Dynamic Clustering of Interval-Valued Data Based on Adaptive Quadratic Distances
This paper presents partitioning dynamic clustering methods for interval-valued data based on suitable adaptive quadratic distances. These methods furnish a partition and a prototype for each cluster by optimizing an adequacy criterion that measures the fitting between the clusters and their represe...
Saved in:
Published in: | IEEE transactions on systems, man and cybernetics. Part A, Systems and humans Vol. 39; no. 6; pp. 1295 - 1306 |
---|---|
Main Authors: | , |
Format: | Journal Article |
Language: | English |
Published: |
IEEE
01-11-2009
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | This paper presents partitioning dynamic clustering methods for interval-valued data based on suitable adaptive quadratic distances. These methods furnish a partition and a prototype for each cluster by optimizing an adequacy criterion that measures the fitting between the clusters and their representatives. These adaptive quadratic distances change at each algorithm iteration and can either be the same for all clusters or different from one cluster to another. Moreover, various tools for the partition and cluster interpretation of interval-valued data are also presented. Experiments with real and synthetic interval-valued data sets show the usefulness of these adaptive clustering methods and the merit of the partition and cluster interpretation tools. |
---|---|
AbstractList | This paper presents partitioning dynamic clustering methods for interval-valued data based on suitable adaptive quadratic distances. These methods furnish a partition and a prototype for each cluster by optimizing an adequacy criterion that measures the fitting between the clusters and their representatives. These adaptive quadratic distances change at each algorithm iteration and can either be the same for all clusters or different from one cluster to another. Moreover, various tools for the partition and cluster interpretation of interval-valued data are also presented. Experiments with real and synthetic interval-valued data sets show the usefulness of these adaptive clustering methods and the merit of the partition and cluster interpretation tools. |
Author | Lechevallier, Y. de A.T. de Carvalho, F. |
Author_xml | – sequence: 1 givenname: F. surname: de A.T. de Carvalho fullname: de A.T. de Carvalho, F. organization: Center of Inf., Fed. Univ. of Pernambuco, Recife, Brazil – sequence: 2 givenname: Y. surname: Lechevallier fullname: Lechevallier, Y. organization: Inst. Nat. de Rech. en Inf. et en Autom. Paris-Rocquencourt, Paris, France |
BookMark | eNo9kEtPwkAUhScGExH9A7rpzlVx3o8lgg8SjBrR7eTS3pqaMsVOS8K_twhxc89ZnO8uvnMyCHVAQq4YHTNG3e3y_Xk6GXNKXX8EZdqckCFTyqZccj3oO7UilZKbM3Ie4zelTEonh-R1tguwLrNkWnWxxaYMX0ldJPPQ9y1U6SdUHebJDFpI7iD2tQ7JJIdNW24xeesgb6Dt8VkZWwgZxgtyWkAV8fKYI_LxcL-cPqWLl8f5dLJIM8F1m0rDlFuBlAZ4bi3LeU6tyiVzmqoVV6i5Voa6rLCg0WqtRcGk44Y7lMiEGJGbw99NU_90GFu_LmOGVQUB6y56q40RijvbL_lhmTV1jA0WftOUa2h2nlG_t-f_7Pm9PX-010PXB6hExH9Accs4leIX_yhrjw |
CODEN | ITSHFX |
