Magnetic Actuation Systems for Miniature Robots: A Review

A magnetic field, which is transparent and relatively safe to biological tissue, is a powerful tool for remote actuation and wireless control of magnetic devices. Furthermore, miniature robots can access complex and narrow regions of the human body as well as manipulate down to subcellular entities;...

Full description

Saved in:
Bibliographic Details
Published in:Advanced intelligent systems Vol. 2; no. 9
Main Authors: Yang, Zhengxin, Zhang, Li
Format: Journal Article
Language:English
Published: Wiley 01-09-2020
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract A magnetic field, which is transparent and relatively safe to biological tissue, is a powerful tool for remote actuation and wireless control of magnetic devices. Furthermore, miniature robots can access complex and narrow regions of the human body as well as manipulate down to subcellular entities; however, integrating onboard components is difficult due to their limited size. Combining these two technologies, magnetic miniature robots have undergone rapid development during the past two decades, mainly because of their high potential in medical and bioengineering applications. To improve the scientific and clinical outcomes of these tiny agents, developing suitable and reliable actuation systems is essential. As a newly emerging field that has progressed in recent years, magnetic actuation systems offer a harmless and effective approach for the remote control of miniature robots via a dynamic magnetic field. Herein, a review on the state‐of‐the‐art magnetic actuation systems for miniature robots is presented with the goal of providing readers with a better understanding of magnetic actuation and guidance for future system design. Magnetic miniature robots have shown potential in medical and bioengineering applications. To improve their scientific and clinical outcomes, developing suitable and reliable actuation systems is essential. Herein, a review on the state‐of‐the‐art magnetic actuation systems for miniature robots is presented with the goal of providing readers a better understanding of magnetic actuation and guidance for future system design.
AbstractList A magnetic field, which is transparent and relatively safe to biological tissue, is a powerful tool for remote actuation and wireless control of magnetic devices. Furthermore, miniature robots can access complex and narrow regions of the human body as well as manipulate down to subcellular entities; however, integrating onboard components is difficult due to their limited size. Combining these two technologies, magnetic miniature robots have undergone rapid development during the past two decades, mainly because of their high potential in medical and bioengineering applications. To improve the scientific and clinical outcomes of these tiny agents, developing suitable and reliable actuation systems is essential. As a newly emerging field that has progressed in recent years, magnetic actuation systems offer a harmless and effective approach for the remote control of miniature robots via a dynamic magnetic field. Herein, a review on the state‐of‐the‐art magnetic actuation systems for miniature robots is presented with the goal of providing readers with a better understanding of magnetic actuation and guidance for future system design.
A magnetic field, which is transparent and relatively safe to biological tissue, is a powerful tool for remote actuation and wireless control of magnetic devices. Furthermore, miniature robots can access complex and narrow regions of the human body as well as manipulate down to subcellular entities; however, integrating onboard components is difficult due to their limited size. Combining these two technologies, magnetic miniature robots have undergone rapid development during the past two decades, mainly because of their high potential in medical and bioengineering applications. To improve the scientific and clinical outcomes of these tiny agents, developing suitable and reliable actuation systems is essential. As a newly emerging field that has progressed in recent years, magnetic actuation systems offer a harmless and effective approach for the remote control of miniature robots via a dynamic magnetic field. Herein, a review on the state‐of‐the‐art magnetic actuation systems for miniature robots is presented with the goal of providing readers with a better understanding of magnetic actuation and guidance for future system design. Magnetic miniature robots have shown potential in medical and bioengineering applications. To improve their scientific and clinical outcomes, developing suitable and reliable actuation systems is essential. Herein, a review on the state‐of‐the‐art magnetic actuation systems for miniature robots is presented with the goal of providing readers a better understanding of magnetic actuation and guidance for future system design.
Author Yang, Zhengxin
Zhang, Li
Author_xml – sequence: 1
  givenname: Zhengxin
  surname: Yang
  fullname: Yang, Zhengxin
