Wound intensity correction and segmentation with convolutional neural networks
Summary Wound area changes over multiple weeks are highly predictive of the wound healing process. A big data eHealth system would be very helpful in evaluating these changes. We usually analyze images of the wound bed for diagnosing injury. Unfortunately, accurate measurements of wound region chang...
Saved in:
Published in: | Concurrency and computation Vol. 29; no. 6; pp. np - n/a |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Hoboken
Wiley Subscription Services, Inc
25-03-2017
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Summary
Wound area changes over multiple weeks are highly predictive of the wound healing process. A big data eHealth system would be very helpful in evaluating these changes. We usually analyze images of the wound bed for diagnosing injury. Unfortunately, accurate measurements of wound region changes from images are difficult. Many factors affect the quality of images, such as intensity inhomogeneity and color distortion. To this end, we propose a fast level set model‐based method for intensity inhomogeneity correction and a spectral properties‐based color correction method to overcome these obstacles. State‐of‐the‐art level set methods can segment objects well. However, such methods are time‐consuming and inefficient. In contrast to conventional approaches, the proposed model integrates a new signed energy force function that can detect contours at weak or blurred edges efficiently. It ensures the smoothness of the level set function and reduces the computational complexity of re‐initialization. To increase the speed of the algorithm further, we also include an additive operator‐splitting algorithm in our fast level set model. In addition, we consider using a camera, lighting, and spectral properties to recover the actual color. Numerical synthetic and real‐world images demonstrate the advantages of the proposed method over state‐of‐the‐art methods. Experimental results also show that the proposed model is at least twice as fast as methods used widely. Copyright © 2016 John Wiley & Sons, Ltd. |
---|---|
AbstractList | Summary
Wound area changes over multiple weeks are highly predictive of the wound healing process. A big data eHealth system would be very helpful in evaluating these changes. We usually analyze images of the wound bed for diagnosing injury. Unfortunately, accurate measurements of wound region changes from images are difficult. Many factors affect the quality of images, such as intensity inhomogeneity and color distortion. To this end, we propose a fast level set model‐based method for intensity inhomogeneity correction and a spectral properties‐based color correction method to overcome these obstacles. State‐of‐the‐art level set methods can segment objects well. However, such methods are time‐consuming and inefficient. In contrast to conventional approaches, the proposed model integrates a new signed energy force function that can detect contours at weak or blurred edges efficiently. It ensures the smoothness of the level set function and reduces the computational complexity of re‐initialization. To increase the speed of the algorithm further, we also include an additive operator‐splitting algorithm in our fast level set model. In addition, we consider using a camera, lighting, and spectral properties