZdqckCFTyqZccj3oO7UilZKbM3Ie4zelTEonh-R1tguwLrNkWnWxxaYMX0ldJPPQ9y1U6SdUHebJDFpI7iD2tQ7JJIdNW24xeesgb6Dt8VkZWwgZxgtyWkAV8fKYI_LxcL-cPqWLl8f5dLJIM8F1m0rDlFuBlAZ4bi3LeU6tyiVzmqoVV6i5Voa6rLCg0WqtRcGk44Y7lMiEGJGbw99NU_90GFu_LmOGVQUB6y56q40RijvbL_lhmTV1jA0WftOUa2h2nlG_t-f_7Pm9PX-010PXB6hExH9Accs4leIX_yhrjw
CODEN ITSHFX
CitedBy_id crossref_primary_10_1016_j_neucom_2012_06_019
crossref_primary_10_1016_j_eswa_2019_01_005
crossref_primary_10_1080_17517575_2020_1827299
crossref_primary_10_1109_TSMCA_2011_2157128
crossref_primary_10_1109_TPAMI_2023_3297022
crossref_primary_10_1109_TFUZZ_2018_2832608
crossref_primary_10_1007_s11430_017_9224_6
crossref_primary_10_1016_j_patcog_2016_04_005
crossref_primary_10_1109_TSMCA_2011_2157131
crossref_primary_10_1142_S0218488514500135
crossref_primary_10_1080_02664763_2019_1692795
crossref_primary_10_1007_s10115_009_0282_3
crossref_primary_10_1016_j_eswa_2013_12_001
crossref_primary_10_1007_s41066_017_0040_y
crossref_primary_10_1016_j_ins_2017_04_040
crossref_primary_10_1109_TSMC_2017_2689789
crossref_primary_10_1016_j_ijforecast_2010_02_012
crossref_primary_10_1109_TFUZZ_2024_3367460
crossref_primary_10_1007_s10115_019_01367_w
crossref_primary_10_1109_TCYB_2014_2338079
crossref_primary_10_1007_s10844_012_0219_2
crossref_primary_10_1016_j_spasta_2023_100764
crossref_primary_10_1016_j_cageo_2016_06_006
crossref_primary_10_1016_j_eswa_2022_116774
crossref_primary_10_1016_j_fss_2012_04_006
crossref_primary_10_1109_TSMCA_2011_2113335
crossref_primary_10_1016_j_eswa_2019_112837
crossref_primary_10_1016_j_knosys_2021_107191
crossref_primary_10_1109_TFUZZ_2020_2968879
crossref_primary_10_1109_TFUZZ_2023_3321921
crossref_primary_10_1007_s11430_013_4689_z
Cites_doi 10.1007/s00180-006-0261-z
10.1109/TSMCA.2007.909595
10.1016/0167-8655(95)80010-Q
10.1016/j.patcog.2008.11.016
10.1109/TSMCA.2007.914758
10.1016/j.patrec.2004.03.016
10.1016/S0167-8655(98)00087-7
10.1016/j.patrec.2008.04.008
10.1007/s00180-006-0260-0
10.1007/BF01908075
10.1109/TSMCA.2005.853501
10.1007/978-1-4757-3285-6_20
10.1016/0167-8655(95)00075-R
10.1109/21.148412
10.1002/9780470090183
10.1142/9789812832153_0010
10.1016/j.patrec.2003.10.016
10.1109/3477.809041
10.1007/978-3-642-56181-8_5
10.1145/331499.331504
10.1016/j.patrec.2005.08.014
10.1201/9780367805302
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
7U1
7U2
C1K
DOI 10.1109/TSMCA.2009.2030167
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library Online
CrossRef
Risk Abstracts
Safety Science and Risk
Environmental Sciences and Pollution Management
DatabaseTitle CrossRef
Risk Abstracts
Safety Science and Risk
Environmental Sciences and Pollution Management
DatabaseTitleList Risk Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 1558-2426
EndPage 1306
ExternalDocumentID 10_1109_TSMCA_2009_2030167
5281204
Genre orig-research
GroupedDBID -~X
0R~
29I
4.4
5VS
6IK
85S
97E
AAJGR
AASAJ
AAYOK
ABQJQ
ABVLG
ACGFS
AETIX
AI.
