Wound intensity correction and segmentation with convolutional neural networks

Summary Wound area changes over multiple weeks are highly predictive of the wound healing process. A big data eHealth system would be very helpful in evaluating these changes. We usually analyze images of the wound bed for diagnosing injury. Unfortunately, accurate measurements of wound region chang...

Full description

Saved in:
Bibliographic Details
Published in:Concurrency and computation Vol. 29; no. 6; pp. np - n/a
Main Authors: Lu, Huimin, Li, Bin, Zhu, Junwu, Li, Yujie, Li, Yun, Xu, Xing, He, Li, Li, Xin, Li, Jianru, Serikawa, Seiichi
Format: Journal Article
Language:English
Published: Hoboken Wiley Subscription Services, Inc 25-03-2017
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Summary Wound area changes over multiple weeks are highly predictive of the wound healing process. A big data eHealth system would be very helpful in evaluating these changes. We usually analyze images of the wound bed for diagnosing injury. Unfortunately, accurate measurements of wound region changes from images are difficult. Many factors affect the quality of images, such as intensity inhomogeneity and color distortion. To this end, we propose a fast level set model‐based method for intensity inhomogeneity correction and a spectral properties‐based color correction method to overcome these obstacles. State‐of‐the‐art level set methods can segment objects well. However, such methods are time‐consuming and inefficient. In contrast to conventional approaches, the proposed model integrates a new signed energy force function that can detect contours at weak or blurred edges efficiently. It ensures the smoothness of the level set function and reduces the computational complexity of re‐initialization. To increase the speed of the algorithm further, we also include an additive operator‐splitting algorithm in our fast level set model. In addition, we consider using a camera, lighting, and spectral properties to recover the actual color. Numerical synthetic and real‐world images demonstrate the advantages of the proposed method over state‐of‐the‐art methods. Experimental results also show that the proposed model is at least twice as fast as methods used widely. Copyright © 2016 John Wiley & Sons, Ltd.
AbstractList Summary Wound area changes over multiple weeks are highly predictive of the wound healing process. A big data eHealth system would be very helpful in evaluating these changes. We usually analyze images of the wound bed for diagnosing injury. Unfortunately, accurate measurements of wound region changes from images are difficult. Many factors affect the quality of images, such as intensity inhomogeneity and color distortion. To this end, we propose a fast level set model‐based method for intensity inhomogeneity correction and a spectral properties‐based color correction method to overcome these obstacles. State‐of‐the‐art level set methods can segment objects well. However, such methods are time‐consuming and inefficient. In contrast to conventional approaches, the proposed model integrates a new signed energy force function that can detect contours at weak or blurred edges efficiently. It ensures the smoothness of the level set function and reduces the computational complexity of re‐initialization. To increase the speed of the algorithm further, we also include an additive operator‐splitting algorithm in our fast level set model. In addition, we consider using a camera, lighting, and spectral properties to recover the actual color. Numerical synthetic and real‐world images demonstrate the advantages of the proposed method over state‐of‐the‐art methods. Experimental results also show that the proposed model is at least twice as fast as methods used widely. Copyright © 2016 John Wiley & Sons, Ltd.
Summary Wound area changes over multiple weeks are highly predictive of the wound healing process. A big data eHealth system would be very helpful in evaluating these changes. We usually analyze images of the wound bed for diagnosing injury. Unfortunately, accurate measurements of wound region changes from images are difficult. Many factors affect the quality of images, such as intensity inhomogeneity and color distortion. To this end, we propose a fast level set model-based method for intensity inhomogeneity correction and a spectral properties-based color correction method to overcome these obstacles. State-of-the-art level set methods can segment objects well. However, such methods are time-consuming and inefficient. In contrast to conventional approaches, the proposed model integrates a new signed energy force function that can detect contours at weak or blurred edges efficiently. It ensures the smoothness of the level set function and reduces the computational complexity of re-initialization. To increase the speed of the algorithm further, we also include an additive operator-splitting algorithm in our fast level set model. In addition, we consider using a camera, lighting, and spectral properties to recover the actual color. Numerical synthetic and real-world images demonstrate the advantages of the proposed method over state-of-the-art methods. Experimental results also show that the proposed model is at least twice as fast as methods used widely. Copyright © 2016 John Wiley & Sons, Ltd.