to recover the actual color. Numerical synthetic and real‐world images demonstrate the advantages of the proposed method over state‐of‐the‐art methods. Experimental results also show that the proposed model is at least twice as fast as methods used widely. Copyright © 2016 John Wiley & Sons, Ltd. Summary Wound area changes over multiple weeks are highly predictive of the wound healing process. A big data eHealth system would be very helpful in evaluating these changes. We usually analyze images of the wound bed for diagnosing injury. Unfortunately, accurate measurements of wound region changes from images are difficult. Many factors affect the quality of images, such as intensity inhomogeneity and color distortion. To this end, we propose a fast level set model-based method for intensity inhomogeneity correction and a spectral properties-based color correction method to overcome these obstacles. State-of-the-art level set methods can segment objects well. However, such methods are time-consuming and inefficient. In contrast to conventional approaches, the proposed model integrates a new signed energy force function that can detect contours at weak or blurred edges efficiently. It ensures the smoothness of the level set function and reduces the computational complexity of re-initialization. To increase the speed of the algorithm further, we also include an additive operator-splitting algorithm in our fast level set model. In addition, we consider using a camera, lighting, and spectral properties to recover the actual color. Numerical synthetic and real-world images demonstrate the advantages of the proposed method over state-of-the-art methods. Experimental results also show that the proposed model is at least twice as fast as methods used widely. Copyright © 2016 John Wiley & Sons, Ltd. Wound area changes over multiple weeks are highly predictive of the wound healing process. A big data eHealth system would be very helpful in evaluating these changes. We usually analyze images of the wound bed for diagnosing injury. Unfortunately, accurate measurements of wound region changes from images are difficult. Many factors affect the quality of images, such as intensity inhomogeneity and color distortion. To this end, we propose a fast level set model-based method for intensity inhomogeneity correction and a spectral properties-based color correction method to overcome these obstacles. State-of-the-art level set methods can segment objects well. However, such methods are time-consuming and inefficient. In contrast to conventional approaches, the proposed model integrates a new signed energy force function that can detect contours at weak or blurred edges efficiently. It ensures the smoothness of the level set function and reduces the computational complexity of re-initialization. To increase the speed of the algorithm further, we also include an additive operator-splitting algorithm in our fast level set model. In addition, we consider using a camera, lighting, and spectral properties to recover the actual color. Numerical synthetic and real-world images demonstrate the advantages of the proposed method over state-of-the-art methods. Experimental results also show that the proposed model is at least twice as fast as methods used widely. |
Author | Li, Yun Li, Bin Li, Jianru Serikawa, Seiichi Zhu, Junwu Xu, Xing Lu, Huimin He, Li Li, Xin Li, Yujie |
