Magnetic Actuation Systems for Miniature Robots: A Review
A magnetic field, which is transparent and relatively safe to biological tissue, is a powerful tool for remote actuation and wireless control of magnetic devices. Furthermore, miniature robots can access complex and narrow regions of the human body as well as manipulate down to subcellular entities;...
Saved in:
Published in: | Advanced intelligent systems Vol. 2; no. 9 |
---|---|
Main Authors: | , |
Format: | Journal Article |
Language: | English |
Published: |
Wiley
01-09-2020
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | A magnetic field, which is transparent and relatively safe to biological tissue, is a powerful tool for remote actuation and wireless control of magnetic devices. Furthermore, miniature robots can access complex and narrow regions of the human body as well as manipulate down to subcellular entities; however, integrating onboard components is difficult due to their limited size. Combining these two technologies, magnetic miniature robots have undergone rapid development during the past two decades, mainly because of their high potential in medical and bioengineering applications. To improve the scientific and clinical outcomes of these tiny agents, developing suitable and reliable actuation systems is essential. As a newly emerging field that has progressed in recent years, magnetic actuation systems offer a harmless and effective approach for the remote control of miniature robots via a dynamic magnetic field. Herein, a review on the state‐of‐the‐art magnetic actuation systems for miniature robots is presented with the goal of providing readers with a better understanding of magnetic actuation and guidance for future system design.
Magnetic miniature robots have shown potential in medical and bioengineering applications. To improve their scientific and clinical outcomes, developing suitable and reliable actuation systems is essential. Herein, a review on the state‐of‐the‐art magnetic actuation systems for miniature robots is presented with the goal of providing readers a better understanding of magnetic actuation and guidance for future system design. |
---|---|
AbstractList | A magnetic field, which is transparent and relatively safe to biological tissue, is a powerful tool for remote actuation and wireless control of magnetic devices. Furthermore, miniature robots can access complex and narrow regions of the human body as well as manipulate down to subcellular entities; however, integrating onboard components is difficult due to their limited size. Combining these two technologies, magnetic miniature robots have undergone rapid development during the past two decades, mainly because of their high potential in medical and bioengineering applications. To improve the scientific and clinical outcomes of these tiny agents, developing suitable and reliable actuation systems is essential. As a newly emerging field that has progressed in recent years, magnetic actuation systems offer a harmless and effective approach for the remote control of miniature robots via a dynamic magnetic field. Herein, a review on the state‐of‐the‐art magnetic actuation systems for miniature robots is presented with the goal of providing readers with a better understanding of magnetic actuation and guidance for future system design. A magnetic field, which is transparent and relatively safe to biological tissue, is a powerful tool for remote actuation and wireless control of magnetic devices. Furthermore, miniature robots can access complex and narrow regions of the human body as well as manipulate down to subcellular entities; however, integrating onboard components is difficult due to their limited size. Combining these two technologies, magnetic miniature robots have undergone rapid development during the past two decades, mainly because of their high potential in medical and bioengineering applications. To improve the scientific and clinical outcomes of these tiny agents, developing suitable and reliable actuation systems is essential. As a newly emerging field that has progressed in recent years, magnetic actuation systems offer a harmless and effective approach for the remote control of miniature robots via a dynamic magnetic field. Herein, a review on the state‐of‐the‐art magnetic actuation systems for miniature robots is presented with the goal of providing readers with a better understanding of magnetic actuation and guidance for future system design. Magnetic miniature robots have shown potential in medical and bioengineering applications. To improve their scientific and clinical outcomes, developing suitable and reliable actuation systems is essential. Herein, a review on the state‐of‐the‐art magnetic actuation systems for miniature robots is presented with the goal of providing readers a better understanding of magnetic actuation and guidance for future system design. |
Author | Yang, Zhengxin Zhang, Li |
Author_xml | – sequence: 1 givenname: Zhengxin surname: Yang fullname: Yang, Zhengxin organization: The Chinese University of Hong Kong – sequence: 2 givenname: Li orcidid: 0000-0003-1152-8962 surname: Zhang fullname: Zhang, Li email: lizhang@cuhk.edu.hk organization: The Chinese University of Hong Kong |
BookMark | eNqFkE9PAjEQxRuDiYhcPe8XWGynZbv1Roh_SCAmoAdPzWzbJSWwNdtFst_eRQx6cy4zmbz3S967Jr0qVI6QW0ZHjFK4Qx_bEVCg3eRwQfqQCZqKcSZ7f-4rMoxx00mASUZB9ola4LpyjTfJxDR7bHyoklUbG7eLSRnqZOErj82-dskyFKGJ98kkWbpP7w435LLEbXTDnz0gb48Pr9PndP7yNJtO5qnhMIbUCORSKpEDK6XlAMgVBSsAGOOGFegYlAqLUkgrC-RgXZ4plktjrWAg-IDMTlwbcKM_ar_DutUBvf5-hHqtse4CbJ1GoXhBnUCJTighMLOqzHPOXa4KOzYda3RimTrEWLvyzGNUH3vUxx71ucfOoE6Gg9-69h-1nsxW77_eLzY7dyo |