  organization: The Chinese University of Hong Kong
– sequence: 2
  givenname: Li
  orcidid: 0000-0003-1152-8962
  surname: Zhang
  fullname: Zhang, Li
  email: lizhang@cuhk.edu.hk
  organization: The Chinese University of Hong Kong
BookMark eNqFkE9PAjEQxRuDiYhcPe8XWGynZbv1Roh_SCAmoAdPzWzbJSWwNdtFst_eRQx6cy4zmbz3S967Jr0qVI6QW0ZHjFK4Qx_bEVCg3eRwQfqQCZqKcSZ7f-4rMoxx00mASUZB9ola4LpyjTfJxDR7bHyoklUbG7eLSRnqZOErj82-dskyFKGJ98kkWbpP7w435LLEbXTDnz0gb48Pr9PndP7yNJtO5qnhMIbUCORSKpEDK6XlAMgVBSsAGOOGFegYlAqLUkgrC-RgXZ4plktjrWAg-IDMTlwbcKM_ar_DutUBvf5-hHqtse4CbJ1GoXhBnUCJTighMLOqzHPOXa4KOzYda3RimTrEWLvyzGNUH3vUxx71ucfOoE6Gg9-69h-1nsxW77_eLzY7dyo
CitedBy_id crossref_primary_10_1002_adhm_202400414
crossref_primary_10_1021_acs_chemrev_1c00481
crossref_primary_10_1021_acsnano_3c01609
crossref_primary_10_1002_smll_202308580
crossref_primary_10_1002_adom_202202201
crossref_primary_10_1109_TMECH_2021_3054927
crossref_primary_10_3390_cells10102708
crossref_primary_10_3390_mi15060798
crossref_primary_10_1109_LRA_2021_3057295
crossref_primary_10_1002_adfm_202300156
crossref_primary_10_1017_S0263574722000662
crossref_primary_10_1109_LRA_2024_3374192
crossref_primary_10_1002_aisy_202300700
crossref_primary_10_1038_s41467_021_25386_w
crossref_primary_10_1002_aisy_202300267
crossref_primary_10_1021_acsami_4c04586
crossref_primary_10_1002_adfm_202404097
crossref_primary_10_1002_adfm_202110625
crossref_primary_10_1002_smsc_202300211
crossref_primary_10_3390_mi14091656
crossref_primary_10_1002_smtd_202100230
crossref_primary_10_1016_j_mtsust_2022_100196
crossref_primary_10_1007_s11071_023_08947_0
crossref_primary_10_1017_pma_2023_6
crossref_primary_10_1109_TCPMT_2022_3185972
crossref_primary_10_1002_adhm_202102529
crossref_primary_10_1016_j_jmmm_2024_171969
crossref_primary_10_1021_accountsmr_3c00227
crossref_primary_10_1073_pnas_2021922118
crossref_primary_10_1002_mp_15976
crossref_primary_10_1557_s43577_023_00644_y
crossref_primary_10_1002_adma_202201051
crossref_primary_10_1109_TIE_2023_3331073
crossref_primary_10_3390_mi14081604
crossref_primary_10_3390_mi14081607
crossref_primary_10_34133_cbsystems_0109
crossref_primary_10_1002_aisy_202100144
crossref_primary_10_3389_frobt_2023_1281362
crossref_primary_10_1002_aisy_202300093
crossref_primary_10_1109_LRA_2024_3349810
crossref_primary_10_3390_robotics13030039
crossref_primary_10_1007_s43154_022_00085_6
crossref_primary_10_1109_JPROC_2022_3165713
crossref_primary_10_1109_LRA_2023_3243801
crossref_primary_10_1007_s12213_023_00163_8
crossref_primary_10_34133_cbsystems_0083
crossref_primary_10_1016_j_cmpb_2023_107646
crossref_primary_10_21869_2223_1528_2024_14_1_46_58
crossref_primary_10_1002_aisy_202300325
crossref_primary_10_1021_acsnano_2c10127
crossref_primary_10_1109_TMECH_2021_3121267
crossref_primary_10_1002_adma_202212202
crossref_primary_10_1016_j_jmmm_2023_171160
crossref_primary_10_1016_j_mtbio_2020_100085
crossref_primary_10_1002_aisy_202100116
crossref_primary_10_1002_pol_20230496
crossref_primary_10_3390_app12031033
crossref_primary_10_1002_advs_202103863
crossref_primary_10_1016_j_tibtech_2022_09_003
crossref_primary_10_1557_s43580_023_00585_3
crossref_primary_10_1016_j_chempr_2024_04_018
crossref_primary_10_1063_5_0137857
crossref_primary_10_3389_frobt_2023_1330960
crossref_primary_10_1016_j_xcrp_2023_101639
crossref_primary_10_1021_acs_chemrev_0c01234
crossref_primary_10_3389_fnins_2021_736730
crossref_primary_10_1063_9_0000648
crossref_primary_10_3390_magnetochemistry9050129
crossref_primary_10_1016_j_snb_2021_130589
crossref_primary_10_1021_acsami_2c16457
crossref_primary_10_1088_1361_6439_ac85fc
crossref_primary_10_3390_ijms22105266
crossref_primary_10_1016_j_cej_2021_133971
crossref_primary_10_1002_adfm_202211280
crossref_primary_10_1109_LRA_2021_3104620
crossref_primary_10_3390_biomimetics8030269
crossref_primary_10_1109_LRA_2022_3182105
crossref_primary_10_1016_j_bios_2021_113690
crossref_primary_10_1002_adma_202002047
crossref_primary_10_1109_LRA_2024_3412637
crossref_primary_10_1007_s41315_024_00323_4
crossref_primary_10_1016_j_mechatronics_2022_102830
crossref_primary_10_3390_mi15040468
crossref_primary_10_3390_pharmaceutics14102093
crossref_primary_10_1109_LRA_2024_3366018
crossref_primary_10_1109_ACCESS_2022_3197632
crossref_primary_10_1109_TIE_2022_3153809
crossref_primary_10_1002_admt_202300773
crossref_primary_10_3389_fncel_2022_954912
crossref_primary_10_1126_scirobotics_abh0286
crossref_primary_10_1016_j_eml_2021_101268
crossref_primary_10_1039_D1SM00127B
crossref_primary_10_1109_TRO_2023_3339529
crossref_primary_10_1002_adhm_202001596
crossref_primary_10_1002_adma_202311462
crossref_primary_10_1089_soro_2022_0202
crossref_primary_10_1039_D2LC00573E
crossref_primary_10_1002_marc_202400282
crossref_primary_10_1109_LRA_2023_3322094
crossref_primary_10_1109_ACCESS_2023_3264464
crossref_primary_10_3390_mi13101763
crossref_primary_10_1109_TIM_2022_3232168
crossref_primary_10_1002_adma_202402482
crossref_primary_10_1016_j_actbio_2022_10_019
crossref_primary_10_1088_1361_6439_ac9f51
crossref_primary_10_17780_ksujes_1137806
crossref_primary_10_3762_bjnano_12_58
crossref_primary_10_1002_nano_202100353