Author_xml | – sequence: 1 givenname: Huimin surname: Lu fullname: Lu, Huimin email: luhuimin@ieee.org organization: Shanghai Jiao Tong University – sequence: 2 givenname: Bin surname: Li fullname: Li, Bin organization: Yangzhou University – sequence: 3 givenname: Junwu surname: Zhu fullname: Zhu, Junwu organization: Yangzhou University – sequence: 4 givenname: Yujie surname: Li fullname: Li, Yujie organization: Yangzhou University – sequence: 5 givenname: Yun surname: Li fullname: Li, Yun organization: Yangzhou University – sequence: 6 givenname: Xing surname: Xu fullname: Xu, Xing organization: Kyushu University – sequence: 7 givenname: Li surname: He fullname: He, Li organization: Qualcomm R&D Center – sequence: 8 givenname: Xin surname: Li fullname: Li, Xin organization: Shanghai Jiao Tong University – sequence: 9 givenname: Jianru surname: Li fullname: Li, Jianru organization: Tongji University – sequence: 10 givenname: Seiichi surname: Serikawa fullname: Serikawa, Seiichi organization: Kyushu Institute of Technology |
BookMark | eNp10N9LwzAQB_AgE9ym4J9Q8MWXzvxqmj7KmFMY6oPiY0jTq2Z2yUxax_57u00UBJ_uuPtwHN8RGjjvAKFzgicEY3pl1jBhBc2P0JBkjKZYMD746ak4QaMYlxgTghkZovsX37kqsa4FF227TYwPAUxrvUt0v4jwugLX6v1gY9u3HrhP33S7gW4SB13Yl3bjw3s8Rce1biKcfdcxer6ZPU1v08XD_G56vUgNoyJPZc451JJVWUYrURaV1DlIqEtOTC2MFrLSpRAF5Lowmc4Ew0bKWuO80prjko3R5eHuOviPDmKrVjYaaBrtwHdRESk5wUUmi55e_KFL34X-914VlHIuc0F_D5rgYwxQq3WwKx22imC1C1b1wapdsD1ND3RjG9j-69T0cbb3X221fKc |
CitedBy_id | crossref_primary_10_1016_j_compeleceng_2017_01_018 crossref_primary_10_1016_j_future_2018_06_044 crossref_primary_10_1007_s11036_018_1118_8 crossref_primary_10_1007_s11042_019_7343_8 crossref_primary_10_3390_app11209367 crossref_primary_10_1016_j_jksuci_2021_09_020 crossref_primary_10_1002_cpe_5281 crossref_primary_10_1007_s11036_018_1121_0 crossref_primary_10_1007_s11042_017_4529_9 crossref_primary_10_1007_s11042_018_6761_3 crossref_primary_10_1007_s11277_019_06232_1 crossref_primary_10_3390_app10217613 crossref_primary_10_1016_j_optlastec_2018_06_061 crossref_primary_10_1007_s11042_018_7080_4 crossref_primary_10_1002_cpe_5036 crossref_primary_10_1007_s11042_018_5864_1 crossref_primary_10_1007_s11042_018_7109_8 crossref_primary_10_1007_s11036_018_1122_z crossref_primary_10_1016_j_asoc_2019_106051 crossref_primary_10_1155_2018_3928080 crossref_primary_10_1016_j_optlastec_2018_07_049 crossref_primary_10_1007_s00500_019_03834_6 crossref_primary_10_1016_j_asoc_2018_08_049 crossref_primary_10_1007_s11042_017_4684_z crossref_primary_10_1016_j_optlastec_2018_08_009 crossref_primary_10_1016_j_optlastec_2018_08_007 crossref_primary_10_1007_s11042_019_7211_6 crossref_primary_10_1016_j_jvcir_2020_102794 crossref_primary_10_1109_JBHI_2023_3270711 crossref_primary_10_1109_ACCESS_2020_2970169 crossref_primary_10_1016_j_future_2018_02_036 crossref_primary_10_1007_s11042_019_7728_8 crossref_primary_10_1007_s11042_019_7344_7 crossref_primary_10_1007_s11036_020_01719_9 crossref_primary_10_1007_s11042_017_4592_2 crossref_primary_10_1016_j_compeleceng_2018_01_036 crossref_primary_10_1016_j_compeleceng_2018_03_003 crossref_primary_10_1109_ACCESS_2023_3271011 crossref_primary_10_1007_s11042_018_6694_x crossref_primary_10_1007_s11036_018_1120_1 crossref_primary_10_1007_s11042_017_5300_y crossref_primary_10_1109_TIM_2023_3265758 crossref_primary_10_1002_cpe_5900 crossref_primary_10_1007_s11042_018_6915_3 