CitedBy_id | crossref_primary_10_1002_adhm_202400414 crossref_primary_10_1021_acs_chemrev_1c00481 crossref_primary_10_1021_acsnano_3c01609 crossref_primary_10_1002_smll_202308580 crossref_primary_10_1002_adom_202202201 crossref_primary_10_1109_TMECH_2021_3054927 crossref_primary_10_3390_cells10102708 crossref_primary_10_3390_mi15060798 crossref_primary_10_1109_LRA_2021_3057295 crossref_primary_10_1002_adfm_202300156 crossref_primary_10_1017_S0263574722000662 crossref_primary_10_1109_LRA_2024_3374192 crossref_primary_10_1002_aisy_202300700 crossref_primary_10_1038_s41467_021_25386_w crossref_primary_10_1002_aisy_202300267 crossref_primary_10_1021_acsami_4c04586 crossref_primary_10_1002_adfm_202404097 crossref_primary_10_1002_adfm_202110625 crossref_primary_10_1002_smsc_202300211 crossref_primary_10_3390_mi14091656 crossref_primary_10_1002_smtd_202100230 crossref_primary_10_1016_j_mtsust_2022_100196 crossref_primary_10_1007_s11071_023_08947_0 crossref_primary_10_1017_pma_2023_6 crossref_primary_10_1109_TCPMT_2022_3185972 crossref_primary_10_1002_adhm_202102529 crossref_primary_10_1016_j_jmmm_2024_171969 crossref_primary_10_1021_accountsmr_3c00227 crossref_primary_10_1073_pnas_2021922118 crossref_primary_10_1002_mp_15976 crossref_primary_10_1557_s43577_023_00644_y crossref_primary_10_1002_adma_202201051 crossref_primary_10_1109_TIE_2023_3331073 crossref_primary_10_3390_mi14081604 crossref_primary_10_3390_mi14081607 crossref_primary_10_34133_cbsystems_0109 crossref_primary_10_1002_aisy_202100144 crossref_primary_10_3389_frobt_2023_1281362 crossref_primary_10_1002_aisy_202300093 crossref_primary_10_1109_LRA_2024_3349810 crossref_primary_10_3390_robotics13030039 crossref_primary_10_1007_s43154_022_00085_6 crossref_primary_10_1109_JPROC_2022_3165713 crossref_primary_10_1109_LRA_2023_3243801 crossref_primary_10_1007_s12213_023_00163_8 crossref_primary_10_34133_cbsystems_0083 crossref_primary_10_1016_j_cmpb_2023_107646 crossref_primary_10_21869_2223_1528_2024_14_1_46_58 crossref_primary_10_1002_aisy_202300325 crossref_primary_10_1021_acsnano_2c10127 crossref_primary_10_1109_TMECH_2021_3121267 crossref_primary_10_1002_adma_202212202 crossref_primary_10_1016_j_jmmm_2023_171160 crossref_primary_10_1016_j_mtbio_2020_100085 crossref_primary_10_1002_aisy_202100116 crossref_primary_10_1002_pol_20230496 crossref_primary_10_3390_app12031033 crossref_primary_10_1002_advs_202103863 crossref_primary_10_1016_j_tibtech_2022_09_003 crossref_primary_10_1557_s43580_023_00585_3 crossref_primary_10_1016_j_chempr_2024_04_018 crossref_primary_10_1063_5_0137857 crossref_primary_10_3389_frobt_2023_1330960 crossref_primary_10_1016_j_xcrp_2023_101639 crossref_primary_10_1021_acs_chemrev_0c01234 crossref_primary_10_3389_fnins_2021_736730 crossref_primary_10_1063_9_0000648 crossref_primary_10_3390_magnetochemistry9050129 crossref_primary_10_1016_j_snb_2021_130589 crossref_primary_10_1021_acsami_2c16457 crossref_primary_10_1088_1361_6439_ac85fc crossref_primary_10_3390_ijms22105266 crossref_primary_10_1016_j_cej_2021_133971 crossref_primary_10_1002_adfm_202211280 crossref_primary_10_1109_LRA_2021_3104620 crossref_primary_10_3390_biomimetics8030269 crossref_primary_10_1109_LRA_2022_3182105 crossref_primary_10_1016_j_bios_2021_113690 crossref_primary_10_1002_adma_202002047 crossref_primary_10_1109_LRA_2024_3412637 crossref_primary_10_1007_s41315_024_00323_4 crossref_primary_10_1016_j_mechatronics_2022_102830 crossref_primary_10_3390_mi15040468 crossref_primary_10_3390_pharmaceutics14102093 crossref_primary_10_1109_LRA_2024_3366018 crossref_primary_10_1109_ACCESS_2022_3197632 crossref_primary_10_1109_TIE_2022_3153809 crossref_primary_10_1002_admt_202300773 crossref_primary_10_3389_fncel_2022_954912 crossref_primary_10_1126_scirobotics_abh0286 crossref_primary_10_1016_j_eml_2021_101268 crossref_primary_10_1039_D1SM00127B crossref_primary_10_1109_TRO_2023_3339529 crossref_primary_10_1002_adhm_202001596 crossref_primary_10_1002_adma_202311462 crossref_primary_10_1089_soro_2022_0202 crossref_primary_10_1039_D2LC00573E crossref_primary_10_1002_marc_202400282 crossref_primary_10_1109_LRA_2023_3322094 crossref_primary_10_1109_ACCESS_2023_3264464 crossref_primary_10_3390_mi13101763 crossref_primary_10_1109_TIM_2022_3232168 crossref_primary_10_1002_adma_202402482 crossref_primary_10_1016_j_actbio_2022_10_019 crossref_primary_10_1088_1361_6439_ac9f51 crossref_primary_10_17780_ksujes_1137806 crossref_primary_10_3762_bjnano_12_58 crossref_primary_10_1002_nano_202100353 crossref_primary_10_1021_acs_chemrev_3c00356 crossref_primary_10_1038_s41467_023_42783_5 crossref_primary_10_1093_pnasnexus_pgad297 crossref_primary_10_1109_TMRB_2020_3033020 crossref_primary_10_1016_j_jmmm_2022_170159 crossref_primary_10_1002_adma_202310084 crossref_primary_10_1016_j_cej_2024_153085 crossref_primary_10_1038_s44182_024_00008_x crossref_primary_10_1021_acsami_2c04745 crossref_primary_10_1002_smtd_202201547 crossref_primary_10_1002_aisy_202000211 crossref_primary_10_1016_j_ijmecsci_2022_107516 crossref_primary_10_1002_advs_202305128 crossref_primary_10_1016_j_cocis_2022_101642 crossref_primary_10_1038_s41467_022_31900_5 crossref_primary_10_1109_LRA_2023_3280814 crossref_primary_10_1109_TMECH_2022_3221272 crossref_primary_10_1021_acs_chemrev_0c00999 crossref_primary_10_3390_biomimetics9060340 crossref_primary_10_1109_LRA_2021_3061376 crossref_primary_10_1016_j_matt_2021_10_010 crossref_primary_10_1016_j_matdes_2021_110172 crossref_primary_10_1016_j_progpolymsci_2024_101847 crossref_primary_10_1016_j_sna_2024_115365 crossref_primary_10_3390_mi13101756 crossref_primary_10_1002_adem_202301000 crossref_primary_10_1038_s42256_023_00779_2 crossref_primary_10_3390_machines11070738 crossref_primary_10_3390_act9040131 crossref_primary_10_1038_s41467_022_35212_6 crossref_primary_10_1002_admt_202301003 crossref_primary_10_1002_advs_202202278 crossref_primary_10_1063_5_0189185 crossref_primary_10_1002_rcs_2384 crossref_primary_10_1021_acsnanoscienceau_4c00002 crossref_primary_10_1088_1748_605X_ac8b4b crossref_primary_10_1039_D3NR02535G crossref_primary_10_1109_LRA_2024_3382485 