Wound area changes over multiple weeks are highly predictive of the wound healing process. A big data eHealth system would be very helpful in evaluating these changes. We usually analyze images of the wound bed for diagnosing injury. Unfortunately, accurate measurements of wound region changes from images are difficult. Many factors affect the quality of images, such as intensity inhomogeneity and color distortion. To this end, we propose a fast level set model-based method for intensity inhomogeneity correction and a spectral properties-based color correction method to overcome these obstacles. State-of-the-art level set methods can segment objects well. However, such methods are time-consuming and inefficient. In contrast to conventional approaches, the proposed model integrates a new signed energy force function that can detect contours at weak or blurred edges efficiently. It ensures the smoothness of the level set function and reduces the computational complexity of re-initialization. To increase the speed of the algorithm further, we also include an additive operator-splitting algorithm in our fast level set model. In addition, we consider using a camera, lighting, and spectral properties to recover the actual color. Numerical synthetic and real-world images demonstrate the advantages of the proposed method over state-of-the-art methods. Experimental results also show that the proposed model is at least twice as fast as methods used widely.
Author Li, Yun
Li, Bin
Li, Jianru
Serikawa, Seiichi
Zhu, Junwu
Xu, Xing
Lu, Huimin
He, Li
Li, Xin
Li, Yujie
Author_xml – sequence: 1
  givenname: Huimin
  surname: Lu
  fullname: Lu, Huimin
  email: luhuimin@ieee.org
  organization: Shanghai Jiao Tong University
– sequence: 2
  givenname: Bin
  surname: Li
  fullname: Li, Bin
  organization: Yangzhou University
– sequence: 3
  givenname: Junwu
  surname: Zhu
  fullname: Zhu, Junwu
  organization: Yangzhou University
– sequence: 4
  givenname: Yujie
  surname: Li
  fullname: Li, Yujie
  organization: Yangzhou University
– sequence: 5
  givenname: Yun
  surname: Li
  fullname: Li, Yun
  organization: Yangzhou University
– sequence: 6
  givenname: Xing
  surname: Xu
  fullname: Xu, Xing
  organization: Kyushu University
– sequence: 7
  givenname: Li
  surname: He
  fullname: He, Li
  organization: Qualcomm R&D Center
– sequence: 8
  givenname: Xin
  surname: Li
  fullname: Li, Xin
  organization: Shanghai Jiao Tong University
– sequence: 9
  givenname: Jianru
  surname: Li
  fullname: Li, Jianru
  organization: Tongji University
– sequence: 10
  givenname: Seiichi
  surname: Serikawa
  fullname: Serikawa, Seiichi
  organization: Kyushu Institute of Technology
BookMark eNp10N9LwzAQB_AgE9ym4J9Q8MWXzvxqmj7KmFMY6oPiY0jTq2Z2yUxax_57u00UBJ_uuPtwHN8RGjjvAKFzgicEY3pl1jBhBc2P0JBkjKZYMD746ak4QaMYlxgTghkZovsX37kqsa4FF227TYwPAUxrvUt0v4jwugLX6v1gY9u3HrhP33S7gW4SB13Yl3bjw3s8Rce1biKcfdcxer6ZPU1v08XD_G56vUgNoyJPZc451JJVWUYrURaV1DlIqEtOTC2MFrLSpRAF5Lowmc4Ew0bKWuO80prjko3R5eHuOviPDmKrVjYaaBrtwHdRESk5wUUmi55e_KFL34X-914VlHIuc0F_D5rgYwxQq3WwKx22imC1C1b1wapdsD1ND3RjG9j-69T0cbb3X221fKc