crossref_primary_10_1007_s11042_018_7092_0 crossref_primary_10_1109_JSEN_2020_2968477 crossref_primary_10_1007_s11042_018_6784_9 crossref_primary_10_1007_s11042_018_7062_6 crossref_primary_10_1134_S105466181903012X crossref_primary_10_1016_j_compeleceng_2018_01_027 crossref_primary_10_1007_s11042_017_4585_1 crossref_primary_10_1002_cpe_4080 crossref_primary_10_1016_j_compeleceng_2018_05_009 crossref_primary_10_1109_ACCESS_2019_2913791 crossref_primary_10_1007_s11042_017_4855_y crossref_primary_10_1016_j_compeleceng_2021_107206 crossref_primary_10_1016_j_compeleceng_2017_12_016 crossref_primary_10_1007_s11042_018_6897_1 crossref_primary_10_1016_j_optlastec_2018_07_072 crossref_primary_10_1007_s10462_020_09825_6 crossref_primary_10_3390_jcm11237103 crossref_primary_10_1007_s11042_017_4672_3 crossref_primary_10_1016_j_optlastec_2017_12_006 crossref_primary_10_1007_s11042_018_6522_3 crossref_primary_10_1109_ACCESS_2019_2914929 crossref_primary_10_1109_ACCESS_2019_2901580 crossref_primary_10_1007_s11042_018_6969_2 crossref_primary_10_1016_j_optlastec_2018_06_033 crossref_primary_10_1002_cpe_5120 crossref_primary_10_1177_17298814211060650 crossref_primary_10_1002_cpe_5763 crossref_primary_10_1007_s11036_020_01717_x crossref_primary_10_1007_s11042_019_7160_0 crossref_primary_10_1007_s12652_020_01905_3 crossref_primary_10_1016_j_energy_2022_125976 crossref_primary_10_1016_j_compeleceng_2019_02_016 crossref_primary_10_1007_s11042_017_4569_1 crossref_primary_10_1007_s00521_018_03968_y crossref_primary_10_1007_s11042_018_7063_5 crossref_primary_10_1016_j_optlastec_2017_09_018 crossref_primary_10_1016_j_optlastec_2018_01_043 crossref_primary_10_1007_s11042_017_4871_y crossref_primary_10_1049_tje2_12016 crossref_primary_10_1007_s11042_018_6436_0 crossref_primary_10_2196_36977 crossref_primary_10_4103_jofs_jofs_55_19 crossref_primary_10_1007_s11042_019_7647_8 crossref_primary_10_1007_s11042_017_4686_x crossref_primary_10_1007_s11042_017_5383_5 crossref_primary_10_1016_j_jid_2019_12_029 crossref_primary_10_1007_s11042_017_4440_4 crossref_primary_10_1016_j_compeleceng_2018_09_013 crossref_primary_10_1016_j_compeleceng_2021_107024 crossref_primary_10_1117_1_JEI_26_3_033006 crossref_primary_10_1016_j_optlastec_2018_08_044 crossref_primary_10_3390_app9152961 crossref_primary_10_1007_s11042_017_4554_8 crossref_primary_10_1051_matecconf_202133606001 crossref_primary_10_1016_j_cmpb_2020_105867 crossref_primary_10_1016_j_compeleceng_2021_107235 crossref_primary_10_1002_cpe_6075 crossref_primary_10_1016_j_optlastec_2018_07_013 crossref_primary_10_1016_j_optlastec_2018_07_012 crossref_primary_10_1109_TITS_2021_3098355 crossref_primary_10_1111_wrr_12650 crossref_primary_10_1016_j_eswa_2019_112847 crossref_primary_10_1016_j_jvcir_2020_102860 crossref_primary_10_1364_JOSAA_394985 crossref_primary_10_1007_s11042_017_4893_5 crossref_primary_10_1016_j_compeleceng_2018_03_051 crossref_primary_10_1016_j_compeleceng_2018_07_055 crossref_primary_10_1007_s00500_018_3599_6 crossref_primary_10_1007_s11042_018_6970_9 crossref_primary_10_1089_sur_2019_154 crossref_primary_10_1016_j_compeleceng_2020_106655 crossref_primary_10_1007_s11042_017_5449_4 crossref_primary_10_1109_JIOT_2017_2737479 crossref_primary_10_1111_iwj_13011 crossref_primary_10_1007_s11042_018_6032_3 crossref_primary_10_1016_j_optlastec_2018_05_042 crossref_primary_10_1007_s11042_017_4489_0 crossref_primary_10_1016_j_optlastec_2018_05_036 crossref_primary_10_1007_s11042_018_6770_2 crossref_primary_10_1016_j_asoc_2019_105628 |