crossref_primary_10_1109_TMECH_2023_3297722 crossref_primary_10_1016_j_mechmachtheory_2023_105353 crossref_primary_10_1016_j_jmmm_2021_168976 crossref_primary_10_1109_ACCESS_2021_3113765 crossref_primary_10_1007_s10439_023_03163_8 crossref_primary_10_1002_aisy_202300483 crossref_primary_10_1088_1748_3190_ac114a crossref_primary_10_3389_frobt_2022_1027415 crossref_primary_10_1126_sciadv_abq1677 crossref_primary_10_1002_advs_202301033 crossref_primary_10_1002_aisy_202100279 crossref_primary_10_1016_j_measurement_2022_112391 crossref_primary_10_1002_aisy_202200130 crossref_primary_10_3389_frobt_2024_1392297 crossref_primary_10_1109_LRA_2022_3190830 crossref_primary_10_3390_mi14040724 crossref_primary_10_1002_adhm_202100801 crossref_primary_10_17482_uumfd_1137071 crossref_primary_10_1007_s12213_024_00170_3 crossref_primary_10_2174_1574885518666230726123433 crossref_primary_10_1126_sciadv_abn3431 crossref_primary_10_1016_j_engreg_2023_08_001 crossref_primary_10_1088_1361_665X_ad2bd8 crossref_primary_10_1002_advs_202302077 crossref_primary_10_1016_j_apmt_2022_101423 crossref_primary_10_1002_aisy_202300751 crossref_primary_10_1109_LRA_2022_3148785 crossref_primary_10_1080_13645706_2023_2198004 crossref_primary_10_3390_mi12040465 crossref_primary_10_1016_j_mtcomm_2024_109134 |
Cites_doi | 10.1126/scirobotics.aam6431 10.1109/TMECH.2018.2876617 10.1039/C2NR32554C 10.1038/545406a 10.1177/0278364915583539 10.1109/TASC.2005.849580 10.1146/annurev-control-081219-082713 10.1002/adfm.201403891 10.1109/TMAG.2014.2303784 10.1109/TRO.2014.2380591 10.1038/s41467-018-05749-6 10.1002/adhm.201900213 10.1109/LRA.2019.2902742 10.1007/s12541-009-0068-2 10.1038/s41578-018-0001-3 10.1016/j.jmmm.2017.05.001 10.1039/C0NR00566E 10.21037/qims.2018.06.07 10.1109/TNANO.2018.2815978 10.1097/MCG.0000000000000110 10.1586/erd.09.32 10.1002/adfm.201400275 10.1177/1756283X16633052 10.3390/mi10060370 10.1126/science.288.5475.2335 10.1590/S0103-97332006000100004 10.1016/j.sna.2009.11.011 10.1002/adma.201301484 10.1109/LRA.2019.2931234 10.1177/0278364912472381 10.1109/TMECH.2019.2907656 10.1073/pnas.0807698106 10.1109/TMAG.2008.2002505 10.1089/soro.2018.0171 10.1109/TRO.2010.2073030 10.1109/MRA.2017.2787784 10.1126/scirobotics.aav4317 10.1163/016918611X568620 10.1109/TMECH.2014.2362117 10.1039/C6LC01435F 10.1109/TMECH.2017.2743021 10.1126/scirobotics.aax7329 10.1002/9783527610174 10.1007/s00464-011-2054-x 10.1126/scirobotics.aar7650 10.1063/1.3291112 10.1016/j.apmt.2017.04.006 10.1002/adma.201103818 10.1177/0278364914558006 10.1109/TMECH.2019.2893166 10.1016/j.cgh.2016.05.013 10.1109/TRO.2014.2300591 10.1002/adfm.201870174 10.1002/aisy.201900086 10.1177/0278364906065389 10.1016/j.robot.2018.05.002 10.1089/soro.2018.0019 10.1002/cmr.a.20163 10.1016/j.gie.2010.06.016 10.1039/C7LC00064B 10.1080/15599612.2016.1166305 10.1016/j.mechatronics.2010.09.001 10.1126/sciadv.aau9650 10.1177/0278364909353351 10.1109/TRO.2013.2289019 10.1007/s10404-011-0903-5 10.1038/s41598-018-22110-5 10.1007/s11701-011-0332-1 10.1109/TBME.2019.2939419 10.1118/1.3622599 10.1177/0278364918801502 10.1126/scirobotics.aav8006 10.1016/j.recesp.2012.10.003 10.1038/s41467-019-10549-7 10.1109/TMECH.2019.2910269 10.1038/nmat3090 10.1126/scirobotics.aaq1155 10.1109/TRO.2016.2623339 10.1109/TMAG.2010.2040144 10.1055/s-0029-1243808 10.1016/j.sna.2011.08.020 10.1109/TRO.2016.2638446 10.1038/nnano.2016.137 10.1038/nature04090 10.1021/nl2032487 10.1109/TRO.2011.2163861 10.1007/s10334-010-0214-y 10.1073/pnas.0500807102 10.1063/1.4826141 10.1007/s40846-015-0055-2 10.1126/scirobotics.aav4494 10.1118/1.2750963 10.1142/S2424905X18500022 10.1109/MRA.2007.380641 10.1148/radiol.14132041 10.1177/0278364920903107 10.1002/aisy.201900110 10.1109/LRA.2018.2863358 10.1038/s41586-018-0185-0 10.1109/JSEN.2007.912552 10.1021/nn101861n 10.1021/acsnano.7b08344 10.1118/1.4939228 10.1002/mp.12299 10.1016/j.sna.2010.04.037 10.1002/aisy.202070052 10.1038/s41578-018-0016-9 10.1109/LRA.2019.2894907 10.1109/TRO.2015.2424051 10.3390/mi10020104 10.1002/aisy.201900069 10.1038/s41467-018-06491-9 10.1109/LRA.2018.2846800 10.1109/TRO.2013.2257581 10.1063/1.3079655 10.1109/TRO.2018.2875393 10.1109/TRO.2011.2170330 10.1177/0278364918784366 10.1109/JPROC.2014.2385105 10.1007/s11517-009-0574-5 10.1063/1.1684235 10.1038/ncomms4124 10.1109/TRO.2018.2885218 10.1038/nature25443 10.1016/j.cis.2019.04.003 10.1002/aisy.201900035 10.3390/mi6091346 10.1016/j.sna.2010.08.014 10.1109/TMAG.2012.2205014 10.1097/HP.0000000000000112 10.1109/TMAG.2019.2917370 10.1109/TRO.2017.2694841 10.1161/CIRCEP.110.959692 10.1038/s41467-019-13576-6 10.1109/TRO.2009.2028761 10.1109/TRO.2013.2281557 10.1177/0278364916683443 10.1109/TRO.2017.2719687 10.1016/j.mechmachtheory.2019.04.008 10.1017/S0263574709990361 10.1111/j.1540-8167.2007.00708.x 10.1002/adfm.201502248 10.1146/annurev-bioeng-010510-103409 |
ContentType | Journal Article |
Copyright | 2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | 24P WIN AAYXX CITATION DOA |
DOI | 10.1002/aisy.202000082 |
DatabaseName | Wiley Online Library Wiley Online Library Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: http://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2640-4567 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_a493b0e4a7ae4944a6d9f8833e89bd5c 10_1002_aisy_202000082 AISY202000082 |
Genre | article |
GrantInformation_xml | – fundername: Chinese University of Hong Kong funderid: 3133228; 4055111 – fundername: Innovation and Technology Commission funderid: MRP/036/18X; ITS/374/18FP – fundername: Research Grants Council, University Grants Committee funderid: 14218516; JLFS/E-402/18 |
GroupedDBID | 0R~ 1OC 24P AAFWJ AAHHS ACCFJ ACXQS ADKYN ADZMN ADZOD AEEZP AEQDE AFKRA AFPKN AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ARAPS ARCSS AVUZU BENPR BGLVJ CCPQU EBS EJD GROUPED_DOAJ HCIFZ IAO M~E OK1 PIMPY WIN AAYXX CITATION ITC |
ID | FETCH-LOGICAL-c3252-c4a37794821f7d322a3902d422113c1bae12f9abf47d7ba32de869187cdd41243 |