CitedBy_id crossref_primary_10_1016_j_compeleceng_2017_01_018
crossref_primary_10_1016_j_future_2018_06_044
crossref_primary_10_1007_s11036_018_1118_8
crossref_primary_10_1007_s11042_019_7343_8
crossref_primary_10_3390_app11209367
crossref_primary_10_1016_j_jksuci_2021_09_020
crossref_primary_10_1002_cpe_5281
crossref_primary_10_1007_s11036_018_1121_0
crossref_primary_10_1007_s11042_017_4529_9
crossref_primary_10_1007_s11042_018_6761_3
crossref_primary_10_1007_s11277_019_06232_1
crossref_primary_10_3390_app10217613
crossref_primary_10_1016_j_optlastec_2018_06_061
crossref_primary_10_1007_s11042_018_7080_4
crossref_primary_10_1002_cpe_5036
crossref_primary_10_1007_s11042_018_5864_1
crossref_primary_10_1007_s11042_018_7109_8
crossref_primary_10_1007_s11036_018_1122_z
crossref_primary_10_1016_j_asoc_2019_106051
crossref_primary_10_1155_2018_3928080
crossref_primary_10_1016_j_optlastec_2018_07_049
crossref_primary_10_1007_s00500_019_03834_6
crossref_primary_10_1016_j_asoc_2018_08_049
crossref_primary_10_1007_s11042_017_4684_z
crossref_primary_10_1016_j_optlastec_2018_08_009
crossref_primary_10_1016_j_optlastec_2018_08_007
crossref_primary_10_1007_s11042_019_7211_6
crossref_primary_10_1016_j_jvcir_2020_102794
crossref_primary_10_1109_JBHI_2023_3270711
crossref_primary_10_1109_ACCESS_2020_2970169
crossref_primary_10_1016_j_future_2018_02_036
crossref_primary_10_1007_s11042_019_7728_8
crossref_primary_10_1007_s11042_019_7344_7
crossref_primary_10_1007_s11036_020_01719_9
crossref_primary_10_1007_s11042_017_4592_2
crossref_primary_10_1016_j_compeleceng_2018_01_036
crossref_primary_10_1016_j_compeleceng_2018_03_003
crossref_primary_10_1109_ACCESS_2023_3271011
crossref_primary_10_1007_s11042_018_6694_x
crossref_primary_10_1007_s11036_018_1120_1
crossref_primary_10_1007_s11042_017_5300_y
crossref_primary_10_1109_TIM_2023_3265758
crossref_primary_10_1002_cpe_5900
crossref_primary_10_1007_s11042_018_6915_3
crossref_primary_10_1007_s11042_018_7092_0
crossref_primary_10_1109_JSEN_2020_2968477
crossref_primary_10_1007_s11042_018_6784_9
crossref_primary_10_1007_s11042_018_7062_6
crossref_primary_10_1134_S105466181903012X
crossref_primary_10_1016_j_compeleceng_2018_01_027
crossref_primary_10_1007_s11042_017_4585_1
crossref_primary_10_1002_cpe_4080
crossref_primary_10_1016_j_compeleceng_2018_05_009
crossref_primary_10_1109_ACCESS_2019_2913791
crossref_primary_10_1007_s11042_017_4855_y
crossref_primary_10_1016_j_compeleceng_2021_107206
crossref_primary_10_1016_j_compeleceng_2017_12_016
crossref_primary_10_1007_s11042_018_6897_1
crossref_primary_10_1016_j_optlastec_2018_07_072
crossref_primary_10_1007_s10462_020_09825_6
crossref_primary_10_3390_jcm11237103
crossref_primary_10_1007_s11042_017_4672_3
crossref_primary_10_1016_j_optlastec_2017_12_006
crossref_primary_10_1007_s11042_018_6522_3
crossref_primary_10_1109_ACCESS_2019_2914929
crossref_primary_10_1109_ACCESS_2019_2901580
crossref_primary_10_1007_s11042_018_6969_2
crossref_primary_10_1016_j_optlastec_2018_06_033
crossref_primary_10_1002_cpe_5120