crossref_primary_10_1021_acs_chemrev_3c00356
crossref_primary_10_1038_s41467_023_42783_5
crossref_primary_10_1093_pnasnexus_pgad297
crossref_primary_10_1109_TMRB_2020_3033020
crossref_primary_10_1016_j_jmmm_2022_170159
crossref_primary_10_1002_adma_202310084
crossref_primary_10_1016_j_cej_2024_153085
crossref_primary_10_1038_s44182_024_00008_x
crossref_primary_10_1021_acsami_2c04745
crossref_primary_10_1002_smtd_202201547
crossref_primary_10_1002_aisy_202000211
crossref_primary_10_1016_j_ijmecsci_2022_107516
crossref_primary_10_1002_advs_202305128
crossref_primary_10_1016_j_cocis_2022_101642
crossref_primary_10_1038_s41467_022_31900_5
crossref_primary_10_1109_LRA_2023_3280814
crossref_primary_10_1109_TMECH_2022_3221272
crossref_primary_10_1021_acs_chemrev_0c00999
crossref_primary_10_3390_biomimetics9060340
crossref_primary_10_1109_LRA_2021_3061376
crossref_primary_10_1016_j_matt_2021_10_010
crossref_primary_10_1016_j_matdes_2021_110172
crossref_primary_10_1016_j_progpolymsci_2024_101847
crossref_primary_10_1016_j_sna_2024_115365
crossref_primary_10_3390_mi13101756
crossref_primary_10_1002_adem_202301000
crossref_primary_10_1038_s42256_023_00779_2
crossref_primary_10_3390_machines11070738
crossref_primary_10_3390_act9040131
crossref_primary_10_1038_s41467_022_35212_6
crossref_primary_10_1002_admt_202301003
crossref_primary_10_1002_advs_202202278
crossref_primary_10_1063_5_0189185
crossref_primary_10_1002_rcs_2384
crossref_primary_10_1021_acsnanoscienceau_4c00002
crossref_primary_10_1088_1748_605X_ac8b4b
crossref_primary_10_1039_D3NR02535G
crossref_primary_10_1109_LRA_2024_3382485
crossref_primary_10_1109_TMECH_2023_3297722
crossref_primary_10_1016_j_mechmachtheory_2023_105353
crossref_primary_10_1016_j_jmmm_2021_168976
crossref_primary_10_1109_ACCESS_2021_3113765
crossref_primary_10_1007_s10439_023_03163_8
crossref_primary_10_1002_aisy_202300483
crossref_primary_10_1088_1748_3190_ac114a
crossref_primary_10_3389_frobt_2022_1027415
crossref_primary_10_1126_sciadv_abq1677
crossref_primary_10_1002_advs_202301033
crossref_primary_10_1002_aisy_202100279
crossref_primary_10_1016_j_measurement_2022_112391
crossref_primary_10_1002_aisy_202200130
crossref_primary_10_3389_frobt_2024_1392297
crossref_primary_10_1109_LRA_2022_3190830
crossref_primary_10_3390_mi14040724
crossref_primary_10_1002_adhm_202100801
crossref_primary_10_17482_uumfd_1137071
crossref_primary_10_1007_s12213_024_00170_3
crossref_primary_10_2174_1574885518666230726123433
crossref_primary_10_1126_sciadv_abn3431
crossref_primary_10_1016_j_engreg_2023_08_001
crossref_primary_10_1088_1361_665X_ad2bd8
crossref_primary_10_1002_advs_202302077
crossref_primary_10_1016_j_apmt_2022_101423
crossref_primary_10_1002_aisy_202300751
crossref_primary_10_1109_LRA_2022_3148785
crossref_primary_10_1080_13645706_2023_2198004
crossref_primary_10_3390_mi12040465
crossref_primary_10_1016_j_mtcomm_2024_109134
Cites_doi 10.1126/scirobotics.aam6431
10.1109/TMECH.2018.2876617
10.1039/C2NR32554C
10.1038/545406a
10.1177/0278364915583539
10.1109/TASC.2005.849580
10.1146/annurev-control-081219-082713
10.1002/adfm.201403891
10.1109/TMAG.2014.2303784
10.1109/TRO.2014.2380591
10.1038/s41467-018-05749-6
10.1002/adhm.201900213
10.1109/LRA.2019.2902742
10.1007/s12541-009-0068-2
10.1038/s41578-018-0001-3
10.1016/j.jmmm.2017.05.001
10.1039/C0NR00566E
10.21037/qims.2018.06.07
10.1109/TNANO.2018.2815978
10.1097/MCG.0000000000000110
10.1586/erd.09.32
10.1002/adfm.201400275
10.1177/1756283X16633052
10.3390/mi10060370
10.1126/science.288.5475.2335
10.1590/S0103-97332006000100004
10.1016/j.sna.2009.11.011
10.1002/adma.201301484
10.1109/LRA.2019.2931234
10.1177/0278364912472381
10.1109/TMECH.2019.2907656
10.1073/pnas.0807698106
10.1109/TMAG.2008.2002505
10.1089/soro.2018.0171
10.1109/TRO.2010.2073030
10.1109/MRA.2017.2787784
10.1126/scirobotics.aav4317
10.1163/016918611X568620
10.1109/TMECH.2014.2362117
10.1039/C6LC01435F
10.1109/TMECH.2017.2743021
10.1126/scirobotics.aax7329
10.1002/9783527610174
10.1007/s00464-011-2054-x
10.1126/scirobotics.aar7650
10.1063/1.3291112
10.1016/j.apmt.2017.04.006
10.1002/adma.201103818
10.1177/0278364914558006
10.1109/TMECH.2019.2893166
10.1016/j.cgh.2016.05.013
10.1109/TRO.2014.2300591
10.1002/adfm.201870174
10.1002/aisy.201900086
10.1177/0278364906065389
10.1016/j.robot.2018.05.002
10.1089/soro.2018.0019
10.1002/cmr.a.20163
10.1016/j.gie.2010.06.016
10.1039/C7LC00064B
10.1080/15599612.2016.1166305
10.1016/j.mechatronics.2010.09.001
10.1126/sciadv.aau9650
10.1177/0278364909353351
10.1109/TRO.2013.2289019
10.1007/s10404-011-0903-5
10.1038/s41598-018-22110-5
10.1007/s11701-011-0332-1
10.1109/TBME.2019.2939419
10.1118/1.3622599
10.1177/0278364918801502
10.1126/scirobotics.aav8006
10.1016/j.recesp.2012.10.003
10.1038/s41467-019-10549-7
10.1109/TMECH.2019.2910269
10.1038/nmat3090
10.1126/scirobotics.aaq1155
10.1109/TRO.2016.2623339
10.1109/TMAG.2010.2040144
10.1055/s-0029-1243808
10.1016/j.sna.2011.08.020
10.1109/TRO.2016.2638446
10.1038/nnano.2016.137
10.1038/nature04090
10.1021/nl2032487
10.1109/TRO.2011.2163861
10.1007/s10334-010-0214-y