IEDL.DBID | DOA |
ISSN | 2640-4567 |
IngestDate | Tue Oct 22 15:14:40 EDT 2024 Thu Sep 26 19:49:15 EDT 2024 Sat Aug 24 01:36:39 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3252-c4a37794821f7d322a3902d422113c1bae12f9abf47d7ba32de869187cdd41243 |
ORCID | 0000-0003-1152-8962 |
OpenAccessLink | https://doaj.org/article/a493b0e4a7ae4944a6d9f8833e89bd5c |
PageCount | 18 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_a493b0e4a7ae4944a6d9f8833e89bd5c crossref_primary_10_1002_aisy_202000082 wiley_primary_10_1002_aisy_202000082_AISY202000082 |
PublicationCentury | 2000 |
PublicationDate | September 2020 2020-09-00 2020-09-01 |
PublicationDateYYYYMMDD | 2020-09-01 |
PublicationDate_xml | – month: 09 year: 2020 text: September 2020 |
PublicationDecade | 2020 |
PublicationTitle | Advanced intelligent systems |
PublicationYear | 2020 |
Publisher | Wiley |
Publisher_xml | – name: Wiley |
References | 2010; 12 2017; 439 2013; 66 2017; 03 2019; 10 2013; 61 2006; 36 1958; 56 2014; 24 2013; 5 2012; 12 2016; 35 2010; 23 2018; 6 2018; 9 2018; 8 2018; 3 2010; 26 2009; 10 2009; 94 2010; 28 2005; 102 2019; 24 2006; 25 2019; 25 2016; 43 2012; 28 2012; 26 2012; 24 2010; 4 2018; 37 2019; 8 2019; 7 2007; 18 2018; 28 2019; 4 2019; 3 2019; 5 2015; 51 2019; 2 2019; 1 2018; 107 2019; 35 2020; 39 2016; 10 2010; 163 2013; 103 2010; 161 2014; 271 2011; 4 2011; 3 2016; 14 2007; 14 2018; 25 2016; 11 2010; 42 2018; 17 2010; 48 2010; 46 2013; 74 2008; 44 2014; 30 2018; 12 2005; 15 2017; 545 2016; 9 2009; 106 2015; 35 2013; 29 2017; 2 2013; 25 2019; 55 2017; 44 2015; 31 2011; 10 2008; 8 2007; 34 2017; 9 2013; 19 1922; 61 2014; 5 2015; 49 2001 2017; 36 2017; 33 2019; 67 2010; 157 2011; 21 2000; 288 2011; 25 2014; 50 2010; 72 2010; 36A 2009; 25 2015; 6 2013; 49 2012 2010 2017; 22 2005; 437 2019; 269 2007 2011; 38 2011; 171 2009; 29 2014; 107 2015; 25 2013; 32 2017; 17 2020 2018; 558 2015; 20 2013; 30 2018; 554 2019 2018 2017 103 1970; 41 2016 2009; 6 2015 2014 2019; 139 2013 2012; 6 2010; 96 e_1_2_8_49_1 e_1_2_8_68_1 e_1_2_8_132_1 e_1_2_8_155_1 e_1_2_8_178_1 e_1_2_8_5_1 Yim S. (e_1_2_8_14_1) 2013; 61 e_1_2_8_151_1 e_1_2_8_9_1 e_1_2_8_170_1 e_1_2_8_22_1 Yang L. (e_1_2_8_38_1); 2020 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_87_1 e_1_2_8_113_1 e_1_2_8_136_1 e_1_2_8_159_1 e_1_2_8_174_1 e_1_2_8_60_1 e_1_2_8_83_1 Kim S. H. (e_1_2_8_84_1) 2013; 19 e_1_2_8_19_1 Hwang J. (e_1_2_8_24_1); 2020 e_1_2_8_109_1 e_1_2_8_15_1 Kratochvil B. E. (e_1_2_8_107_1) 2014 Hoang M. C. (e_1_2_8_91_1) 2019; 25 e_1_2_8_120_1 e_1_2_8_143_1 e_1_2_8_166_1 e_1_2_8_95_1 e_1_2_8_99_1 Heunis C. M. (e_1_2_8_126_1); 2020 e_1_2_8_105_1 e_1_2_8_128_1 e_1_2_8_181_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_101_1 e_1_2_8_124_1 e_1_2_8_147_1 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_133_1 e_1_2_8_179_1 e_1_2_8_110_1 e_1_2_8_152_1 e_1_2_8_6_1 Go G. (e_1_2_8_57_1) 2015; 51 McCaslin M. F. (e_1_2_8_26_1) 1958; 56 e_1_2_8_21_1 e_1_2_8_67_1 e_1_2_8_171_1 e_1_2_8_44_1 e_1_2_8_86_1 e_1_2_8_118_1 e_1_2_8_63_1 e_1_2_8_175_1 e_1_2_8_40_1 e_1_2_8_82_1 e_1_2_8_114_1 e_1_2_8_156_1 e_1_2_8_18_1 e_1_2_8_37_1 e_1_2_8_79_1 Filgueiras-Rama D. (e_1_2_8_117_1) 2013; 74 Nguyen K. T. (e_1_2_8_182_1) 2020 e_1_2_8_94_1 e_1_2_8_144_1 e_1_2_8_90_1 e_1_2_8_121_1 e_1_2_8_163_1 e_1_2_8_98_1 e_1_2_8_140_1 e_1_2_8_10_1 e_1_2_8_56_1 e_1_2_8_106_1 e_1_2_8_33_1 e_1_2_8_75_1 e_1_2_8_129_1 e_1_2_8_52_1 e_1_2_8_102_1 e_1_2_8_148_1 e_1_2_8_71_1 e_1_2_8_125_1 e_1_2_8_167_1 e_1_2_8_28_1 e_1_2_8_47_1 e_1_2_8_3_1 e_1_2_8_81_1 Li D. (e_1_2_8_36_1); 2020 e_1_2_8_111_1 e_1_2_8_130_1 e_1_2_8_153_1 e_1_2_8_7_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_89_1 e_1_2_8_119_1 e_1_2_8_138_1 e_1_2_8_172_1 e_1_2_8_62_1 e_1_2_8_85_1 e_1_2_8_115_1 e_1_2_8_134_1 e_1_2_8_157_1 e_1_2_8_176_1 e_1_2_8_17_1 Heilbronn A. (e_1_2_8_27_1) 1922; 61 e_1_2_8_13_1 e_1_2_8_59_1 Furlani E. P. (e_1_2_8_41_1) 2001 e_1_2_8_70_1 e_1_2_8_122_1 e_1_2_8_141_1 e_1_2_8_164_1 e_1_2_8_97_1 e_1_2_8_160_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_149_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_103_1 e_1_2_8_145_1 e_1_2_8_168_1 e_1_2_8_93_1 e_1_2_8_46_1 e_1_2_8_69_1 e_1_2_8_180_1 e_1_2_8_80_1 e_1_2_8_154_1 e_1_2_8_4_1 e_1_2_8_131_1 e_1_2_8_150_1 e_1_2_8_8_1 e_1_2_8_42_1 e_1_2_8_88_1 e_1_2_8_116_1 e_1_2_8_23_1 e_1_2_8_65_1 e_1_2_8_139_1 e_1_2_8_173_1 e_1_2_8_112_1 e_1_2_8_158_1 e_1_2_8_61_1 e_1_2_8_135_1 e_1_2_8_177_1 e_1_2_8_39_1 Ilami M. (e_1_2_8_137_1); 2020 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_58_1 Yang L. (e_1_2_8_162_1); 2020 e_1_2_8_92_1 e_1_2_8_165_1 e_1_2_8_96_1 e_1_2_8_100_1 e_1_2_8_142_1 e_1_2_8_161_1 e_1_2_8_31_1 e_1_2_8_77_1 e_1_2_8_127_1 e_1_2_8_12_1 e_1_2_8_54_1 e_1_2_8_108_1 e_1_2_8_73_1 e_1_2_8_123_1 e_1_2_8_169_1 e_1_2_8_50_1 e_1_2_8_104_1 e_1_2_8_146_1 |
References_xml | – volume: 3 start-page: 4367 year: 2018 publication-title: IEEE Robot. Autom. Lett. – volume: 14 start-page: 92 year: 2007 publication-title: IEEE Robot. Autom. Mag. – volume: 24 start-page: 505 year: 2019 publication-title: IEEE/ASME Trans. Mechatron. – volume: 49 start-page: 811 year: 2013 publication-title: IEEE Trans. Magn. – volume: 35 start-page: 428 year: 2015 publication-title: J. Med. Biol. Eng. – volume: 33 start-page: 1398 year: 2017 publication-title: IEEE Trans. Robot. – volume: 49 start-page: 101 year: 2015 publication-title: J. Clin. Gastroenterol. – volume: 4 start-page: 6228 year: 2010 publication-title: ACS Nano – volume: 161 start-page: 297 year: 2010 publication-title: Sens. Actuators A – start-page: 626 year: 2018 – start-page: 4392 year: 2016 – volume: 2 start-page: 1900086 year: 2019 publication-title: Adv. Intell. Syst. – volume: 14 start-page: 1266 year: 2016 publication-title: Clin. Gastroenterol. Hepatol. – volume: 37 start-page: 912 year: 2018 publication-title: Int. J. Robot. Res. – volume: 44 start-page: 2367 year: 2008 