crossref_primary_10_1177_17298814211060650
crossref_primary_10_1002_cpe_5763
crossref_primary_10_1007_s11036_020_01717_x
crossref_primary_10_1007_s11042_019_7160_0
crossref_primary_10_1007_s12652_020_01905_3
crossref_primary_10_1016_j_energy_2022_125976
crossref_primary_10_1016_j_compeleceng_2019_02_016
crossref_primary_10_1007_s11042_017_4569_1
crossref_primary_10_1007_s00521_018_03968_y
crossref_primary_10_1007_s11042_018_7063_5
crossref_primary_10_1016_j_optlastec_2017_09_018
crossref_primary_10_1016_j_optlastec_2018_01_043
crossref_primary_10_1007_s11042_017_4871_y
crossref_primary_10_1049_tje2_12016
crossref_primary_10_1007_s11042_018_6436_0
crossref_primary_10_2196_36977
crossref_primary_10_4103_jofs_jofs_55_19
crossref_primary_10_1007_s11042_019_7647_8
crossref_primary_10_1007_s11042_017_4686_x
crossref_primary_10_1007_s11042_017_5383_5
crossref_primary_10_1016_j_jid_2019_12_029
crossref_primary_10_1007_s11042_017_4440_4
crossref_primary_10_1016_j_compeleceng_2018_09_013
crossref_primary_10_1016_j_compeleceng_2021_107024
crossref_primary_10_1117_1_JEI_26_3_033006
crossref_primary_10_1016_j_optlastec_2018_08_044
crossref_primary_10_3390_app9152961
crossref_primary_10_1007_s11042_017_4554_8
crossref_primary_10_1051_matecconf_202133606001
crossref_primary_10_1016_j_cmpb_2020_105867
crossref_primary_10_1016_j_compeleceng_2021_107235
crossref_primary_10_1002_cpe_6075
crossref_primary_10_1016_j_optlastec_2018_07_013
crossref_primary_10_1016_j_optlastec_2018_07_012
crossref_primary_10_1109_TITS_2021_3098355
crossref_primary_10_1111_wrr_12650
crossref_primary_10_1016_j_eswa_2019_112847
crossref_primary_10_1016_j_jvcir_2020_102860
crossref_primary_10_1364_JOSAA_394985
crossref_primary_10_1007_s11042_017_4893_5
crossref_primary_10_1016_j_compeleceng_2018_03_051
crossref_primary_10_1016_j_compeleceng_2018_07_055
crossref_primary_10_1007_s00500_018_3599_6
crossref_primary_10_1007_s11042_018_6970_9
crossref_primary_10_1089_sur_2019_154
crossref_primary_10_1016_j_compeleceng_2020_106655
crossref_primary_10_1007_s11042_017_5449_4
crossref_primary_10_1109_JIOT_2017_2737479
crossref_primary_10_1111_iwj_13011
crossref_primary_10_1007_s11042_018_6032_3
crossref_primary_10_1016_j_optlastec_2018_05_042
crossref_primary_10_1007_s11042_017_4489_0
crossref_primary_10_1016_j_optlastec_2018_05_036
crossref_primary_10_1007_s11042_018_6770_2
crossref_primary_10_1016_j_asoc_2019_105628
Cites_doi 10.1109/TPAMI.2012.210
10.1162/neco.1989.1.4.541
10.1109/TCYB.2015.2409119
10.1109/CVPR.2016.348
10.1109/34.868688
10.1109/ICICIP.2010.5564346
10.4028/www.scientific.net/AMM.103.695
10.1109/TIP.2011.2146190
10.1109/TIP.2011.2168408
10.1023/A:1020874308076
10.1109/83.902291
10.1023/A:1007979827043
10.1109/TIP.2005.863956
10.1109/TMI.2011.2165342
10.1109/34.368173
10.5566/ias.v27.p87-95
10.1016/j.patcog.2015.04.019
10.1007/3-540-45783-6_17
10.1002/cpa.3160420503
10.1090/conm/445/08602
10.1109/TIP.2008.2002304
10.1109/36.951105
10.1007/s11042‐015‐2977‐7
10.1007/BF00133570
10.1109/ICIP.2010.5651554
ContentType Journal Article
Copyright Copyright © 2016 John Wiley & Sons, Ltd.