Cites_doi | 10.1109/TPAMI.2012.210 10.1162/neco.1989.1.4.541 10.1109/TCYB.2015.2409119 10.1109/CVPR.2016.348 10.1109/34.868688 10.1109/ICICIP.2010.5564346 10.4028/www.scientific.net/AMM.103.695 10.1109/TIP.2011.2146190 10.1109/TIP.2011.2168408 10.1023/A:1020874308076 10.1109/83.902291 10.1023/A:1007979827043 10.1109/TIP.2005.863956 10.1109/TMI.2011.2165342 10.1109/34.368173 10.5566/ias.v27.p87-95 10.1016/j.patcog.2015.04.019 10.1007/3-540-45783-6_17 10.1002/cpa.3160420503 10.1090/conm/445/08602 10.1109/TIP.2008.2002304 10.1109/36.951105 10.1007/s11042‐015‐2977‐7 10.1007/BF00133570 10.1109/ICIP.2010.5651554 |
ContentType | Journal Article |
Copyright | Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: Copyright © 2016 John Wiley & Sons, Ltd. – notice: Copyright © 2017 John Wiley & Sons, Ltd. |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1002/cpe.3927 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts CrossRef Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1532-0634 |
EndPage | n/a |
ExternalDocumentID | 10_1002_cpe_3927 CPE3927 |
Genre | article |
GrantInformation_xml | – fundername: JSPS KAKENHI funderid: No.13J10713; 15F15077 – fundername: Key Laboratory of Marine Geology and Environment of CAS funderid: No.MGE2015KG02 – fundername: State Key Laboratory of Marine Geology at Tongji University funderid: (MGK1608) – fundername: State Key Laboratory of Ocean Engineering at Shanghai Jiaotong University funderid: (1315;1510) |
GroupedDBID | .3N .DC .GA 05W 0R~ 10A 1L6 1OC 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ACAHQ ACCFJ ACCZN ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB BAFTC BDRZF BFHJK BHBCM BMNLL BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA HGLYW HHY HZ~ IX1 JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A O66 O9- OIG P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K ROL RWI RX1 SUPJJ TN5 UB1 V2E W8V W99 WBKPD WIH WIK WOHZO WQJ WRC WXSBR WYISQ WZISG XG1 XV2 ~IA ~WT AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c3267-8744ef83d552d6b9d8a7e8efb41cf6ca68dab669e7a9c5a5630c88fa07daa40b3 |
IEDL.DBID | 33P |
ISSN | 1532-0626 |
IngestDate | Fri Aug 16 06:57:51 EDT 2024 Thu Oct 10 17:06:51 EDT 2024 Fri Aug 23 01:52:41 EDT 2024 Sat Aug 24 00:47:12 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3267-8744ef83d552d6b9d8a7e8efb41cf6ca68dab669e7a9c5a5630c88fa07daa40b3 |
Notes | Present address: School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1922448762 |
PQPubID | 2045170 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_1884109589 proquest_journals_1922448762 crossref_primary_10_1002_cpe_3927 wiley_primary_10_1002_cpe_3927_CPE3927 |
PublicationCentury | 2000 |
PublicationDate | 25 March 2017 |
PublicationDateYYYYMMDD | 2017-03-25 |
PublicationDate_xml | – month: 03 year: 2017 text: 25 March 2017 day: 25 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Concurrency and computation |