publication-title: IEEE Trans. Magn. – volume: 25 start-page: 1332 year: 2009 publication-title: IEEE Trans. Robot. – volume: 24 start-page: 4397 year: 2014 publication-title: Adv. Funct. Mater. – volume: 25 start-page: 1666 year: 2015 publication-title: Adv. Funct. Mater. – volume: 2020 start-page: 490 issue: 17 publication-title: IEEE Trans. Autom. Sci. Eng. – volume: 29 start-page: 1060 year: 2013 publication-title: IEEE Trans. Robot. – volume: 61 start-page: 284 year: 1922 publication-title: Jahrb. Wiss. Bot. – volume: 19 start-page: 1651 year: 2013 publication-title: IEEE/ASME Trans. Mechatron. – volume: 67 start-page: 1517 year: 2019 publication-title: IEEE Trans. Biomed. Eng. – volume: 44 start-page: e91 year: 2017 publication-title: Med. Phys. – volume: 43 start-page: 650 year: 2016 publication-title: Med. Phys. – volume: 10 start-page: 2703 year: 2019 publication-title: Nat. Commun. – volume: 30 start-page: 411 year: 2013 publication-title: IEEE Trans. Robot. – year: 2014 – volume: 41 start-page: 122 year: 1970 publication-title: Rev. Sci. Instrum. – volume: 103 start-page: 172404 year: 2013 publication-title: Appl. Phys. Lett. – volume: 5 start-page: 1259 year: 2013 publication-title: Nanoscale – volume: 33 start-page: 227 year: 2017 publication-title: IEEE Trans. Robot. – volume: 3 start-page: 57 year: 2019 publication-title: Annu. Rev. Control Robot. Autom. Syst. – volume: 31 start-page: 117 year: 2015 publication-title: IEEE Trans. Robot. – volume: 6 start-page: 54 year: 2018 publication-title: Soft Robot. – start-page: 576 year: 2010 – volume: 545 start-page: 406 year: 2017 publication-title: Nature – volume: 4 start-page: eaax7329 year: 2019 publication-title: Sci. Robot. – volume: 9 start-page: 37 year: 2017 publication-title: Appl. Mater. Today – volume: 24 start-page: 811 year: 2012 publication-title: Adv. Mater. – volume: 33 start-page: 583 year: 2017 publication-title: IEEE Trans. Robot. – volume: 1 start-page: 1900035 year: 2019 publication-title: Adv. Intell. Syst. – volume: 4 start-page: 4185 year: 2019 publication-title: IEEE Robot. Autom. Lett. – start-page: 50 year: 2018 – volume: 23 start-page: 153 year: 2010 publication-title: Magn. Reson. Mat. Phys. Biol. Med. – year: 2020 publication-title: IEEE/ASME Trans. Mechatron. – volume: 24 start-page: 154 year: 2019 publication-title: IEEE/ASME Trans. Mechatron. – volume: 38 start-page: 4994 year: 2011 publication-title: Med. Phys. – volume: 56 start-page: 571 year: 1958 publication-title: Trans. Am. Ophthalmol. Soc. – volume: 33 start-page: 1013 year: 2017 publication-title: IEEE Trans. Robot. – volume: 8 start-page: 461 year: 2018 publication-title: Quant. Imaging Med. Surg. – volume: 3 start-page: 74 year: 2018 publication-title: Nat. Rev. Mater. – start-page: 149 year: 2015 – start-page: 3594 year: 2017 – volume: 102 start-page: 3924 year: 2005 – volume: 22 start-page: 2265 year: 2017 publication-title: IEEE/ASME Trans. Mechatron. – volume: 28 start-page: 183 year: 2012 publication-title: IEEE Trans. Robot. – volume: 437 start-page: 862 year: 2005 publication-title: Nature – volume: 17 start-page: 751 year: 2017 publication-title: Lab Chip – volume: 36 start-page: 68 year: 2017 publication-title: Int. J. Robot. Res. – volume: 35 start-page: 174 year: 2019 publication-title: IEEE Trans. Robot. – volume: 10 start-page: 5631 year: 2019 publication-title: Nat. Commun. – volume: 35 start-page: 129 year: 2016 publication-title: Int. J. Robot. Res. – volume: 31 start-page: 714 year: 2015 publication-title: IEEE Trans. Robot. – volume: 50 start-page: 1 year: 2014 publication-title: IEEE Trans. Magn. – volume: 36A start-page: 223 year: 2010 publication-title: Concepts Magn. Reson. A – year: 2007 – volume: 4 start-page: 1224 year: 2019 publication-title: IEEE Robot. Autom. Lett. – volume: 9 start-page: 3944 year: 2018 publication-title: Nat. Commun. – volume: 7 start-page: 10 year: 2019 publication-title: Soft Robot. – volume: 48 start-page: 139 year: 2010 publication-title: Med. Biol. Eng. Comput. – volume: 55 start-page: 1 year: 2019 publication-title: IEEE Trans. Magn. – volume: 94 start-page: 064107 year: 2009 publication-title: Appl. Phys. Lett. – volume: 61 start-page: 513 year: 2013 publication-title: IEEE Trans. Biomed. Eng. – volume: 66 start-page: 116 year: 2013 publication-title: Rev. Esp. Cardiol. – volume: 03 start-page: 1850002 year: 2017 publication-title: J. Med. Robot. Res. – volume: 4 start-page: eaav8006 year: 2019 publication-title: Sci. Robot. – volume: 4 start-page: 770 year: 2011 publication-title: Circ.: Arrhythmia Electrophysiol. – volume: 439 start-page: 294 year: 2017 publication-title: J. Magn. Magn. Mater. – volume: 139 start-page: 34 year: 2019 publication-title: Mech. Mach. Theory – volume: 10 start-page: 104 year: 2019 publication-title: Micromachines – volume: 12 start-page: 55 year: 2010 publication-title: Annu. Rev. Biomed. Eng. – volume: 4 start-page: eaav4494 year: 2019 publication-title: Sci. Robot. – volume: 17 start-page: 1705 year: 2017 publication-title: Lab Chip – volume: 288 start-page: 2335 year: 2000 publication-title: Science – volume: 8 start-page: 3691 year: 2018 publication-title: Sci. Rep. – volume: 9 start-page: 313 year: 2016 publication-title: Ther. Adv. Gastroenter. – volume: 12 start-page: 1 year: 2012 publication-title: Microfluid. Nanofluid. – volume: 25 start-page: 5333 year: 2015 publication-title: Adv. Funct. Mater. – volume: 25 start-page: 1007 year: 2011 publication-title: Adv. Robot. – volume: 12 start-page: 156 year: 2012 publication-title: Nano Lett. – volume: 2020 start-page: 254 issue: 36 publication-title: IEEE Trans. Robot. – volume: 8 start-page: 1900213 year: 2019 publication-title: Adv. Healthc. Mater. – volume: 3 start-page: 2957 year: 2018 publication-title: IEEE Robot. Autom. Lett. – volume: 3 start-page: 557 year: 2011 publication-title: Nanoscale – volume: 