CitedBy_id | crossref_primary_10_1016_j_neucom_2012_06_019 crossref_primary_10_1016_j_eswa_2019_01_005 crossref_primary_10_1080_17517575_2020_1827299 crossref_primary_10_1109_TSMCA_2011_2157128 crossref_primary_10_1109_TPAMI_2023_3297022 crossref_primary_10_1109_TFUZZ_2018_2832608 crossref_primary_10_1007_s11430_017_9224_6 crossref_primary_10_1016_j_patcog_2016_04_005 crossref_primary_10_1109_TSMCA_2011_2157131 crossref_primary_10_1142_S0218488514500135 crossref_primary_10_1080_02664763_2019_1692795 crossref_primary_10_1007_s10115_009_0282_3 crossref_primary_10_1016_j_eswa_2013_12_001 crossref_primary_10_1007_s41066_017_0040_y crossref_primary_10_1016_j_ins_2017_04_040 crossref_primary_10_1109_TSMC_2017_2689789 crossref_primary_10_1016_j_ijforecast_2010_02_012 crossref_primary_10_1109_TFUZZ_2024_3367460 crossref_primary_10_1007_s10115_019_01367_w crossref_primary_10_1109_TCYB_2014_2338079 crossref_primary_10_1007_s10844_012_0219_2 crossref_primary_10_1016_j_spasta_2023_100764 crossref_primary_10_1016_j_cageo_2016_06_006 crossref_primary_10_1016_j_eswa_2022_116774 crossref_primary_10_1016_j_fss_2012_04_006 crossref_primary_10_1109_TSMCA_2011_2113335 crossref_primary_10_1016_j_eswa_2019_112837 crossref_primary_10_1016_j_knosys_2021_107191 crossref_primary_10_1109_TFUZZ_2020_2968879 crossref_primary_10_1109_TFUZZ_2023_3321921 crossref_primary_10_1007_s11430_013_4689_z |
Cites_doi | 10.1007/s00180-006-0261-z 10.1109/TSMCA.2007.909595 10.1016/0167-8655(95)80010-Q 10.1016/j.patcog.2008.11.016 10.1109/TSMCA.2007.914758 10.1016/j.patrec.2004.03.016 10.1016/S0167-8655(98)00087-7 10.1016/j.patrec.2008.04.008 10.1007/s00180-006-0260-0 10.1007/BF01908075 10.1109/TSMCA.2005.853501 10.1007/978-1-4757-3285-6_20 10.1016/0167-8655(95)00075-R 10.1109/21.148412 10.1002/9780470090183 10.1142/9789812832153_0010 10.1016/j.patrec.2003.10.016 10.1109/3477.809041 10.1007/978-3-642-56181-8_5 10.1145/331499.331504 10.1016/j.patrec.2005.08.014 10.1201/9780367805302 |
ContentType | Journal Article |
DBID | 97E RIA RIE AAYXX CITATION 7U1 7U2 C1K |
DOI | 10.1109/TSMCA.2009.2030167 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library Online CrossRef Risk Abstracts Safety Science and Risk Environmental Sciences and Pollution Management |
DatabaseTitle | CrossRef Risk Abstracts Safety Science and Risk Environmental Sciences and Pollution Management |
DatabaseTitleList | Risk Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library Online url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Sciences (General) |
EISSN | 1558-2426 |
EndPage | 1306 |
ExternalDocumentID | 10_1109_TSMCA_2009_2030167 5281204 |
Genre | orig-research |
GroupedDBID | -~X 0R~ 29I 4.4 5VS 6IK 85S 97E AAJGR AASAJ AAYOK ABQJQ ABVLG ACGFS AETIX AI. AIBXA ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV B-7 BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD F5P HZ~ IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL PZZ RIA RIE RNS VH1 VJK XFK AAYXX CITATION 7U1 7U2 C1K |
ID | FETCH-LOGICAL-c326t-47159ba447a2d881d2d085d419605b25e6265709cf8a6e86663f1492729e4e133 |
IEDL.DBID | RIE |
ISSN | 1083-4427 |
IngestDate | Fri Aug 16 00:56:12 EDT 2024 Fri Aug 23 00:31:01 EDT 2024 Wed Jun 26 19:27:00 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c326t-47159ba447a2d881d2d085d419605b25e6265709cf8a6e86663f1492729e4e133 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 867735298 |
