The faulty SOS response of Pseudomonas putida KT2440 stems from an inefficient RecA‐LexA interplay

Summary Despite its environmental robustness Pseudomonas putida strain KT2440 is very sensitive to DNA damage and displays poor homologous recombination efficiencies. To gain an insight into this deficiency isogenic ∆recA and ∆lexA1 derivatives of prophage‐free strain P. putida EM173 were generated...

Full description

Saved in:
Bibliographic Details
Published in:Environmental microbiology Vol. 23; no. 3; pp. 1608 - 1619
Main Authors: Akkaya, Özlem, Aparicio, Tomás, Pérez‐Pantoja, Danilo, Lorenzo, Víctor
Format: Journal Article
Language:English
Published: Hoboken, USA John Wiley & Sons, Inc 01-03-2021
Wiley Subscription Services, Inc
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Summary Despite its environmental robustness Pseudomonas putida strain KT2440 is very sensitive to DNA damage and displays poor homologous recombination efficiencies. To gain an insight into this deficiency isogenic ∆recA and ∆lexA1 derivatives of prophage‐free strain P. putida EM173 were generated and responses of the recA and lexA1 promoters to DNA damage tested with GFP reporter technology. Basal expression of recA and lexA1 of P. putida were high in the absence of DNA damage and only moderately induced by norfloxacin. A similar behaviour was observed when equivalent GFP fusions to the recA and lexA promoters of E. coli were placed in P. putida EM173. In contrast, all SOS promoters were subject to strong repression in E. coli, which was released only when cells were treated with the antibiotic. Replacement of P. putida's native LexA1 and RecA by E. coli homologues did not improve the responsiveness of the indigenous functions to DNA damage. Taken together, it seems that P. putida fails to mount a strong SOS response due to the inefficacy of the crucial RecA‐LexA interplay largely tractable to the weakness of the corresponding promoters and the inability of the repressor to shut them down entirely in the absence of DNA damage.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1462-2912
1462-2920
DOI:10.1111/1462-2920.15384