Copyright © 2017 John Wiley & Sons, Ltd.
Copyright_xml – notice: Copyright © 2016 John Wiley & Sons, Ltd.
– notice: Copyright © 2017 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1002/cpe.3927
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
CrossRef
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1532-0634
EndPage n/a
ExternalDocumentID 10_1002_cpe_3927
CPE3927
Genre article
GrantInformation_xml – fundername: JSPS KAKENHI
  funderid: No.13J10713; 15F15077
– fundername: Key Laboratory of Marine Geology and Environment of CAS
  funderid: No.MGE2015KG02
– fundername: State Key Laboratory of Marine Geology at Tongji University
  funderid: (MGK1608)
– fundername: State Key Laboratory of Ocean Engineering at Shanghai Jiaotong University
  funderid: (1315;1510)
GroupedDBID .3N
.DC
.GA
05W
0R~
10A
1L6
1OC
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ACAHQ
ACCFJ
ACCZN
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
HGLYW
HHY
HZ~
IX1
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
SUPJJ
TN5
UB1
V2E
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
WZISG
XG1
XV2
~IA
~WT
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c3267-8744ef83d552d6b9d8a7e8efb41cf6ca68dab669e7a9c5a5630c88fa07daa40b3
IEDL.DBID 33P
ISSN 1532-0626
IngestDate Fri Aug 16 06:57:51 EDT 2024
Thu Oct 10 17:06:51 EDT 2024
Fri Aug 23 01:52:41 EDT 2024
Sat Aug 24 00:47:12 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3267-8744ef83d552d6b9d8a7e8efb41cf6ca68dab669e7a9c5a5630c88fa07daa40b3
Notes Present address: School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1922448762
PQPubID 2045170
PageCount 10
ParticipantIDs proquest_miscellaneous_1884109589
proquest_journals_1922448762
crossref_primary_10_1002_cpe_3927
wiley_primary_10_1002_cpe_3927_CPE3927
PublicationCentury 2000
PublicationDate 25 March 2017
PublicationDateYYYYMMDD 2017-03-25
PublicationDate_xml – month: 03
  year: 2017
  text: 25 March 2017
  day: 25
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Concurrency and computation
PublicationYear 2017
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2007; 445
1989; 42
1989; 1
1997; 22
1995; 17
2010
2002; 50
2000; 22
2006; 15
2008; 17
2005
2004
2012; 31
1988; 1
2011; 103
2015; 48
2002; 2449
2013; 35
2008; 27
2011; 20
2016
2015
2001; 39
2012; 21
2016; 46
2001; 10
e_1_2_9_30_1
e_1_2_9_11_1
e_1_2_9_10_1
e_1_2_9_13_1
e_1_2_9_12_1
e_1_2_9_15_1
e_1_2_9_14_1
e_1_2_9_17_1
e_1_2_9_16_1
e_1_2_9_19_1
e_1_2_9_18_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_21_1
e_1_2_9_24_1
e_1_2_9_23_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_27_1
e_1_2_9_29_1
References_xml – volume: 103
  start-page: 695
  year: 2011
  end-page: 699
  article-title: Proposal of fast implicit level set scheme for medical image segmentation using the Chan and Vese model
  publication-title: Applied Mechanics and Materials
– year: 2005
– volume: 48
  start-page: 2983
  issue: 10
  year: 2015
  end-page: 2992
  article-title: CRF learning with CNN features for image segmentation
  publication-title: Pattern Recognition
– volume: 42
  start-page: 577
  issue: 5
  year: 1989
  end-page: 685