PublicationYear | 2017 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2007; 445 1989; 42 1989; 1 1997; 22 1995; 17 2010 2002; 50 2000; 22 2006; 15 2008; 17 2005 2004 2012; 31 1988; 1 2011; 103 2015; 48 2002; 2449 2013; 35 2008; 27 2011; 20 2016 2015 2001; 39 2012; 21 2016; 46 2001; 10 e_1_2_9_30_1 e_1_2_9_11_1 e_1_2_9_10_1 e_1_2_9_13_1 e_1_2_9_12_1 e_1_2_9_15_1 e_1_2_9_14_1 e_1_2_9_17_1 e_1_2_9_16_1 e_1_2_9_19_1 e_1_2_9_18_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_21_1 e_1_2_9_24_1 e_1_2_9_23_1 e_1_2_9_8_1 e_1_2_9_7_1 e_1_2_9_6_1 e_1_2_9_5_1 e_1_2_9_4_1 e_1_2_9_3_1 e_1_2_9_2_1 e_1_2_9_9_1 e_1_2_9_26_1 e_1_2_9_25_1 e_1_2_9_28_1 e_1_2_9_27_1 e_1_2_9_29_1 |
References_xml | – volume: 103 start-page: 695 year: 2011 end-page: 699 article-title: Proposal of fast implicit level set scheme for medical image segmentation using the Chan and Vese model publication-title: Applied Mechanics and Materials – year: 2005 – volume: 48 start-page: 2983 issue: 10 year: 2015 end-page: 2992 article-title: CRF learning with CNN features for image segmentation publication-title: Pattern Recognition – volume: 42 start-page: 577 issue: 5 year: 1989 end-page: 685 article-title: Optimal approximation by piecewise smooth function and associated variational problems publication-title: Communications on Pure and Applied Mathematics – volume: 31 start-page: 103 issue: 1 year: 2012 end-page: 116 article-title: Robust student's‐t mixture model with spatial constraints and its application in medical image segmentation publication-title: IEEE Transactions on Medical Imaging – volume: 50 start-page: 271 issue: 3 year: 2002 end-page: 293 article-title: A multiphase level set framework for image segmentation using the Mumford–Shah model publication-title: International Journal of Computer Vision – volume: 20 start-page: 2007 issue: 7 year: 2011 end-page: 2016 article-title: A level set method for image segmentation in the presence of intensity inhomogence ities with application to MRI publication-title: IEEE Transactions on Image Processing – start-page: 576 year: 2004 end-page: 579 – volume: 22 start-page: 888 issue: 8 year: 2000 end-page: 905 article-title: Normalized cuts and image segmentation publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 2449 start-page: 133 year: 2002 end-page: 140 article-title: Fast implicit active contour models, pattern recognition publication-title: Lecture Notes in Computer Science – volume: 17 start-page: 158 issue: 2 year: 1995 end-page: 175 article-title: Shape modeling with front propagation: a level set approach publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – start-page: 430 year: 2005 end-page: 436 – volume: 27 start-page: 87 issue: 2 year: 2008 end-page: 95 article-title: Blind contrast restoration assessment by gradient radioing at visible edges publication-title: Image Analysis & Stereology – volume: 21 start-page: 946 issue: 3 year: 2012 end-page: 957 article-title: Image segmentation based on the Poincare map method publication-title: IEEE Transactions on Image Processing – volume: 17 start-page: 1940 issue: 10 year: 2008 end-page: 1949 article-title: Minimization of region‐scalable fitting energy for image segmentation publication-title: IEEE Transactions on Image Processing – volume: 445 start-page: 207 year: 2007 end-page: 223 article-title: Additive and multiplicative piecewise‐smooth segmentation models in functional minimization approach publication-title: Contemporary Mathematics – start-page: 4105 year: 2010 end-page: 4108 – volume: 1 start-page: 321 issue: 1 year: 1988 end-page: 331 article-title: Snakes: active contour models publication-title: International Journal of Computer Vision – volume: 15 