10.1073/pnas.0500807102
10.1063/1.4826141
10.1007/s40846-015-0055-2
10.1126/scirobotics.aav4494
10.1118/1.2750963
10.1142/S2424905X18500022
10.1109/MRA.2007.380641
10.1148/radiol.14132041
10.1177/0278364920903107
10.1002/aisy.201900110
10.1109/LRA.2018.2863358
10.1038/s41586-018-0185-0
10.1109/JSEN.2007.912552
10.1021/nn101861n
10.1021/acsnano.7b08344
10.1118/1.4939228
10.1002/mp.12299
10.1016/j.sna.2010.04.037
10.1002/aisy.202070052
10.1038/s41578-018-0016-9
10.1109/LRA.2019.2894907
10.1109/TRO.2015.2424051
10.3390/mi10020104
10.1002/aisy.201900069
10.1038/s41467-018-06491-9
10.1109/LRA.2018.2846800
10.1109/TRO.2013.2257581
10.1063/1.3079655
10.1109/TRO.2018.2875393
10.1109/TRO.2011.2170330
10.1177/0278364918784366
10.1109/JPROC.2014.2385105
10.1007/s11517-009-0574-5
10.1063/1.1684235
10.1038/ncomms4124
10.1109/TRO.2018.2885218
10.1038/nature25443
10.1016/j.cis.2019.04.003
10.1002/aisy.201900035
10.3390/mi6091346
10.1016/j.sna.2010.08.014
10.1109/TMAG.2012.2205014
10.1097/HP.0000000000000112
10.1109/TMAG.2019.2917370
10.1109/TRO.2017.2694841
10.1161/CIRCEP.110.959692
10.1038/s41467-019-13576-6
10.1109/TRO.2009.2028761
10.1109/TRO.2013.2281557
10.1177/0278364916683443
10.1109/TRO.2017.2719687
10.1016/j.mechmachtheory.2019.04.008
10.1017/S0263574709990361
10.1111/j.1540-8167.2007.00708.x
10.1002/adfm.201502248
10.1146/annurev-bioeng-010510-103409
ContentType Journal Article
Copyright 2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID 24P
WIN
AAYXX
CITATION
DOA
DOI 10.1002/aisy.202000082
DatabaseName Wiley Online Library
Wiley Online Library Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef


Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: http://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EISSN 2640-4567
EndPage n/a
ExternalDocumentID oai_doaj_org_article_a493b0e4a7ae4944a6d9f8833e89bd5c
10_1002_aisy_202000082
AISY202000082
Genre article
GrantInformation_xml – fundername: Chinese University of Hong Kong
  funderid: 3133228; 4055111
– fundername: Innovation and Technology Commission
  funderid: MRP/036/18X; ITS/374/18FP
– fundername: Research Grants Council, University Grants Committee
  funderid: 14218516; JLFS/E-402/18
GroupedDBID 0R~
1OC
24P
AAFWJ
AAHHS
ACCFJ
ACXQS
ADKYN
ADZMN
ADZOD
AEEZP
AEQDE
AFKRA
AFPKN
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ARAPS
ARCSS
AVUZU
BENPR
BGLVJ
CCPQU
EBS
EJD
GROUPED_DOAJ
HCIFZ
IAO
M~E
OK1
PIMPY
WIN
AAYXX
CITATION
ITC
ID FETCH-LOGICAL-c3252-c4a37794821f7d322a3902d422113c1bae12f9abf47d7ba32de869187cdd41243
IEDL.DBID DOA
ISSN 2640-4567
IngestDate Tue Oct 22 15:14:40 EDT 2024
Thu Sep 26 19:49:15 EDT 2024
Sat Aug 24 01:36:39 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3252-c4a37794821f7d322a3902d422113c1bae12f9abf47d7ba32de869187cdd41243
ORCID 0000-0003-1152-8962
OpenAccessLink https://doaj.org/article/a493b0e4a7ae4944a6d9f8833e89bd5c
PageCount 18
ParticipantIDs doaj_primary_oai_doaj_org_article_a493b0e4a7ae4944a6d9f8833e89bd5c
crossref_primary_10_1002_aisy_202000082
wiley_primary_10_1002_aisy_202000082_AISY202000082
PublicationCentury 2000
PublicationDate September 2020
2020-09-00
2020-09-01
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: September 2020
PublicationDecade 2020
PublicationTitle Advanced intelligent systems
PublicationYear 2020
Publisher Wiley
Publisher_xml – name: Wiley
References 2010; 12
2017; 439
2013; 66
2017; 03
2019; 10
2013; 61
2006; 36
1958; 56
2014; 24
2013; 5
2012; 12
2016; 35
2010; 23
2018; 6
2018; 9
2018; 8
2018; 3
2010; 26
2009; 10
2009; 94
2010; 28
2005; 102
2019; 24
2006; 25
2019; 25
2016; 43
2012; 28
2012; 26
2012; 24
2010; 4
2018; 37
2019; 8
2019; 7
2007; 18
2018; 28
2019; 4
2019; 3
2019; 5
2015; 51
2019; 2
2019; 1
2018; 107
2019; 35
2020; 39
2016; 10
2010; 163
2013; 103
2010; 161
2014; 271
2011; 4
2011; 3
2016; 14
2007; 14
2018; 25
2016; 11
2010; 42
2018; 17
2010; 48
2010; 46
2013; 74
2008; 44
2014; 30
2018; 12
2005; 15
2017; 545
2016; 9
2009; 106
2015; 35
2013; 29
2017; 2
2013; 25
2019; 55
2017; 44
2015; 31
2011; 10
2008; 8
2007; 34
2017; 9
2013; 19
1922; 61
2014; 5
2015; 49
2001
2017; 36
2017; 33
2019; 67
2010; 157
2011; 21
2000; 288
2011; 25
2014; 50
2010; 72
2010; 36A
2009; 25
2015; 6
2013; 49
2012
2010
2017; 22
2005; 437
2019; 269
2007
2011; 38
2011; 171
2009; 29
2014; 107
2015; 25
2013; 32
2017; 17
2020
2018; 558
2015; 20
2013; 30
2018; 554
2019
2018
2017
103
1970; 41
2016
2009; 6
2015
2014
2019; 139
2013
2012; 6
2010; 96
e_1_2_8_49_1
e_1_2_8_68_1
e_1_2_8_132_1
e_1_2_8_155_1
e_1_2_8_178_1
e_1_2_8_5_1
Yim S. (e_1_2_8_14_1) 2013; 61
e_1_2_8_151_1
e_1_2_8_9_1
e_1_2_8_170_1
e_1_2_8_22_1
Yang L. (e_1_2_8_38_1); 2020
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_87_1
e_1_2_8_113_1
e_1_2_8_136_1
e_1_2_8_159_1
e_1_2_8_174_1
e_1_2_8_60_1
e_1_2_8_83_1
Kim S. H. (e_1_2_8_84_1) 2013; 19
e_1_2_8_19_1
Hwang J. (e_1_2_8_24_1); 2020
e_1_2_8_109_1
e_1_2_8_15_1
Kratochvil B. E. (e_1_2_8_107_1) 2014
Hoang M. C. (e_1_2_8_91_1) 2019; 25
e_1_2_8_120_1
e_1_2_8_143_1
e_1_2_8_166_1
e_1_2_8_95_1
e_1_2_8_99_1
Heunis C. M. (e_1_2_8_126_1); 2020
e_1_2_8_105_1
e_1_2_8_128_1
e_1_2_8_181_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_101_1