  article-title: Optimal approximation by piecewise smooth function and associated variational problems
  publication-title: Communications on Pure and Applied Mathematics
– volume: 31
  start-page: 103
  issue: 1
  year: 2012
  end-page: 116
  article-title: Robust student's‐t mixture model with spatial constraints and its application in medical image segmentation
  publication-title: IEEE Transactions on Medical Imaging
– volume: 50
  start-page: 271
  issue: 3
  year: 2002
  end-page: 293
  article-title: A multiphase level set framework for image segmentation using the Mumford–Shah model
  publication-title: International Journal of Computer Vision
– volume: 20
  start-page: 2007
  issue: 7
  year: 2011
  end-page: 2016
  article-title: A level set method for image segmentation in the presence of intensity inhomogence ities with application to MRI
  publication-title: IEEE Transactions on Image Processing
– start-page: 576
  year: 2004
  end-page: 579
– volume: 22
  start-page: 888
  issue: 8
  year: 2000
  end-page: 905
  article-title: Normalized cuts and image segmentation
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 2449
  start-page: 133
  year: 2002
  end-page: 140
  article-title: Fast implicit active contour models, pattern recognition
  publication-title: Lecture Notes in Computer Science
– volume: 17
  start-page: 158
  issue: 2
  year: 1995
  end-page: 175
  article-title: Shape modeling with front propagation: a level set approach
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– start-page: 430
  year: 2005
  end-page: 436
– volume: 27
  start-page: 87
  issue: 2
  year: 2008
  end-page: 95
  article-title: Blind contrast restoration assessment by gradient radioing at visible edges
  publication-title: Image Analysis & Stereology
– volume: 21
  start-page: 946
  issue: 3
  year: 2012
  end-page: 957
  article-title: Image segmentation based on the Poincare map method
  publication-title: IEEE Transactions on Image Processing
– volume: 17
  start-page: 1940
  issue: 10
  year: 2008
  end-page: 1949
  article-title: Minimization of region‐scalable fitting energy for image segmentation
  publication-title: IEEE Transactions on Image Processing
– volume: 445
  start-page: 207
  year: 2007
  end-page: 223
  article-title: Additive and multiplicative piecewise‐smooth segmentation models in functional minimization approach
  publication-title: Contemporary Mathematics
– start-page: 4105
  year: 2010
  end-page: 4108
– volume: 1
  start-page: 321
  issue: 1
  year: 1988
  end-page: 331
  article-title: Snakes: active contour models
  publication-title: International Journal of Computer Vision
– volume: 15
  start-page: 1171
  issue: 5
  year: 2006
  end-page: 1181
  article-title: A binary level set model and some application to Mumford–Shah image segmentation
  publication-title: IEEE Transactions on Image Processing
– volume: 1
  start-page: 541
  issue: 4
  year: 1989
  end-page: 551
  article-title: Backpropagation applied to handwritten zip code recognition
  publication-title: Neural Computation
– volume: 35
  start-page: 1480
  issue: 6
  year: 2013
  end-page: 1494
  article-title: Single image vignetting correction from gradient distribution symmetries