start-page: 1171 issue: 5 year: 2006 end-page: 1181 article-title: A binary level set model and some application to Mumford–Shah image segmentation publication-title: IEEE Transactions on Image Processing – volume: 1 start-page: 541 issue: 4 year: 1989 end-page: 551 article-title: Backpropagation applied to handwritten zip code recognition publication-title: Neural Computation – volume: 35 start-page: 1480 issue: 6 year: 2013 end-page: 1494 article-title: Single image vignetting correction from gradient distribution symmetries publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – start-page: 1 year: 2015 end-page: 16 article-title: Single image dehazing through improved atmospheric light estimation publication-title: Multimedia Tools and Applications – volume: 22 start-page: 61 issue: 1 year: 1997 end-page: 79 article-title: Geodesic active contours publication-title: International Journal of Computer Vision – volume: 46 start-page: 546 issue: 2 year: 2016 end-page: 557 article-title: A level set approach to image segmentation with intensity inhomogeneity publication-title: IEEE Transactions on Cybernetics – start-page: 79 year: 2010 end-page: 82 – start-page: 1 year: 2016 end-page: 8 – volume: 39 start-page: 2080 issue: 9 year: 2001 end-page: 2083 article-title: Detection of small objects from high‐resolution panchromatic satellite imagery based on supervised image segmentation publication-title: IEEE Transactions on Geoscience and Remote Sensing – volume: 10 start-page: 266 issue: 2 year: 2001 end-page: 277 article-title: Active contours without edges publication-title: IEEE Transactions on Image Processing – ident: e_1_2_9_26_1 doi: 10.1109/TPAMI.2012.210 – ident: e_1_2_9_25_1 – ident: e_1_2_9_18_1 doi: 10.1162/neco.1989.1.4.541 – ident: e_1_2_9_27_1 doi: 10.1109/TCYB.2015.2409119 – ident: e_1_2_9_23_1 doi: 10.1109/CVPR.2016.348 – ident: e_1_2_9_2_1 doi: 10.1109/34.868688 – ident: e_1_2_9_5_1 doi: 10.1109/ICICIP.2010.5564346 – ident: e_1_2_9_21_1 doi: 10.4028/www.scientific.net/AMM.103.695 – ident: e_1_2_9_28_1 doi: 10.1109/TIP.2011.2146190 – ident: e_1_2_9_6_1 doi: 10.1109/TIP.2011.2168408 – ident: e_1_2_9_14_1 doi: 10.1023/A:1020874308076 – ident: e_1_2_9_16_1 – ident: e_1_2_9_19_1 – ident: e_1_2_9_12_1 doi: 10.1109/83.902291 – ident: e_1_2_9_8_1 doi: 10.1023/A:1007979827043 – ident: e_1_2_9_10_1 doi: 10.1109/TIP.2005.863956 – ident: e_1_2_9_4_1 doi: 10.1109/TMI.2011.2165342 – ident: e_1_2_9_9_1 doi: 10.1109/34.368173 – ident: e_1_2_9_22_1 doi: 10.5566/ias.v27.p87-95 – ident: e_1_2_9_24_1 doi: 10.1016/j.patcog.2015.04.019 – ident: e_1_2_9_17_1 doi: 10.1007/3-540-45783-6_17 – ident: e_1_2_9_13_1 doi: 10.1002/cpa.3160420503 – ident: e_1_2_9_15_1 doi: 10.1090/conm/445/08602 – ident: e_1_2_9_11_1 doi: 10.1109/TIP.2008.2002304 – ident: e_1_2_9_3_1 doi: 10.1109/36.951105 – ident: e_1_2_9_30_1 doi: 10.1007/s11042‐015‐2977‐7 – ident: e_1_2_9_7_1 doi: 10.1007/BF00133570 – ident: e_1_2_9_20_1 doi: 10.1109/ICIP.2010.5651554 – ident: e_1_2_9_29_1 |
SSID | ssj0011031 |
Score | 2.575985 |
Snippet | Summary
Wound area changes over multiple weeks are highly predictive of the wound healing process. A big data eHealth system would be very helpful in... Summary Wound area changes over multiple weeks are highly predictive of the wound healing process. A big data eHealth system would be very helpful in... Wound area changes over multiple weeks are highly predictive of the wound healing process. A big data eHealth system would be very helpful in evaluating these... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Publisher |