PQPubID | 23462 |
PageCount | 12 |
ParticipantIDs | crossref_primary_10_1109_TSMCA_2009_2030167 proquest_miscellaneous_867735298 ieee_primary_5281204 |
PublicationCentury | 2000 |
PublicationDate | 2009-11-01 |
PublicationDateYYYYMMDD | 2009-11-01 |
PublicationDate_xml | – month: 11 year: 2009 text: 2009-11-01 day: 01 |
PublicationDecade | 2000 |
PublicationTitle | IEEE transactions on systems, man and cybernetics. Part A, Systems and humans |
PublicationTitleAbbrev | TSMCA |
PublicationYear | 2009 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
References | ref13 spaeth (ref3) 1980 gordon (ref2) 1999 ref15 ref14 diday (ref8) 1976 diday (ref12) 2008 ref10 ref1 ref17 ref16 ref19 ref18 de souza (ref28) 2004; 3316 diday (ref9) 1977; 11 chavent (ref22) 2006; 21 ref24 ref23 ref25 ref20 ref21 celeux (ref26) 1989 bock (ref11) 2000 ref29 ref7 ref4 ref6 milligan (ref30) 1996 ref5 de souza (ref27) 2004 |
References_xml | – ident: ref23 doi: 10.1007/s00180-006-0261-z – ident: ref5 doi: 10.1109/TSMCA.2007.909595 – ident: ref15 doi: 10.1016/0167-8655(95)80010-Q – ident: ref25 doi: 10.1016/j.patcog.2008.11.016 – ident: ref4 doi: 10.1109/TSMCA.2007.914758 – ident: ref17 doi: 10.1016/j.patrec.2004.03.016 – ident: ref13 doi: 10.1016/S0167-8655(98)00087-7 – year: 1989 ident: ref26 publication-title: Classification Automatique des Donnes contributor: fullname: celeux – ident: ref24 doi: 10.1016/j.patrec.2008.04.008 – volume: 21 start-page: 211 year: 2006 ident: ref22 article-title: new clustering methods for interval data publication-title: Comput Stat doi: 10.1007/s00180-006-0260-0 contributor: fullname: chavent – ident: ref29 doi: 10.1007/BF01908075 – ident: ref7 doi: 10.1109/TSMCA.2005.853501 – year: 2000 ident: ref11 publication-title: Analysis of symbolic data Explanatory methods for extracting statistical information from complex data contributor: fullname: bock – ident: ref1 doi: 10.1007/978-1-4757-3285-6_20 – ident: ref18 doi: 10.1016/0167-8655(95)00075-R – year: 2008 ident: ref12 publication-title: Symbolic Data Analysis and the SODAS Software contributor: fullname: diday – volume: 3316 start-page: 775 year: 2004 ident: ref28 article-title: clustering of interval-valued data using adaptive squared euclidean distances publication-title: Proc 14th ICONIP contributor: fullname: de souza – ident: ref14 doi: 10.1109/21.148412 – ident: ref10 doi: 10.1002/9780470090183 – start-page: 341 year: 1996 ident: ref30 publication-title: Clustering and Classification doi: 10.1142/9789812832153_0010 contributor: fullname: milligan – start-page: 341 year: 2004 ident: ref27 publication-title: Classification Clustering and Data Mining Applications contributor: fullname: de souza – ident: ref20 doi: 10.1016/j.patrec.2003.10.016 – ident: ref16 doi: 10.1109/3477.809041 – ident: ref19 doi: 10.1007/978-3-642-56181-8_5 – year: 1980 ident: ref3 publication-title: Cluster Analysis Algorithms contributor: fullname: spaeth – ident: ref6 doi: 10.1145/331499.331504 – start-page: 47 year: 1976 ident: ref8 publication-title: Digital Pattern Classification contributor: fullname: diday – volume: 11 start-page: 329 year: 1977 ident: ref9 article-title: classification automatique avec distances adaptatives publication-title: R A I R O Informatique Computer Science contributor: fullname: diday – ident: ref21 doi: 10.1016/j.patrec.2005.08.014 – year: 1999 ident: ref2 publication-title: Classification doi: 10.1201/9780367805302 contributor: fullname: gordon |