AIBXA
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
B-7
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
F5P
HZ~
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
PZZ
RIA
RIE
RNS
VH1
VJK
XFK
AAYXX
CITATION
7U1
7U2
C1K
ID FETCH-LOGICAL-c326t-47159ba447a2d881d2d085d419605b25e6265709cf8a6e86663f1492729e4e133
IEDL.DBID RIE
ISSN 1083-4427
IngestDate Fri Aug 16 00:56:12 EDT 2024
Fri Aug 23 00:31:01 EDT 2024
Wed Jun 26 19:27:00 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c326t-47159ba447a2d881d2d085d419605b25e6265709cf8a6e86663f1492729e4e133
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 867735298
PQPubID 23462
PageCount 12
ParticipantIDs crossref_primary_10_1109_TSMCA_2009_2030167
proquest_miscellaneous_867735298
ieee_primary_5281204
PublicationCentury 2000
PublicationDate 2009-11-01
PublicationDateYYYYMMDD 2009-11-01
PublicationDate_xml – month: 11
  year: 2009
  text: 2009-11-01
  day: 01
PublicationDecade 2000
PublicationTitle IEEE transactions on systems, man and cybernetics. Part A, Systems and humans
PublicationTitleAbbrev TSMCA
PublicationYear 2009
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
spaeth (ref3) 1980
gordon (ref2) 1999
ref15
ref14
diday (ref8) 1976
diday (ref12) 2008
ref10
ref1
ref17
ref16
ref19
ref18
de souza (ref28) 2004; 3316
diday (ref9) 1977; 11
chavent (ref22) 2006; 21
ref24
ref23
ref25
ref20
ref21
celeux (ref26) 1989
bock (ref11) 2000
ref29
ref7
ref4
ref6
milligan (ref30) 1996
ref5
de souza (ref27) 2004
References_xml – ident: ref23
  doi: 10.1007/s00180-006-0261-z
– ident: ref5
  doi: 10.1109/TSMCA.2007.909595
– ident: ref15
  doi: 10.1016/0167-8655(95)80010-Q
– ident: ref25
  doi: 10.1016/j.patcog.2008.11.016
– ident: ref4
  doi: 10.1109/TSMCA.2007.914758
– ident: ref17
  doi: 10.1016/j.patrec.2004.03.016
– ident: ref13
  doi: 10.1016/S0167-8655(98)00087-7
– year: 1989
  ident: ref26
  publication-title: Classification Automatique des Donnes
  contributor:
    fullname: celeux
– ident: ref24
  doi: 10.1016/j.patrec.2008.04.008
– volume: 21
  start-page: 211
  year: 2006
  ident: ref22
  article-title: new clustering methods for interval data
  publication-title: Comput Stat
  doi: 10.1007/s00180-006-0260-0
  contributor:
    fullname: chavent
– ident: ref29
  doi: 10.1007/BF01908075
– ident: ref7
  doi: 10.1109/TSMCA.2005.853501
– year: 2000
  ident: ref11
  publication-title: Analysis of symbolic data Explanatory methods for extracting statistical information from complex data
  contributor:
    fullname: bock
– ident: ref1
  doi: 10.1007/978-1-4757-3285-6_20
– ident: ref18
  doi: 10.1016/0167-8655(95)00075-R
– year: 2008
  ident: ref12
  publication-title: Symbolic Data Analysis and the SODAS Software
  contributor:
    fullname: diday
– volume: 3316
  start-page: 775
  year: 2004
  ident: ref28
  article-title: clustering of interval-valued data using adaptive squared euclidean distances
  publication-title: Proc 14th ICONIP
  contributor:
    fullname: de souza
– ident: ref14
  doi: 10.1109/21.148412
– ident: ref10
  doi: 10.1002/9780470090183
– start-page: 341
  year: 1996
  ident: ref30
  publication-title: Clustering and Classification
  doi: 10.1142/9789812832153_0010
  contributor:
    fullname: milligan
– start-page: 341
  year: 2004
  ident: ref27
  publication-title: Classification Clustering and Data Mining Applications
  contributor:
    fullname: de souza
– ident: ref20
  doi: 10.1016/j.patrec.2003.10.016
– ident: ref16
  doi: 10.1109/3477.809041
– ident: ref19