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– start-page: 1
  year: 2015
  end-page: 16
  article-title: Single image dehazing through improved atmospheric light estimation
  publication-title: Multimedia Tools and Applications
– volume: 22
  start-page: 61
  issue: 1
  year: 1997
  end-page: 79
  article-title: Geodesic active contours
  publication-title: International Journal of Computer Vision
– volume: 46
  start-page: 546
  issue: 2
  year: 2016
  end-page: 557
  article-title: A level set approach to image segmentation with intensity inhomogeneity
  publication-title: IEEE Transactions on Cybernetics
– start-page: 79
  year: 2010
  end-page: 82
– start-page: 1
  year: 2016
  end-page: 8
– volume: 39
  start-page: 2080
  issue: 9
  year: 2001
  end-page: 2083
  article-title: Detection of small objects from high‐resolution panchromatic satellite imagery based on supervised image segmentation
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
– volume: 10
  start-page: 266
  issue: 2
  year: 2001
  end-page: 277
  article-title: Active contours without edges
  publication-title: IEEE Transactions on Image Processing
– ident: e_1_2_9_26_1
  doi: 10.1109/TPAMI.2012.210
– ident: e_1_2_9_25_1
– ident: e_1_2_9_18_1
  doi: 10.1162/neco.1989.1.4.541
– ident: e_1_2_9_27_1
  doi: 10.1109/TCYB.2015.2409119
– ident: e_1_2_9_23_1
  doi: 10.1109/CVPR.2016.348
– ident: e_1_2_9_2_1
  doi: 10.1109/34.868688
– ident: e_1_2_9_5_1
  doi: 10.1109/ICICIP.2010.5564346
– ident: e_1_2_9_21_1
  doi: 10.4028/www.scientific.net/AMM.103.695
– ident: e_1_2_9_28_1
  doi: 10.1109/TIP.2011.2146190
– ident: e_1_2_9_6_1
  doi: 10.1109/TIP.2011.2168408
– ident: e_1_2_9_14_1
  doi: 10.1023/A:1020874308076
– ident: e_1_2_9_16_1
– ident: e_1_2_9_19_1
– ident: e_1_2_9_12_1
  doi: 10.1109/83.902291
– ident: e_1_2_9_8_1
  doi: 10.1023/A:1007979827043
– ident: e_1_2_9_10_1
  doi: 10.1109/TIP.2005.863956
– ident: e_1_2_9_4_1
  doi: 10.1109/TMI.2011.2165342
– ident: e_1_2_9_9_1
  doi: 10.1109/34.368173
– ident: e_1_2_9_22_1
  doi: 10.5566/ias.v27.p87-95
– ident: e_1_2_9_24_1
  doi: 10.1016/j.patcog.2015.04.019
– ident: e_1_2_9_17_1
  doi: 10.1007/3-540-45783-6_17
– ident: e_1_2_9_13_1
  doi: 10.1002/cpa.3160420503
– ident: e_1_2_9_15_1
  doi: 10.1090/conm/445/08602
– ident: e_1_2_9_11_1
  doi: 10.1109/TIP.2008.2002304
– ident: e_1_2_9_3_1
  doi: 10.1109/36.951105
– ident: e_1_2_9_30_1
  doi: 10.1007/s11042‐015‐2977‐7
– ident: e_1_2_9_7_1
  doi: 10.1007/BF00133570
– ident: e_1_2_9_20_1
  doi: 10.1109/ICIP.2010.5651554
– ident: e_1_2_9_29_1
SSID ssj0011031
Score 2.575985
Snippet Summary Wound area changes over multiple weeks are highly predictive of the wound healing process. A big data eHealth system would be very helpful in...
Summary Wound area changes over multiple weeks are highly predictive of the wound healing process. A big data eHealth system would be very helpful in...
Wound area changes over multiple weeks are highly predictive of the wound healing process. A big data eHealth system would be very helpful in evaluating these...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Publisher
StartPage np