2020 start-page: 4700 issue: 67 publication-title: IEEE Trans. Ind. Electron. – volume: 10 start-page: 747 year: 2011 publication-title: Nat. Mater. – volume: 6 start-page: 1346 year: 2015 publication-title: Micromachines – start-page: 4686 year: 2014 – start-page: 1 year: 2019 – volume: 35 start-page: 114 year: 2016 publication-title: Int. J. Robot. Res. – volume: 18 start-page: S26 year: 2007 publication-title: J. Cardiovasc. Electrophysiol. – start-page: 8890 year: 2019 – year: 2001 – start-page: 2017 year: 2014 – volume: 2020 start-page: 704 issue: 5 publication-title: IEEE Robot. Autom. Lett. – volume: 2020 start-page: 2500 issue: 10 publication-title: Sci. Rep. – volume: 11 start-page: 941 year: 2016 publication-title: Nat. Nanotechnol. – volume: 37 start-page: 1359 year: 2018 publication-title: Int. J. Robot. Res. – volume: 8 start-page: 29 year: 2008 publication-title: IEEE Sens. J. – volume: 12 start-page: 2539 year: 2018 publication-title: ACS Nano – volume: 26 start-page: 1238 year: 2012 publication-title: Surg. Endosc. – volume: 24 start-page: 902 year: 2019 publication-title: IEEE/ASME Trans. Mechatron. – volume: 28 start-page: 172 year: 2012 publication-title: IEEE Trans. Robot. – volume: 558 start-page: 274 year: 2018 publication-title: Nature – volume: 106 start-page: 703 year: 2009 – volume: 3 start-page: eaar7650 year: 2018 publication-title: Sci. Robot. – volume: 25 start-page: 71 year: 2018 publication-title: IEEE Robot. Autom. Mag. – start-page: 4996 year: 2013 – volume: 10 start-page: 370 year: 2019 publication-title: Micromachines – volume: 51 start-page: 1 year: 2015 publication-title: IEEE Trans. Magn. – volume: 2 start-page: eaaq1155 year: 2017 publication-title: Sci. Robot. – volume: 24 start-page: 1208 year: 2019 publication-title: IEEE/ASME Trans. Mechatron. – volume: 107 start-page: 10 year: 2018 publication-title: Robot. Auton. Syst. – volume: 25 start-page: 527 year: 2006 publication-title: Int. J. Robot. Res. – volume: 269 start-page: 1 year: 2019 publication-title: Adv. Colloid Interface Sci. – volume: 4 start-page: 2325 year: 2019 publication-title: IEEE Robot. Autom. Lett. – start-page: 151 year: 2014 – volume: 32 start-page: 346 year: 2013 publication-title: Int. J. Robot. Res. – volume: 96 start-page: 024102 year: 2010 publication-title: Appl. Phys. Lett. – start-page: 181 year: 2017 – volume: 163 start-page: 410 year: 2010 publication-title: Sens. Actuators A – volume: 171 start-page: 429 year: 2011 publication-title: Sens. Actuators A – volume: 74 start-page: e3658 year: 2013 publication-title: J. Vis. Exp. – volume: 2020 start-page: 1 issue: 13 publication-title: Intell. Serv. Robot. – volume: 25 start-page: 1332 year: 2019 publication-title: IEEE Trans. Syst. Man Cybern. – volume: 34 start-page: 3135 year: 2007 publication-title: Med. Phys. – volume: 9 start-page: 3260 year: 2018 publication-title: Nat. Commun. – volume: 21 start-page: 357 year: 2011 publication-title: Mechatronics – volume: 15 start-page: 1317 year: 2005 publication-title: IEEE Trans. Appl. Supercond. – start-page: 9814 year: 2019 – start-page: 4837 year: 2017 – volume: 157 start-page: 118 year: 2010 publication-title: Sens. Actuators A – start-page: 2474 year: 2019 – volume: 20 start-page: 2067 year: 2015 publication-title: IEEE/ASME Trans. Mechatron. – start-page: 3608 year: 2018 – start-page: 2070052 year: 2020 publication-title: Adv. Intell. Syst. – volume: 29 start-page: 613 year: 2009 publication-title: Int. J. Robot. Res. – volume: 42 start-page: 148 year: 2010 publication-title: Endoscopy – volume: 107 start-page: 343 year: 2014 publication-title: Health Phys. – volume: 17 start-page: 697 year: 2018 publication-title: IEEE Trans. Nanotechnol. – volume: 25 start-page: 5863 year: 2013 publication-title: Adv. Mater. – volume: 1 start-page: 1900069 year: 2019 publication-title: Adv. Intell. Syst. – volume: 39 start-page: 617 year: 2020 publication-title: Int. J. Robot. Res. – volume: 35 start-page: 343 year: 2019 publication-title: IEEE Trans. Robot. – volume: 10 start-page: 27 year: 2009 publication-title: Int. J. Precis. Eng. Manuf. – volume: 28 start-page: 1870174 year: 2018 publication-title: Adv. Funct. Mater. – volume: 46 start-page: 1943 year: 2010 publication-title: IEEE Trans. Magn. – volume: 28 start-page: 199 year: 2010 publication-title: Robotica – volume: 5 start-page: 3124 year: 2014 publication-title: Nat. Commun. – volume: 6 start-page: 487 year: 2009 publication-title: Expert Rev. Med. Devices – volume: 10 start-page: 73 year: 2016 publication-title: Int. J. Optomechatronics – volume: 72 start-page: 836 year: 2010 publication-title: Gastrointest. Endosc. – volume: 271 start-page: 862 year: 2014 publication-title: Radiology – start-page: 859 year: 2012 – volume: 554 start-page: 81 year: 2018 publication-title: Nature – volume: 36 start-page: 4 year: 2006 publication-title: Braz. J. Phys. – start-page: 6156 year: 2017 – volume: 4 start-page: eaav4317 year: 2019 publication-title: Sci. Robot. – start-page: 883 year: 2019 – start-page: 3600 year: 2017 – volume: 30 start-page: 719 year: 2014 publication-title: IEEE Trans. Robot. – volume: 2020 start-page: 1900110 issue: 2 publication-title: Adv. Intell. Syst. – volume: 5 start-page: eaau9650 year: 2019 publication-title: Sci. Adv. – volume: 2 start-page: eaam6431 year: 2017 publication-title: Sci. Robot. – volume: 6 start-page: 5 year: 2012 publication-title: J. Robot. Surg. – volume: 103 start-page: 205 – volume: 30 start-page: 49 year: 2014 publication-title: IEEE Trans. Robot. – volume: 3 start-page: 113 year: 2018 publication-title: Nat. Rev. Mater. – volume: 26 start-page: 1006 year: 2010 publication-title: IEEE Trans. Robot. – start-page: 5380 year: 2018 – ident: e_1_2_8_3_1 doi: 10.1126/scirobotics.aam6431 – ident: e_1_2_8_82_1 doi: 10.1109/TMECH.2018.2876617 – ident: e_1_2_8_2_1 doi: 10.1039/C2NR32554C – ident: e_1_2_8_4_1 doi: 10.1038/545406a – ident: e_1_2_8_37_1 doi: 10.1177/0278364915583539 – ident: e_1_2_8_180_1 doi: 10.1109/TASC.2005.849580 – ident: e_1_2_8_45_1 doi: 10.1146/annurev-control-081219-082713 – ident: e_1_2_8_169_1 doi: 10.1002/adfm.201403891 – volume: 19 start-page: 1651 year: 2013 ident: e_1_2_8_84_1 publication-title: IEEE/ASME Trans. Mechatron. contributor: fullname: Kim S. H. – ident: e_1_2_8_31_1 doi: 10.1109/TMAG.2014.2303784 – ident: e_1_2_8_78_1 doi: 10.1109/TRO.2014.2380591 – ident: e_1_2_8_160_1 doi: 10.1038/s41467-018-05749-6 – ident: e_1_2_8_171_1 doi: 10.1002/adhm.201900213 – ident: e_1_2_8_42_1 doi: 10.1109/LRA.2019.2902742 – ident: e_1_2_8_71_1 – ident: e_1_2_8_72_1 doi: 10.1007/s12541-009-0068-2 – ident: e_1_2_8_6_1 doi: 10.1038/s41578-018-0001-3 – ident: e_1_2_8_97_1 – ident: e_1_2_8_76_1 doi: 10.1016/j.jmmm.2017.05.001 – ident: e_1_2_8_20_1 doi: 10.1039/C0NR00566E – ident: e_1_2_8_181_1 doi: 10.21037/qims.2018.06.07 – ident: e_1_2_8_108_1 – ident: e_1_2_8_80_1 doi: 10.1109/TNANO.2018.2815978 – ident: e_1_2_8_102_1 doi: 10.1097/MCG.0000000000000110 – ident: e_1_2_8_74_1 doi: 10.1586/erd.09.32 – ident: e_1_2_8_111_1 doi: 10.1002/adfm.201400275 – ident: e_1_2_8_139_1 doi: 10.1177/1756283X16633052 – ident: e_1_2_8_112_1 doi: 10.3390/mi10060370 – ident: e_1_2_8_16_1 doi: 10.1126/science.288.5475.2335 – ident: e_1_2_8_53_1 doi: 10.1590/S0103-97332006000100004 – ident: e_1_2_8_87_1 doi: 10.1016/j.sna.2009.11.011 – ident: e_1_2_8_173_1 doi: 10.1002/adma.201301484 – ident: e_1_2_8_79_1 doi: 10.1109/LRA.2019.2931234 – ident: e_1_2_8_17_1 doi: 10.1177/0278364912472381 – ident: e_1_2_8_33_1 doi: 10.1109/TMECH.2019.2907656 – volume-title: Experimental Robotic year: 2014 ident: e_1_2_8_107_1 contributor: fullname: Kratochvil B. E. – ident: e_1_2_8_165_1 doi: 10.1073/pnas.0807698106 – ident: e_1_2_8_48_1 – ident: e_1_2_8_75_1 doi: 10.1109/TMAG.2008.2002505 – ident: e_1_2_8_15_1 doi: 10.1089/soro.2018.0171 – ident: e_1_2_8_29_1 doi: 10.1109/TRO.2010.2073030 – ident: e_1_2_8_23_1 doi: 10.1109/MRA.2017.2787784 – ident: e_1_2_8_10_1 doi: 10.1126/scirobotics.aav4317 – ident: e_1_2_8_77_1 doi: 10.1163/016918611X568620 – ident: e_1_2_8_101_1 doi: 10.1109/TMECH.2014.2362117 – volume: 74 start-page: e3658 year: 2013 ident: e_1_2_8_117_1 publication-title: J. Vis. Exp. contributor: fullname: Filgueiras-Rama D. – ident: e_1_2_8_179_1 doi: 10.1039/C6LC01435F – ident: e_1_2_8_35_1 doi: 10.1109/TMECH.2017.2743021 – ident: e_1_2_8_13_1 doi: 10.1126/scirobotics.aax7329 – ident: e_1_2_8_60_1 doi: 10.1002/9783527610174 – ident: e_1_2_8_64_1 doi: 10.1007/s00464-011-2054-x – ident: e_1_2_8_7_1 doi: 10.1126/scirobotics.aar7650 – ident: e_1_2_8_70_1 doi: 10.1063/1.3291112 – ident: e_1_2_8_25_1 doi: 10.1016/j.apmt.2017.04.006 – volume: 61 start-page: 284 year: 1922 ident: e_1_2_8_27_1 publication-title: Jahrb. Wiss. Bot. contributor: fullname: Heilbronn A. – ident: e_1_2_8_144_1 doi: 10.1002/adma.201103818 – ident: e_1_2_8_46_1 doi: 10.1177/0278364914558006 – ident: e_1_2_8_58_1 doi: 10.1109/TMECH.2019.2893166 – ident: e_1_2_8_68_1 doi: 10.1016/j.cgh.2016.05.013 – ident: e_1_2_8_103_1 doi: 10.1109/TRO.2014.2300591 – ident: e_1_2_8_172_1 doi: 10.1002/adfm.201870174 – ident: e_1_2_8_123_1 – ident: e_1_2_8_114_1 doi: 10.1002/aisy.201900086 – ident: e_1_2_8_94_1 doi: 10.1177/0278364906065389 – ident: e_1_2_8_49_1 doi: 10.1016/j.robot.2018.05.002 – volume: 61 start-page: 513 year: 2013 ident: e_1_2_8_14_1 publication-title: IEEE Trans. Biomed. Eng. contributor: fullname: Yim S. – ident: e_1_2_8_130_1 doi: 10.1089/soro.2018.0019 – ident: e_1_2_8_54_1 doi: 10.1002/cmr.a.20163 – ident: e_1_2_8_140_1 doi: 10.1016/j.gie.2010.06.016 – ident: e_1_2_8_18_1 doi: 10.1039/C7LC00064B – ident: e_1_2_8_106_1 doi: 10.1080/15599612.2016.1166305 – ident: e_1_2_8_83_1 doi: 10.1016/j.mechatronics.2010.09.001 – volume-title: Permanent Magnet and Electromechanical Devices: Materials, Analysis, and Applications year: 2001 ident: e_1_2_8_41_1 contributor: fullname: Furlani E. P. – ident: e_1_2_8_167_1 doi: 10.1126/sciadv.aau9650 – ident: e_1_2_8_98_1 – ident: e_1_2_8_92_1 – ident: e_1_2_8_150_1 doi: 10.1177/0278364909353351 – ident: e_1_2_8_30_1 doi: 10.1109/TRO.2013.2289019 – ident: e_1_2_8_176_1 doi: 10.1007/s10404-011-0903-5 – ident: e_1_2_8_12_1 doi: 10.1038/s41598-018-22110-5 – ident: e_1_2_8_65_1 doi: 10.1007/s11701-011-0332-1 – ident: e_1_2_8_95_1 doi: 10.1109/TBME.2019.2939419 – ident: e_1_2_8_131_1 doi: 10.1118/1.3622599 – ident: e_1_2_8_120_1 – ident: e_1_2_8_34_1 doi: 10.1177/0278364918801502 – ident: e_1_2_8_161_1 doi: 10.1126/scirobotics.aav8006 – ident: e_1_2_8_113_1 doi: 10.1016/j.recesp.2012.10.003 – ident: e_1_2_8_59_1 – volume: 2020 start-page: 254 issue: 36 ident: e_1_2_8_162_1 publication-title: IEEE Trans. Robot. contributor: fullname: Yang L. – ident: e_1_2_8_154_1 doi: 10.1038/s41467-019-10549-7 – volume: 25 start-page: 1332 year: 2019 ident: e_1_2_8_91_1 publication-title: IEEE Trans. Syst. Man Cybern. contributor: fullname: Hoang M. C. – ident: e_1_2_8_96_1 doi: 10.1109/TMECH.2019.2910269 – ident: e_1_2_8_118_1 – ident: e_1_2_8_157_1 doi: 10.1038/nmat3090 – ident: e_1_2_8_170_1 doi: 10.1126/scirobotics.aaq1155 – ident: e_1_2_8_32_1 – volume: 2020 start-page: 490 issue: 17 ident: e_1_2_8_38_1 publication-title: IEEE Trans. Autom. Sci. Eng. contributor: fullname: Yang L. – ident: e_1_2_8_129_1 doi: 10.1109/TRO.2016.2623339 – ident: e_1_2_8_52_1 doi: 10.1109/TMAG.2010.2040144 – ident: e_1_2_8_63_1 doi: 10.1055/s-0029-1243808 – ident: e_1_2_8_85_1 doi: 10.1016/j.sna.2011.08.020 – ident: e_1_2_8_93_1 doi: 10.1109/TRO.2016.2638446 – ident: e_1_2_8_11_1 doi: 10.1038/nnano.2016.137 – ident: e_1_2_8_147_1 doi: 10.1038/nature04090 – ident: e_1_2_8_148_1 doi: 10.1021/nl2032487 – ident: e_1_2_8_69_1 doi: 10.1109/TRO.2011.2163861 – ident: e_1_2_8_132_1 doi: 10.1007/s10334-010-0214-y – ident: e_1_2_8_156_1 doi: 