e_1_2_8_124_1
e_1_2_8_147_1
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_133_1
e_1_2_8_179_1
e_1_2_8_110_1
e_1_2_8_152_1
e_1_2_8_6_1
Go G. (e_1_2_8_57_1) 2015; 51
McCaslin M. F. (e_1_2_8_26_1) 1958; 56
e_1_2_8_21_1
e_1_2_8_67_1
e_1_2_8_171_1
e_1_2_8_44_1
e_1_2_8_86_1
e_1_2_8_118_1
e_1_2_8_63_1
e_1_2_8_175_1
e_1_2_8_40_1
e_1_2_8_82_1
e_1_2_8_114_1
e_1_2_8_156_1
e_1_2_8_18_1
e_1_2_8_37_1
e_1_2_8_79_1
Filgueiras-Rama D. (e_1_2_8_117_1) 2013; 74
Nguyen K. T. (e_1_2_8_182_1) 2020
e_1_2_8_94_1
e_1_2_8_144_1
e_1_2_8_90_1
e_1_2_8_121_1
e_1_2_8_163_1
e_1_2_8_98_1
e_1_2_8_140_1
e_1_2_8_10_1
e_1_2_8_56_1
e_1_2_8_106_1
e_1_2_8_33_1
e_1_2_8_75_1
e_1_2_8_129_1
e_1_2_8_52_1
e_1_2_8_102_1
e_1_2_8_148_1
e_1_2_8_71_1
e_1_2_8_125_1
e_1_2_8_167_1
e_1_2_8_28_1
e_1_2_8_47_1
e_1_2_8_3_1
e_1_2_8_81_1
Li D. (e_1_2_8_36_1); 2020
e_1_2_8_111_1
e_1_2_8_130_1
e_1_2_8_153_1
e_1_2_8_7_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_89_1
e_1_2_8_119_1
e_1_2_8_138_1
e_1_2_8_172_1
e_1_2_8_62_1
e_1_2_8_85_1
e_1_2_8_115_1
e_1_2_8_134_1
e_1_2_8_157_1
e_1_2_8_176_1
e_1_2_8_17_1
Heilbronn A. (e_1_2_8_27_1) 1922; 61
e_1_2_8_13_1
e_1_2_8_59_1
Furlani E. P. (e_1_2_8_41_1) 2001
e_1_2_8_70_1
e_1_2_8_122_1
e_1_2_8_141_1
e_1_2_8_164_1
e_1_2_8_97_1
e_1_2_8_160_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_149_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_103_1
e_1_2_8_145_1
e_1_2_8_168_1
e_1_2_8_93_1
e_1_2_8_46_1
e_1_2_8_69_1
e_1_2_8_180_1
e_1_2_8_80_1
e_1_2_8_154_1
e_1_2_8_4_1
e_1_2_8_131_1
e_1_2_8_150_1
e_1_2_8_8_1
e_1_2_8_42_1
e_1_2_8_88_1
e_1_2_8_116_1
e_1_2_8_23_1
e_1_2_8_65_1
e_1_2_8_139_1
e_1_2_8_173_1
e_1_2_8_112_1
e_1_2_8_158_1
e_1_2_8_61_1
e_1_2_8_135_1
e_1_2_8_177_1
e_1_2_8_39_1
Ilami M. (e_1_2_8_137_1); 2020
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_58_1
Yang L. (e_1_2_8_162_1); 2020
e_1_2_8_92_1
e_1_2_8_165_1
e_1_2_8_96_1
e_1_2_8_100_1
e_1_2_8_142_1
e_1_2_8_161_1
e_1_2_8_31_1
e_1_2_8_77_1
e_1_2_8_127_1
e_1_2_8_12_1
e_1_2_8_54_1
e_1_2_8_108_1
e_1_2_8_73_1
e_1_2_8_123_1
e_1_2_8_169_1
e_1_2_8_50_1
e_1_2_8_104_1
e_1_2_8_146_1
References_xml – volume: 3
  start-page: 4367
  year: 2018
  publication-title: IEEE Robot. Autom. Lett.
– volume: 14
  start-page: 92
  year: 2007
  publication-title: IEEE Robot. Autom. Mag.
– volume: 24
  start-page: 505
  year: 2019
  publication-title: IEEE/ASME Trans. Mechatron.
– volume: 49
  start-page: 811
  year: 2013
  publication-title: IEEE Trans. Magn.
– volume: 35
  start-page: 428
  year: 2015
  publication-title: J. Med. Biol. Eng.
– volume: 33
  start-page: 1398
  year: 2017
  publication-title: IEEE Trans. Robot.
– volume: 49
  start-page: 101
  year: 2015
  publication-title: J. Clin. Gastroenterol.
– volume: 4
  start-page: 6228
  year: 2010
  publication-title: ACS Nano
– volume: 161
  start-page: 297
  year: 2010
  publication-title: Sens. Actuators A
– start-page: 626
  year: 2018
– start-page: 4392
  year: 2016
– volume: 2
  start-page: 1900086
  year: 2019
  publication-title: Adv. Intell. Syst.
– volume: 14
  start-page: 1266
  year: 2016
  publication-title: Clin. Gastroenterol. Hepatol.
– volume: 37
  start-page: 912
  year: 2018
  publication-title: Int. J. Robot. Res.
– volume: 44
  start-page: 2367
  year: 2008
  publication-title: IEEE Trans. Magn.
– volume: 25
  start-page: 1332
  year: 2009
  publication-title: IEEE Trans. Robot.
– volume: 24
  start-page: 4397
  year: 2014
  publication-title: Adv. Funct. Mater.
– volume: 25
  start-page: 1666
  year: 2015
  publication-title: Adv. Funct. Mater.
– volume: 2020
  start-page: 490
  issue: 17
  publication-title: IEEE Trans. Autom. Sci. Eng.
– volume: 29
  start-page: 1060
  year: 2013
  publication-title: IEEE Trans. Robot.
– volume: 61
  start-page: 284
  year: 1922
  publication-title: Jahrb. Wiss. Bot.
– volume: 19
  start-page: 1651
  year: 2013
  publication-title: IEEE/ASME Trans. Mechatron.
– volume: 67
  start-page: 1517
  year: 2019
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 44
  start-page: e91
  year: 2017
  publication-title: Med. Phys.
– volume: 43
  start-page: 650
  year: 2016
  publication-title: Med. Phys.
– volume: 10
  start-page: 2703
  year: 2019
  publication-title: Nat. Commun.
– volume: 30
  start-page: 411
  year: 2013
  publication-title: IEEE Trans. Robot.
– year: 2014
– volume: 41
  start-page: 122
  year: 1970
  publication-title: Rev. Sci. Instrum.
– volume: 103
  start-page: 172404
  year: 2013
  publication-title: Appl. Phys. Lett.
– volume: 5
  start-page: 1259
  year: 2013
  publication-title: Nanoscale
– volume: 33
  start-page: 227
  year: 2017
  publication-title: IEEE Trans. Robot.
– volume: 3
  start-page: 57
  year: 2019
  publication-title: Annu. Rev. Control Robot. Autom. Syst.
– volume: 31
  start-page: 117
  year: 2015
  publication-title: IEEE Trans. Robot.
– volume: 6
  start-page: 54
  year: 2018
  publication-title: Soft Robot.
– start-page: 576
  year: 2010
– volume: 545
  start-page: 406
  year: 2017
  publication-title: Nature
– volume: 4
  start-page: eaax7329
  year: 2019
  publication-title: Sci. Robot.