SSID | ssj0014494 |
Score | 2.1567836 |
Snippet | This paper presents partitioning dynamic clustering methods for interval-valued data based on suitable adaptive quadratic distances. These methods furnish a... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Publisher |
StartPage | 1295 |
SubjectTerms | Adaptive quadratic distances cluster interpretation indexes Clustering algorithms clustering analysis Clustering methods Data analysis Data mining Heuristic algorithms Iterative algorithms Optimization methods partition interpretation indexes Partitioning algorithms Pattern recognition Prototypes symbolic interval data analysis |
Title | Dynamic Clustering of Interval-Valued Data Based on Adaptive Quadratic Distances |
URI | https://ieeexplore.ieee.org/document/5281204 https://search.proquest.com/docview/867735298 |
Volume | 39 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZoJxiAtiDKSx4YQGAaXOfhsfShLiBQC2KL_MpUJRVt_j93TlqQYGHL4ESR7-z7Pp_vO0KutIm5MZlgWioFBCWMmDTGMgeh1wDFiITGjO50Fj9_JKMxyuTcbWthnHP-8pm7x0efy7eFKfGorBdyCEco_tmIZVLVam0zBkL4pocPACmYEDzeFMgEsjefPQ0HlTQlRwbge8p_ByHfVeXXVuzjy-Tgf392SPZrHEkHleFbZMflbbL3Q12wTVr1ul3R61pc-qZDXkZVC3o6XJSokQAjaZFRfzAITsfe1aJ0lo7UWtFHiHCWFjkdWLXEbZG-lsqiyxg6QtyJHz8ib5PxfDhldVcFZgCqrRlEo1BqJUSsuE0ArnILsMsKWIpBqHnogOKEcSBNlqjIJUBv-hnQKA4o3AkHlPaYNPMidyeEah3IfmSM1rEWCohUgtIwsJWHACJklHXJ7Waa02UlnpF60hHI1BsFm2DKtDZKl3RwYrcj6zntErqxTAquj_kMlbuiXKUoxQf4USanf795RnZ97sdXDp6T5vqzdBeksbLlpfedL2Xjv2c |
link.rule.ids | 315,782,786,798,27933,27934,54767 |
linkProvider | IEEE |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BGYABaAuiPD0wgCA0pM7DY-lDRbQVqAWxRX5lqpKKNv-fs5MWJFjYMjhR5Dv7vs_n-w7gSsjQkzKhjmCcI0HxA4dJqRyNoVcixQioMBndwSQcf0TdnpHJuVvXwmit7eUzfW8ebS5fZTI3R2VN38NwZMQ_t3waBmFRrbXOGVBq2x4-IKhwKPXCVYmMy5rTyajTLsQpPcMBbFf57zBk-6r82oxthOnv_-_fDmCvRJKkXZi-Chs6rcHuD33BGlTLlbsg16W89E0dXrpFE3rSmeVGJQFHkiwh9mgQ3c5557NcK9LlS04eMcYpkqWkrfjcbIzkNefKOI0kXYM8zccP4a3fm3YGTtlXwZEI1pYOxiOfCU5pyD0VIWD1FAIvRXExur7wfI0kxw9dJpOIBzpCgtNKkEh5iMM11Uhqj6CSZqk-BiKEy1qBlEKEgnKkUpERh8HN3EcYwYKkAberaY7nhXxGbGmHy2JrFNMGk8WlURpQNxO7HlnOaQPIyjIxOr_JaPBUZ_kiNmJ8iCBZdPL3m5ewPZiOhvHwafx8Cjs2E2TrCM-gsvzM9TlsLlR-Yf3oC6exwrg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+Clustering+of+Interval-Valued+Data+Based+on+Adaptive+Quadratic+Distances&rft.jtitle=IEEE+transactions+on+systems%2C+man+and+cybernetics.+Part+A%2C+Systems+and+humans&rft.au=de+A.T.+de+Carvalho%2C+F.&rft.au=Lechevallier%2C+Y.&rft.date=2009-11-01&rft.pub=IEEE&rft.issn=1083-4427&rft.eissn=1558-2426&rft.volume=39&rft.issue=6&rft.spage=1295&rft.epage=1306&rft_id=info:doi/10.1109%2FTSMCA.2009.2030167&rft.externalDocID=5281204 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1083-4427&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1083-4427&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1083-4427&client=summon |