10.1073/pnas.0500807102 – volume: 2020 start-page: 2500 issue: 10 ident: e_1_2_8_137_1 publication-title: Sci. Rep. contributor: fullname: Ilami M. – ident: e_1_2_8_110_1 doi: 10.1063/1.4826141 – ident: e_1_2_8_127_1 doi: 10.1007/s40846-015-0055-2 – ident: e_1_2_8_152_1 doi: 10.1126/scirobotics.aav4494 – ident: e_1_2_8_121_1 – ident: e_1_2_8_134_1 doi: 10.1118/1.2750963 – ident: e_1_2_8_136_1 doi: 10.1142/S2424905X18500022 – ident: e_1_2_8_86_1 doi: 10.1109/MRA.2007.380641 – ident: e_1_2_8_133_1 doi: 10.1148/radiol.14132041 – ident: e_1_2_8_119_1 – ident: e_1_2_8_44_1 doi: 10.1177/0278364920903107 – ident: e_1_2_8_104_1 doi: 10.1002/aisy.201900110 – ident: e_1_2_8_135_1 – volume: 51 start-page: 1 year: 2015 ident: e_1_2_8_57_1 publication-title: IEEE Trans. Magn. contributor: fullname: Go G. – ident: e_1_2_8_99_1 doi: 10.1109/LRA.2018.2863358 – ident: e_1_2_8_158_1 doi: 10.1038/s41586-018-0185-0 – ident: e_1_2_8_166_1 doi: 10.1109/JSEN.2007.912552 – ident: e_1_2_8_149_1 doi: 10.1021/nn101861n – ident: e_1_2_8_174_1 doi: 10.1021/acsnano.7b08344 – ident: e_1_2_8_56_1 doi: 10.1118/1.4939228 – ident: e_1_2_8_105_1 – ident: e_1_2_8_22_1 doi: 10.1002/mp.12299 – volume: 2020 start-page: 4700 issue: 67 ident: e_1_2_8_36_1 publication-title: IEEE Trans. Ind. Electron. contributor: fullname: Li D. – ident: e_1_2_8_88_1 doi: 10.1016/j.sna.2010.04.037 – ident: e_1_2_8_146_1 doi: 10.1002/aisy.202070052 – ident: e_1_2_8_5_1 doi: 10.1038/s41578-018-0016-9 – ident: e_1_2_8_66_1 doi: 10.1109/LRA.2019.2894907 – ident: e_1_2_8_40_1 doi: 10.1109/TRO.2015.2424051 – ident: e_1_2_8_178_1 doi: 10.3390/mi10020104 – ident: e_1_2_8_100_1 – ident: e_1_2_8_81_1 – volume: 2020 start-page: 704 issue: 5 ident: e_1_2_8_126_1 publication-title: IEEE Robot. Autom. Lett. contributor: fullname: Heunis C. M. – ident: e_1_2_8_145_1 doi: 10.1002/aisy.201900069 – ident: e_1_2_8_153_1 doi: 10.1038/s41467-018-06491-9 – ident: e_1_2_8_115_1 doi: 10.1109/LRA.2018.2846800 – ident: e_1_2_8_142_1 doi: 10.1109/TRO.2013.2257581 – ident: e_1_2_8_143_1 doi: 10.1063/1.3079655 – ident: e_1_2_8_39_1 – ident: e_1_2_8_124_1 doi: 10.1109/TRO.2018.2875393 – ident: e_1_2_8_151_1 doi: 10.1109/TRO.2011.2170330 – ident: e_1_2_8_159_1 doi: 10.1177/0278364918784366 – ident: e_1_2_8_8_1 doi: 10.1109/JPROC.2014.2385105 – ident: e_1_2_8_50_1 doi: 10.1007/s11517-009-0574-5 – ident: e_1_2_8_51_1 doi: 10.1063/1.1684235 – ident: e_1_2_8_175_1 doi: 10.1038/ncomms4124 – ident: e_1_2_8_109_1 doi: 10.1109/TRO.2018.2885218 – ident: e_1_2_8_155_1 doi: 10.1038/nature25443 – ident: e_1_2_8_177_1 doi: 10.1016/j.cis.2019.04.003 – year: 2020 ident: e_1_2_8_182_1 publication-title: IEEE/ASME Trans. Mechatron. contributor: fullname: Nguyen K. T. – volume: 2020 start-page: 1 issue: 13 ident: e_1_2_8_24_1 publication-title: Intell. Serv. Robot. contributor: fullname: Hwang J. – ident: e_1_2_8_55_1 – ident: e_1_2_8_19_1 doi: 10.1002/aisy.201900035 – ident: e_1_2_8_21_1 doi: 10.3390/mi6091346 – ident: e_1_2_8_28_1 doi: 10.1016/j.sna.2010.08.014 – ident: e_1_2_8_43_1 doi: 10.1109/TMAG.2012.2205014 – ident: e_1_2_8_61_1 doi: 10.1097/HP.0000000000000112 – ident: e_1_2_8_122_1 doi: 10.1109/TMAG.2019.2917370 – ident: e_1_2_8_141_1 – ident: e_1_2_8_67_1 doi: 10.1109/TRO.2017.2694841 – ident: e_1_2_8_116_1 doi: 10.1161/CIRCEP.110.959692 – ident: e_1_2_8_164_1 doi: 10.1038/s41467-019-13576-6 – ident: e_1_2_8_89_1 doi: 10.1109/TRO.2009.2028761 – ident: e_1_2_8_90_1 doi: 10.1109/TRO.2013.2281557 – ident: e_1_2_8_128_1 doi: 10.1177/0278364916683443 – volume: 56 start-page: 571 year: 1958 ident: e_1_2_8_26_1 publication-title: Trans. Am. Ophthalmol. Soc. contributor: fullname: McCaslin M. F. – ident: e_1_2_8_47_1 doi: 10.1109/TRO.2017.2719687 – ident: e_1_2_8_138_1 doi: 10.1016/j.mechmachtheory.2019.04.008 – ident: e_1_2_8_62_1 doi: 10.1017/S0263574709990361 – ident: e_1_2_8_125_1 – ident: e_1_2_8_73_1 doi: 10.1111/j.1540-8167.2007.00708.x – ident: e_1_2_8_168_1 doi: 10.1002/adfm.201502248 – ident: e_1_2_8_9_1 doi: 10.1146/annurev-bioeng-010510-103409 – ident: e_1_2_8_163_1 |
SSID | ssj0002171027 |
Score | 2.5927672 |
Snippet | A magnetic field, which is transparent and relatively safe to biological tissue, is a powerful tool for remote actuation and wireless control of magnetic... |
SourceID | doaj crossref wiley |
SourceType | Open Website Aggregation Database Publisher |
SubjectTerms | biomedical applications magnetic actuation medical robots and systems microrobots miniature robots |
Title | Magnetic Actuation Systems for Miniature Robots: A Review |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faisy.202000082 https://doaj.org/article/a493b0e4a7ae4944a6d9f8833e89bd5c |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ09T8MwEIYt6MSCQIAoX_KAxBTVsS-1zRagVRnKQEGCKTp_BHVJEW0H_j12EiI6dWFMFMXJe4nvLvE9R8j10KFRYHzCjYq_GT1P0BqW2FS4FJVzDmJx8mQmn97UwyhicrpWX3FNWIMHboQbIGhhmAeU6EED4NDpMnbI9Uobl9l69mX6TzIV5-AQaAfPKX8pjYwPcL78Dukgr4MkvuGFalj_ZnBae5fxAdlvw0KaN5dzSHZ8dUT0FD-qWGRI81jmESWkLWGchliTTufVvOZy0ueFWayWtzSnzbf-Y_I6Hr3cT5K21UFiBc94YgEj-Q8UT0vpwkuGQjPugIf8TNjUoE95qdGUIJ00KLjzaqhTJW0QM7hocUJ61aLyp4Qa5qQFITINErxTxjJEhpkFa6AE3Sc3v7defDZEi6JhF_MiilR0IvXJXVSmOyqSqOsdwT5Fa59im336hNe6bhmryB9n793W2X-MfE724gmbBWEXpLf6WvtLsrt066v6YfkBWfDBLw |
link.rule.ids | 315,783,787,867,2109,27936,27937 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Magnetic+Actuation+Systems+for+Miniature+Robots%3A+A+Review&rft.jtitle=Advanced+intelligent+systems&rft.au=Yang%2C+Zhengxin&rft.au=Zhang%2C+Li&rft.date=2020-09-01&rft.issn=2640-4567&rft.eissn=2640-4567&rft.volume=2&rft.issue=9&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Faisy.202000082&rft.externalDBID=10.1002%252Faisy.202000082&rft.externalDocID=AISY202000082 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2640-4567&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2640-4567&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2640-4567&client=summon |