– volume: 9
  start-page: 37
  year: 2017
  publication-title: Appl. Mater. Today
– volume: 24
  start-page: 811
  year: 2012
  publication-title: Adv. Mater.
– volume: 33
  start-page: 583
  year: 2017
  publication-title: IEEE Trans. Robot.
– volume: 1
  start-page: 1900035
  year: 2019
  publication-title: Adv. Intell. Syst.
– volume: 4
  start-page: 4185
  year: 2019
  publication-title: IEEE Robot. Autom. Lett.
– start-page: 50
  year: 2018
– volume: 23
  start-page: 153
  year: 2010
  publication-title: Magn. Reson. Mat. Phys. Biol. Med.
– year: 2020
  publication-title: IEEE/ASME Trans. Mechatron.
– volume: 24
  start-page: 154
  year: 2019
  publication-title: IEEE/ASME Trans. Mechatron.
– volume: 38
  start-page: 4994
  year: 2011
  publication-title: Med. Phys.
– volume: 56
  start-page: 571
  year: 1958
  publication-title: Trans. Am. Ophthalmol. Soc.
– volume: 33
  start-page: 1013
  year: 2017
  publication-title: IEEE Trans. Robot.
– volume: 8
  start-page: 461
  year: 2018
  publication-title: Quant. Imaging Med. Surg.
– volume: 3
  start-page: 74
  year: 2018
  publication-title: Nat. Rev. Mater.
– start-page: 149
  year: 2015
– start-page: 3594
  year: 2017
– volume: 102
  start-page: 3924
  year: 2005
– volume: 22
  start-page: 2265
  year: 2017
  publication-title: IEEE/ASME Trans. Mechatron.
– volume: 28
  start-page: 183
  year: 2012
  publication-title: IEEE Trans. Robot.
– volume: 437
  start-page: 862
  year: 2005
  publication-title: Nature
– volume: 17
  start-page: 751
  year: 2017
  publication-title: Lab Chip
– volume: 36
  start-page: 68
  year: 2017
  publication-title: Int. J. Robot. Res.
– volume: 35
  start-page: 174
  year: 2019
  publication-title: IEEE Trans. Robot.
– volume: 10
  start-page: 5631
  year: 2019
  publication-title: Nat. Commun.
– volume: 35
  start-page: 129
  year: 2016
  publication-title: Int. J. Robot. Res.
– volume: 31
  start-page: 714
  year: 2015
  publication-title: IEEE Trans. Robot.
– volume: 50
  start-page: 1
  year: 2014
  publication-title: IEEE Trans. Magn.
– volume: 36A
  start-page: 223
  year: 2010
  publication-title: Concepts Magn. Reson. A
– year: 2007
– volume: 4
  start-page: 1224
  year: 2019
  publication-title: IEEE Robot. Autom. Lett.
– volume: 9
  start-page: 3944
  year: 2018
  publication-title: Nat. Commun.
– volume: 7
  start-page: 10
  year: 2019
  publication-title: Soft Robot.
– volume: 48
  start-page: 139
  year: 2010
  publication-title: Med. Biol. Eng. Comput.
– volume: 55
  start-page: 1
  year: 2019
  publication-title: IEEE Trans. Magn.
– volume: 94
  start-page: 064107
  year: 2009
  publication-title: Appl. Phys. Lett.
– volume: 61
  start-page: 513
  year: 2013
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 66
  start-page: 116
  year: 2013
  publication-title: Rev. Esp. Cardiol.
– volume: 03
  start-page: 1850002
  year: 2017
  publication-title: J. Med. Robot. Res.
– volume: 4
  start-page: eaav8006
  year: 2019
  publication-title: Sci. Robot.
– volume: 4
  start-page: 770
  year: 2011
  publication-title: Circ.: Arrhythmia Electrophysiol.
– volume: 439
  start-page: 294
  year: 2017
  publication-title: J. Magn. Magn. Mater.
– volume: 139
  start-page: 34
  year: 2019
  publication-title: Mech. Mach. Theory
– volume: 10
  start-page: 104
  year: 2019
  publication-title: Micromachines
– volume: 12
  start-page: 55
  year: 2010
  publication-title: Annu. Rev. Biomed. Eng.
– volume: 4
  start-page: eaav4494
  year: 2019
  publication-title: Sci. Robot.
– volume: 17
  start-page: 1705
  year: 2017
  publication-title: Lab Chip
– volume: 288
  start-page: 2335
  year: 2000
  publication-title: Science
– volume: 8
  start-page: 3691
  year: 2018
  publication-title: Sci. Rep.
– volume: 9
  start-page: 313
  year: 2016
  publication-title: Ther. Adv. Gastroenter.
– volume: 12
  start-page: 1
  year: 2012
  publication-title: Microfluid. Nanofluid.
– volume: 25
  start-page: 5333
  year: 2015
  publication-title: Adv. Funct. Mater.
– volume: 25
  start-page: 1007
  year: 2011
  publication-title: Adv. Robot.
– volume: 12
  start-page: 156
  year: 2012
  publication-title: Nano Lett.
– volume: 2020
  start-page: 254
  issue: 36
  publication-title: IEEE Trans. Robot.
– volume: 8
  start-page: 1900213
  year: 2019
  publication-title: Adv. Healthc. Mater.
– volume: 3
  start-page: 2957
  year: 2018
  publication-title: IEEE Robot. Autom. Lett.
– volume: 3
  start-page: 557
  year: 2011
  publication-title: Nanoscale
– volume: 2020
  start-page: 4700
  issue: 67
  publication-title: IEEE Trans. Ind. Electron.
– volume: 10
  start-page: 747
  year: 2011
  publication-title: Nat. Mater.
– volume: 6
  start-page: 1346
  year: 2015
  publication-title: Micromachines
– start-page: 4686
  year: 2014
– start-page: 1
  year: 2019
– volume: 35
  start-page: 114
  year: 2016
  publication-title: Int. J. Robot. Res.
– volume: 18
  start-page: S26
  year: 2007
  publication-title: J. Cardiovasc. Electrophysiol.
– start-page: 8890
  year: 2019
– year: 2001
– start-page: 2017
  year: 2014
– volume: 2020
  start-page: 704
  issue: 5
  publication-title: IEEE Robot. Autom. Lett.
– volume: 2020
  start-page: 2500
  issue: 10
  publication-title: Sci. Rep.
– volume: 11
  start-page: 941
  year: 2016
  publication-title: Nat. Nanotechnol.
– volume: 37
  start-page: 1359
  year: 2018
  publication-title: Int. J. Robot. Res.
– volume: 8
  start-page: 29
  year: 2008
  publication-title: IEEE Sens. J.