SubjectTerms Algorithms
Artificial neural networks
Barriers
big data
Color
Complexity
Data management
Distortion
eHealth analysis system
Illumination
illumination correction
Image quality
Image segmentation
Inhomogeneity
Injury analysis
level set model
Lighting
Mathematical analysis
Mathematical models
Methods
Smoothness
Spectra
Splitting
State of the art
Wound healing
Title Wound intensity correction and segmentation with convolutional neural networks
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcpe.3927
https://www.proquest.com/docview/1922448762
https://search.proquest.com/docview/1884109589
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagEwtvRKEgIyG2qInr-MGGSqtOVSVAsEV-BTGQVqQd-Pfc5dHCgITE5MFOHF3ufJ_Pvu8Iuc6tsjrOk0jqHEM3QUbGJknEjBGp5hzsD_OdJw9y-qLuR0iTc9vmwtT8EOuAG1pGtV6jgRtb9jekoW4RYMPOMJEcSZswe2MwWx8gYPWCmiqVRTGA9pZ3Nmb99sGfnmgDL7-D1MrLjPf-8337ZLfBlvSuVoYDshWKQ7LX1m2gjRkfkekz1lKib_Xt9eUndViio0pwoAY6yvD63qQkFRQDtRTvpjc6ChMgB2bVVDfIy2PyNB49DidRU1chcgDWwClJzkOuBj5NmRdWe2VkUCG3PHG5cEYob6wQOkijXWqQQcwplZtYemN4bAcnpFPMi3BKqDcyN054oRONO1GdcgZroHLMApb0qkuuWhlni5o-I6uJklkGAspQQF3Sa4WfNQZUZgA8AXjgUg2vWHeD6uN5hinCfAVjlOIJTKl0l9xUv-LXObLhbITt2V8HnpMdhg48HkQs7ZHO8mMVLsh26VeXlaJ9AZ951sA
link.rule.ids 315,783,787,1409,27936,27937,46067,46491
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB58HPTiW1yfFcRb2TZN88CTrCsr6iK4oreS5iEe7Ip1D_57M33s6kEQPOWQtCnTmcyXSeYbgBOXi1xGLg65dBi6sTxUeRyHRCmWSkq9_WG-8-CeD5_ERR9pcs7aXJiaH2IacEPLqNZrNHAMSHdnrKH6zfodO-HzsEgZlWiVSXI3PULA-gU1WSoJIw_bW-bZiHTbJ3_6ohnA_A5TKz9zufqvL1yDlQZeBue1PqzDnC02YLUt3RA0lrwJw0cspxS81BfYPz4DjVU6qhyHQPmO0j6_NllJRYCx2gCvpzdq6idAGsyqqS6Rl1vwcNkf9QZhU1oh1B6veb_EKbVOJCZNiWG5NEJxK6zLaawd04oJo3LGpOVK6lQhiZgWwqmIG6VolCfbsFCMC7sDgVHcKc0Mk7HEzahMKfHLoNAk93DSiA4ct0LO3moGjazmSiaZF1CGAurAfiv9rLGhMvPY02MPXK39K6bdXvvxSEMVdjzxY4SgsZ9SyA6cVv_i1zmy3l0f292_DjyCpcHo9ia7uRpe78EyQX8eJSFJ92Hh431iD2C-NJPDSuu-ACPA2uE
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB58gHjxLa7PCuKtbJumTeJNdBdFWRZU9FbSPMSDdXHdg__emT529SAInnJI2pTpTObLJPMNwIkvZKEiH4dCeQrdOBHqIo5DpnWWKs7R_ijf-epODJ7kZY9ocs7aXJiaH2IacCPLqNZrMvCR9d0ZaagZOdywMzEPixxROG28kmQ4PUGg8gU1VyoLI0TtLfFsxLrtkz9d0QxffkeplZvpr_7nA9dgpQGXwXmtDesw58oNWG0LNwSNHW_C4JGKKQUv9fX1j8_AUI2OKsMh0Ngxds-vTU5SGVCkNqDL6Y2S4gREglk11RXy8RY89Hv3F1dhU1ghNIjW0CsJzp2XiU1TZrNCWamFk84XPDY-MzqTVhdZppzQyqSaKMSMlF5HwmrNoyLZhoXyrXQ7EFgtvDaZzVSsaCuqUs5wEZSGFQgmrezAcSvjfFTzZ-Q1UzLLUUA5CagD-63w88aCxjkiT0QetFbjK6bdqPt0oKFL9zbBMVLyGKeUqgOn1a_4dY78YtijdvevA49gaXjZz2-vBzd7sMzImUdJyNJ9WPh4n7gDmB_byWGlc1-2_tmQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wound+intensity+correction+and+segmentation+with+convolutional+neural+networks&rft.jtitle=Concurrency+and+computation&rft.au=Lu%2C+Huimin&rft.au=Li%2C+Bin&rft.au=Zhu%2C+Junwu&rft.au=Li%2C+Yujie&rft.date=2017-03-25&rft.issn=1532-0626&rft.eissn=1532-0634&rft.volume=29&rft.issue=6&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fcpe.3927&rft.externalDBID=10.1002%252Fcpe.3927&rft.externalDocID=CPE3927
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1532-0626&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1532-0626&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1532-0626&client=summon