  doi: 10.1007/978-3-642-56181-8_5
– year: 1980
  ident: ref3
  publication-title: Cluster Analysis Algorithms
  contributor:
    fullname: spaeth
– ident: ref6
  doi: 10.1145/331499.331504
– start-page: 47
  year: 1976
  ident: ref8
  publication-title: Digital Pattern Classification
  contributor:
    fullname: diday
– volume: 11
  start-page: 329
  year: 1977
  ident: ref9
  article-title: classification automatique avec distances adaptatives
  publication-title: R A I R O Informatique Computer Science
  contributor:
    fullname: diday
– ident: ref21
  doi: 10.1016/j.patrec.2005.08.014
– year: 1999
  ident: ref2
  publication-title: Classification
  doi: 10.1201/9780367805302
  contributor:
    fullname: gordon
SSID ssj0014494
Score 2.1567836
Snippet This paper presents partitioning dynamic clustering methods for interval-valued data based on suitable adaptive quadratic distances. These methods furnish a...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Publisher
StartPage 1295
SubjectTerms Adaptive quadratic distances
cluster interpretation indexes
Clustering algorithms
clustering analysis
Clustering methods
Data analysis
Data mining
Heuristic algorithms
Iterative algorithms
Optimization methods
partition interpretation indexes
Partitioning algorithms
Pattern recognition
Prototypes
symbolic interval data analysis
Title Dynamic Clustering of Interval-Valued Data Based on Adaptive Quadratic Distances
URI https://ieeexplore.ieee.org/document/5281204
https://search.proquest.com/docview/867735298
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZoJxiAtiDKSx4YQGAaXOfhsfShLiBQC2KL_MpUJRVt_j93TlqQYGHL4ESR7-z7Pp_vO0KutIm5MZlgWioFBCWMmDTGMgeh1wDFiITGjO50Fj9_JKMxyuTcbWthnHP-8pm7x0efy7eFKfGorBdyCEco_tmIZVLVam0zBkL4pocPACmYEDzeFMgEsjefPQ0HlTQlRwbge8p_ByHfVeXXVuzjy-Tgf392SPZrHEkHleFbZMflbbL3Q12wTVr1ul3R61pc-qZDXkZVC3o6XJSokQAjaZFRfzAITsfe1aJ0lo7UWtFHiHCWFjkdWLXEbZG-lsqiyxg6QtyJHz8ib5PxfDhldVcFZgCqrRlEo1BqJUSsuE0ArnILsMsKWIpBqHnogOKEcSBNlqjIJUBv-hnQKA4o3AkHlPaYNPMidyeEah3IfmSM1rEWCohUgtIwsJWHACJklHXJ7Waa02UlnpF60hHI1BsFm2DKtDZKl3RwYrcj6zntErqxTAquj_kMlbuiXKUoxQf4USanf795RnZ97sdXDp6T5vqzdBeksbLlpfedL2Xjv2c
link.rule.ids 315,782,786,798,27933,27934,54767
linkProvider IEEE
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BGYABaAuiPD0wgCA0pM7DY-lDRbQVqAWxRX5lqpKKNv-fs5MWJFjYMjhR5Dv7vs_n-w7gSsjQkzKhjmCcI0HxA4dJqRyNoVcixQioMBndwSQcf0TdnpHJuVvXwmit7eUzfW8ebS5fZTI3R2VN38NwZMQ_t3waBmFRrbXOGVBq2x4-IKhwKPXCVYmMy5rTyajTLsQpPcMBbFf57zBk-6r82oxthOnv_-_fDmCvRJKkXZi-Chs6rcHuD33BGlTLlbsg16W89E0dXrpFE3rSmeVGJQFHkiwh9mgQ3c5557NcK9LlS04eMcYpkqWkrfjcbIzkNefKOI0kXYM8zccP4a3fm3YGTtlXwZEI1pYOxiOfCU5pyD0VIWD1FAIvRXExur7wfI0kxw9dJpOIBzpCgtNKkEh5iMM11Uhqj6CSZqk-BiKEy1qBlEKEgnKkUpERh8HN3EcYwYKkAberaY7nhXxGbGmHy2JrFNMGk8WlURpQNxO7HlnOaQPIyjIxOr_JaPBUZ_kiNmJ8iCBZdPL3m5ewPZiOhvHwafx8Cjs2E2TrCM-gsvzM9TlsLlR-Yf3oC6exwrg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+Clustering+of+Interval-Valued+Data+Based+on+Adaptive+Quadratic+Distances&rft.jtitle=IEEE+transactions+on+systems%2C+man+and+cybernetics.+Part+A%2C+Systems+and+humans&rft.au=de+A.T.+de+Carvalho%2C+F.&rft.au=Lechevallier%2C+Y.&rft.date=2009-11-01&rft.pub=IEEE&rft.issn=1083-4427&rft.eissn=1558-2426&rft.volume=39&rft.issue=6&rft.spage=1295&rft.epage=1306&rft_id=info:doi/10.1109%2FTSMCA.2009.2030167&rft.externalDocID=5281204
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1083-4427&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1083-4427&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1083-4427&client=summon