– volume: 12
  start-page: 2539
  year: 2018
  publication-title: ACS Nano
– volume: 26
  start-page: 1238
  year: 2012
  publication-title: Surg. Endosc.
– volume: 24
  start-page: 902
  year: 2019
  publication-title: IEEE/ASME Trans. Mechatron.
– volume: 28
  start-page: 172
  year: 2012
  publication-title: IEEE Trans. Robot.
– volume: 558
  start-page: 274
  year: 2018
  publication-title: Nature
– volume: 106
  start-page: 703
  year: 2009
– volume: 3
  start-page: eaar7650
  year: 2018
  publication-title: Sci. Robot.
– volume: 25
  start-page: 71
  year: 2018
  publication-title: IEEE Robot. Autom. Mag.
– start-page: 4996
  year: 2013
– volume: 10
  start-page: 370
  year: 2019
  publication-title: Micromachines
– volume: 51
  start-page: 1
  year: 2015
  publication-title: IEEE Trans. Magn.
– volume: 2
  start-page: eaaq1155
  year: 2017
  publication-title: Sci. Robot.
– volume: 24
  start-page: 1208
  year: 2019
  publication-title: IEEE/ASME Trans. Mechatron.
– volume: 107
  start-page: 10
  year: 2018
  publication-title: Robot. Auton. Syst.
– volume: 25
  start-page: 527
  year: 2006
  publication-title: Int. J. Robot. Res.
– volume: 269
  start-page: 1
  year: 2019
  publication-title: Adv. Colloid Interface Sci.
– volume: 4
  start-page: 2325
  year: 2019
  publication-title: IEEE Robot. Autom. Lett.
– start-page: 151
  year: 2014
– volume: 32
  start-page: 346
  year: 2013
  publication-title: Int. J. Robot. Res.
– volume: 96
  start-page: 024102
  year: 2010
  publication-title: Appl. Phys. Lett.
– start-page: 181
  year: 2017
– volume: 163
  start-page: 410
  year: 2010
  publication-title: Sens. Actuators A
– volume: 171
  start-page: 429
  year: 2011
  publication-title: Sens. Actuators A
– volume: 74
  start-page: e3658
  year: 2013
  publication-title: J. Vis. Exp.
– volume: 2020
  start-page: 1
  issue: 13
  publication-title: Intell. Serv. Robot.
– volume: 25
  start-page: 1332
  year: 2019
  publication-title: IEEE Trans. Syst. Man Cybern.
– volume: 34
  start-page: 3135
  year: 2007
  publication-title: Med. Phys.
– volume: 9
  start-page: 3260
  year: 2018
  publication-title: Nat. Commun.
– volume: 21
  start-page: 357
  year: 2011
  publication-title: Mechatronics
– volume: 15
  start-page: 1317
  year: 2005
  publication-title: IEEE Trans. Appl. Supercond.
– start-page: 9814
  year: 2019
– start-page: 4837
  year: 2017
– volume: 157
  start-page: 118
  year: 2010
  publication-title: Sens. Actuators A
– start-page: 2474
  year: 2019
– volume: 20
  start-page: 2067
  year: 2015
  publication-title: IEEE/ASME Trans. Mechatron.
– start-page: 3608
  year: 2018
– start-page: 2070052
  year: 2020
  publication-title: Adv. Intell. Syst.
– volume: 29
  start-page: 613
  year: 2009
  publication-title: Int. J. Robot. Res.
– volume: 42
  start-page: 148
  year: 2010
  publication-title: Endoscopy
– volume: 107
  start-page: 343
  year: 2014
  publication-title: Health Phys.
– volume: 17
  start-page: 697
  year: 2018
  publication-title: IEEE Trans. Nanotechnol.
– volume: 25
  start-page: 5863
  year: 2013
  publication-title: Adv. Mater.
– volume: 1
  start-page: 1900069
  year: 2019
  publication-title: Adv. Intell. Syst.
– volume: 39
  start-page: 617
  year: 2020
  publication-title: Int. J. Robot. Res.
– volume: 35
  start-page: 343
  year: 2019
  publication-title: IEEE Trans. Robot.
– volume: 10
  start-page: 27
  year: 2009
  publication-title: Int. J. Precis. Eng. Manuf.
– volume: 28
  start-page: 1870174
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 46
  start-page: 1943
  year: 2010
  publication-title: IEEE Trans. Magn.
– volume: 28
  start-page: 199
  year: 2010
  publication-title: Robotica
– volume: 5
  start-page: 3124
  year: 2014
  publication-title: Nat. Commun.
– volume: 6
  start-page: 487
  year: 2009
  publication-title: Expert Rev. Med. Devices
– volume: 10
  start-page: 73
  year: 2016
  publication-title: Int. J. Optomechatronics
– volume: 72
  start-page: 836
  year: 2010
  publication-title: Gastrointest. Endosc.
– volume: 271
  start-page: 862
  year: 2014
  publication-title: Radiology
– start-page: 859
  year: 2012
– volume: 554
  start-page: 81
  year: 2018
  publication-title: Nature
– volume: 36
  start-page: 4
  year: 2006
  publication-title: Braz. J. Phys.
– start-page: 6156
  year: 2017
– volume: 4
  start-page: eaav4317
  year: 2019
  publication-title: Sci. Robot.
– start-page: 883
  year: 2019
– start-page: 3600
  year: 2017
– volume: 30
  start-page: 719
  year: 2014
  publication-title: IEEE Trans. Robot.
– volume: 2020
  start-page: 1900110
  issue: 2
  publication-title: Adv. Intell. Syst.
– volume: 5
  start-page: eaau9650
  year: 2019
  publication-title: Sci. Adv.
– volume: 2
  start-page: eaam6431
  year: 2017
  publication-title: Sci. Robot.
– volume: 6
  start-page: 5
  year: 2012
  publication-title: J. Robot. Surg.
– volume: 103
  start-page: 205
– volume: 30
  start-page: 49
  year: 2014
  publication-title: IEEE Trans. Robot.
– volume: 3
  start-page: 113
  year: 2018
  publication-title: Nat. Rev. Mater.
– volume: 26
  start-page: 1006
  year: 2010
  publication-title: IEEE Trans. Robot.
– start-page: 5380
  year: 2018
– ident: e_1_2_8_3_1
  doi: 10.1126/scirobotics.aam6431
– ident: e_1_2_8_82_1
  doi: 10.1109/TMECH.2018.2876617
– ident: e_1_2_8_2_1
  doi: 10.1039/C2NR32554C
– ident: e_1_2_8_4_1
  doi: 10.1038/545406a
– ident: e_1_2_8_37_1
  doi: 10.1177/0278364915583539
– ident: e_1_2_8_180_1
  doi: 10.1109/TASC.2005.849580
– ident: e_1_2_8_45_1
  doi: 10.1146/annurev-control-081219-082713
– ident: e_1_2_8_169_1
  doi: 10.1002/adfm.201403891
– volume: 19
  start-page: 1651
  year: 2013
  ident: e_1_2_8_84_1
  publication-title: IEEE/ASME Trans. Mechatron.
  contributor:
    fullname: Kim S. H.
