Walking on Virtual Surface Patterns Leads to Changed Control Strategies

Inclusive design does not stop at removing physical obstacles such as staircases. It also involves identifying architectural features that impose sensory burdens, such as repetitive visual patterns that are known to potentially cause dizziness or visual discomfort. In order to assess their influence...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Vol. 24; no. 16; p. 5242
Main Authors: Stasica, Maximilian, Honekamp, Celine, Streiling, Kai, Penacchio, Olivier, van Dam, Loes, Seyfarth, André
Format: Journal Article
Language:English
Published: Switzerland MDPI AG 13-08-2024
MDPI
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Inclusive design does not stop at removing physical obstacles such as staircases. It also involves identifying architectural features that impose sensory burdens, such as repetitive visual patterns that are known to potentially cause dizziness or visual discomfort. In order to assess their influence on human gait and its stability, three repetitive patterns-random dots, repetitive stripes, and repetitive waves (Lisbon pattern)-were displayed in a coloured and greyscale variant in a virtual reality (VR) environment. The movements of eight participants were recorded using a motion capture system and electromyography (EMG). During all test conditions, a significant increase in the muscular activity of leg flexor muscles was identified just before touchdown. Further, an increase in the activity of laterally stabilising muscles during the swing phase was observed for all of the test conditions. The lateral and vertical centre of mass (CoM) deviation was statistically evaluated using a linear mixed model (LMM). The patterns did cause a significant increase in the CoM excursion in the vertical direction but not in the lateral direction. These findings are indicative of an inhibited and more cautious gait style and a change in control strategy. Furthermore, we quantified the induced discomfort by using both algorithmic estimates and self-reports. The Fourier-based methods favoured the greyscaled random dots over repetitive stripes. The colour metric favoured the striped pattern over the random dots. The participants reported that the wavey Lisbon pattern was the most disruptive. For architectural and structural design, this study indicates (1) that highly repetitive patterns should be used with care in consideration of their impact on the human visuomotor system and its behavioural effects and (2) that coloured patterns should be used with greater caution than greyscale patterns.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1424-8220
1424-8220
DOI:10.3390/s24165242