Equid herpesvirus type 3 infection produces membrane-associated and secreted forms of glycoprotein G that are not required for efficient cell-to-cell spread of the virus in vitro

The ORF 70 gene of equid alphaherpesvirus type 3 (EHV-3) encodes glycoprotein G (gG), which is conserved in the majority of alphaherpesviruses. This glycoprotein is located in the viral envelope and has the characteristic of being secreted into the culture medium after proteolytic processing. It mod...

Full description

Saved in:
Bibliographic Details
Published in:Archives of virology Vol. 168; no. 4; p. 122
Main Authors: Losinno, Antonella, Vissani, María Aldana, Sanchez, Diego, Damiani, Armando Mario
Format: Journal Article
Language:English
Published: Vienna Springer Vienna 01-04-2023
Springer Nature B.V
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The ORF 70 gene of equid alphaherpesvirus type 3 (EHV-3) encodes glycoprotein G (gG), which is conserved in the majority of alphaherpesviruses. This glycoprotein is located in the viral envelope and has the characteristic of being secreted into the culture medium after proteolytic processing. It modulates the antiviral immune response of the host by interacting with chemokines. The aim of this study was to identify and characterize EHV-3 gG. By constructing viruses with HA-tagged gG, it was possible to detect gG in lysates of infected cells, their supernatants, and purified virions. A 100-, 60-, and 17-kDa form of the protein were detected in viral particles, while a 60-kDa form was identified in supernatants of infected cells. The role of EHV-3 gG in the viral infection cycle was assessed by the construction of a gG-minus EHV-3 mutant and its gG-positive revertant. When growth characteristics in an equine dermal fibroblast cell line were compared, the plaque size and the growth kinetics of the gG-minus mutant were similar to those of the revertant virus, suggesting that EHV-3 gG does not play a role in direct cell-to-cell transmission or virus proliferation of EHV-3 in tissue culture. The identification and characterization of EHV-3 gG described here provide a solid background for further studies to assess whether this glycoprotein has a function in modulating the host immune response.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0304-8608
1432-8798
DOI:10.1007/s00705-023-05727-4