StartPage | np |
SubjectTerms | Algorithms Artificial neural networks Barriers big data Color Complexity Data management Distortion eHealth analysis system Illumination illumination correction Image quality Image segmentation Inhomogeneity Injury analysis level set model Lighting Mathematical analysis Mathematical models Methods Smoothness Spectra Splitting State of the art Wound healing |
Title | Wound intensity correction and segmentation with convolutional neural networks |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcpe.3927 https://www.proquest.com/docview/1922448762 https://search.proquest.com/docview/1884109589 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagEwtvRKEgIyG2qInr-MGGSqtOVSVAsEV-BTGQVqQd-Pfc5dHCgITE5MFOHF3ufJ_Pvu8Iuc6tsjrOk0jqHEM3QUbGJknEjBGp5hzsD_OdJw9y-qLuR0iTc9vmwtT8EOuAG1pGtV6jgRtb9jekoW4RYMPOMJEcSZswe2MwWx8gYPWCmiqVRTGA9pZ3Nmb99sGfnmgDL7-D1MrLjPf-8337ZLfBlvSuVoYDshWKQ7LX1m2gjRkfkekz1lKib_Xt9eUndViio0pwoAY6yvD63qQkFRQDtRTvpjc6ChMgB2bVVDfIy2PyNB49DidRU1chcgDWwClJzkOuBj5NmRdWe2VkUCG3PHG5cEYob6wQOkijXWqQQcwplZtYemN4bAcnpFPMi3BKqDcyN054oRONO1GdcgZroHLMApb0qkuuWhlni5o-I6uJklkGAspQQF3Sa4WfNQZUZgA8AXjgUg2vWHeD6uN5hinCfAVjlOIJTKl0l9xUv-LXObLhbITt2V8HnpMdhg48HkQs7ZHO8mMVLsh26VeXlaJ9AZ951sA |
link.rule.ids | 315,783,787,1409,27936,27937,46067,46491 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB58HPTiW1yfFcRb2TZN88CTrCsr6iK4oreS5iEe7Ip1D_57M33s6kEQPOWQtCnTmcyXSeYbgBOXi1xGLg65dBi6sTxUeRyHRCmWSkq9_WG-8-CeD5_ERR9pcs7aXJiaH2IacEPLqNZrNHAMSHdnrKH6zfodO-HzsEgZlWiVSXI3PULA-gU1WSoJIw_bW-bZiHTbJ3_6ohnA_A5TKz9zufqvL1yDlQZeBue1PqzDnC02YLUt3RA0lrwJw0cspxS81BfYPz4DjVU6qhyHQPmO0j6_NllJRYCx2gCvpzdq6idAGsyqqS6Rl1vwcNkf9QZhU1oh1B6veb_EKbVOJCZNiWG5NEJxK6zLaawd04oJo3LGpOVK6lQhiZgWwqmIG6VolCfbsFCMC7sDgVHcKc0Mk7HEzahMKfHLoNAk93DSiA4ct0LO3moGjazmSiaZF1CGAurAfiv9rLGhMvPY02MPXK39K6bdXvvxSEMVdjzxY4SgsZ9SyA6cVv_i1zmy3l0f292_DjyCpcHo9ia7uRpe78EyQX8eJSFJ92Hh431iD2C-NJPDSuu-ACPA2uE |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB58gHjxLa7PCuKtbJumTeJNdBdFWRZU9FbSPMSDdXHdg__emT529SAInnJI2pTpTObLJPMNwIkvZKEiH4dCeQrdOBHqIo5DpnWWKs7R_ijf-epODJ7kZY9ocs7aXJiaH2IacCPLqNZrMvCR9d0ZaagZOdywMzEPixxROG28kmQ4PUGg8gU1VyoLI0TtLfFsxLrtkz9d0QxffkeplZvpr_7nA9dgpQGXwXmtDesw58oNWG0LNwSNHW_C4JGKKQUv9fX1j8_AUI2OKsMh0Ngxds-vTU5SGVCkNqDL6Y2S4gREglk11RXy8RY89Hv3F1dhU1ghNIjW0CsJzp2XiU1TZrNCWamFk84XPDY-MzqTVhdZppzQyqSaKMSMlF5HwmrNoyLZhoXyrXQ7EFgtvDaZzVSsaCuqUs5wEZSGFQgmrezAcSvjfFTzZ-Q1UzLLUUA5CagD-63w88aCxjkiT0QetFbjK6bdqPt0oKFL9zbBMVLyGKeUqgOn1a_4dY78YtijdvevA49gaXjZz2-vBzd7sMzImUdJyNJ9WPh4n7gDmB_byWGlc1-2_tmQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wound+intensity+correction+and+segmentation+with+convolutional+neural+networks&rft.jtitle=Concurrency+and+computation&rft.au=Lu%2C+Huimin&rft.au=Li%2C+Bin&rft.au=Zhu%2C+Junwu&rft.au=Li%2C+Yujie&rft.date=2017-03-25&rft.issn=1532-0626&rft.eissn=1532-0634&rft.volume=29&rft.issue=6&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fcpe.3927&rft.externalDBID=10.1002%252Fcpe.3927&rft.externalDocID=CPE3927 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1532-0626&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1532-0626&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1532-0626&client=summon |