– ident: e_1_2_8_31_1
  doi: 10.1109/TMAG.2014.2303784
– ident: e_1_2_8_78_1
  doi: 10.1109/TRO.2014.2380591
– ident: e_1_2_8_160_1
  doi: 10.1038/s41467-018-05749-6
– ident: e_1_2_8_171_1
  doi: 10.1002/adhm.201900213
– ident: e_1_2_8_42_1
  doi: 10.1109/LRA.2019.2902742
– ident: e_1_2_8_71_1
– ident: e_1_2_8_72_1
  doi: 10.1007/s12541-009-0068-2
– ident: e_1_2_8_6_1
  doi: 10.1038/s41578-018-0001-3
– ident: e_1_2_8_97_1
– ident: e_1_2_8_76_1
  doi: 10.1016/j.jmmm.2017.05.001
– ident: e_1_2_8_20_1
  doi: 10.1039/C0NR00566E
– ident: e_1_2_8_181_1
  doi: 10.21037/qims.2018.06.07
– ident: e_1_2_8_108_1
– ident: e_1_2_8_80_1
  doi: 10.1109/TNANO.2018.2815978
– ident: e_1_2_8_102_1
  doi: 10.1097/MCG.0000000000000110
– ident: e_1_2_8_74_1
  doi: 10.1586/erd.09.32
– ident: e_1_2_8_111_1
  doi: 10.1002/adfm.201400275
– ident: e_1_2_8_139_1
  doi: 10.1177/1756283X16633052
– ident: e_1_2_8_112_1
  doi: 10.3390/mi10060370
– ident: e_1_2_8_16_1
  doi: 10.1126/science.288.5475.2335
– ident: e_1_2_8_53_1
  doi: 10.1590/S0103-97332006000100004
– ident: e_1_2_8_87_1
  doi: 10.1016/j.sna.2009.11.011
– ident: e_1_2_8_173_1
  doi: 10.1002/adma.201301484
– ident: e_1_2_8_79_1
  doi: 10.1109/LRA.2019.2931234
– ident: e_1_2_8_17_1
  doi: 10.1177/0278364912472381
– ident: e_1_2_8_33_1
  doi: 10.1109/TMECH.2019.2907656
– volume-title: Experimental Robotic
  year: 2014
  ident: e_1_2_8_107_1
  contributor:
    fullname: Kratochvil B. E.
– ident: e_1_2_8_165_1
  doi: 10.1073/pnas.0807698106
– ident: e_1_2_8_48_1
– ident: e_1_2_8_75_1
  doi: 10.1109/TMAG.2008.2002505
– ident: e_1_2_8_15_1
  doi: 10.1089/soro.2018.0171
– ident: e_1_2_8_29_1
  doi: 10.1109/TRO.2010.2073030
– ident: e_1_2_8_23_1
  doi: 10.1109/MRA.2017.2787784
– ident: e_1_2_8_10_1
  doi: 10.1126/scirobotics.aav4317
– ident: e_1_2_8_77_1
  doi: 10.1163/016918611X568620
– ident: e_1_2_8_101_1
  doi: 10.1109/TMECH.2014.2362117
– volume: 74
  start-page: e3658
  year: 2013
  ident: e_1_2_8_117_1
  publication-title: J. Vis. Exp.
  contributor:
    fullname: Filgueiras-Rama D.
– ident: e_1_2_8_179_1
  doi: 10.1039/C6LC01435F
– ident: e_1_2_8_35_1
  doi: 10.1109/TMECH.2017.2743021
– ident: e_1_2_8_13_1
  doi: 10.1126/scirobotics.aax7329
– ident: e_1_2_8_60_1
  doi: 10.1002/9783527610174
– ident: e_1_2_8_64_1
  doi: 10.1007/s00464-011-2054-x
– ident: e_1_2_8_7_1
  doi: 10.1126/scirobotics.aar7650
– ident: e_1_2_8_70_1
  doi: 10.1063/1.3291112
– ident: e_1_2_8_25_1
  doi: 10.1016/j.apmt.2017.04.006
– volume: 61
  start-page: 284
  year: 1922
  ident: e_1_2_8_27_1
  publication-title: Jahrb. Wiss. Bot.
  contributor:
    fullname: Heilbronn A.
– ident: e_1_2_8_144_1
  doi: 10.1002/adma.201103818
– ident: e_1_2_8_46_1
  doi: 10.1177/0278364914558006
– ident: e_1_2_8_58_1
  doi: 10.1109/TMECH.2019.2893166
– ident: e_1_2_8_68_1
  doi: 10.1016/j.cgh.2016.05.013
– ident: e_1_2_8_103_1
  doi: 10.1109/TRO.2014.2300591
– ident: e_1_2_8_172_1
  doi: 10.1002/adfm.201870174
– ident: e_1_2_8_123_1
– ident: e_1_2_8_114_1
  doi: 10.1002/aisy.201900086
– ident: e_1_2_8_94_1
  doi: 10.1177/0278364906065389
– ident: e_1_2_8_49_1
  doi: 10.1016/j.robot.2018.05.002
– volume: 61
  start-page: 513
  year: 2013
  ident: e_1_2_8_14_1
  publication-title: IEEE Trans. Biomed. Eng.
  contributor:
    fullname: Yim S.
– ident: e_1_2_8_130_1
  doi: 10.1089/soro.2018.0019
– ident: e_1_2_8_54_1
  doi: 10.1002/cmr.a.20163
– ident: e_1_2_8_140_1
  doi: 10.1016/j.gie.2010.06.016
– ident: e_1_2_8_18_1
  doi: 10.1039/C7LC00064B
– ident: e_1_2_8_106_1
  doi: 10.1080/15599612.2016.1166305
– ident: e_1_2_8_83_1
  doi: 10.1016/j.mechatronics.2010.09.001
– volume-title: Permanent Magnet and Electromechanical Devices: Materials, Analysis, and Applications
  year: 2001
  ident: e_1_2_8_41_1
  contributor:
    fullname: Furlani E. P.
– ident: e_1_2_8_167_1
  doi: 10.1126/sciadv.aau9650
– ident: e_1_2_8_98_1
– ident: e_1_2_8_92_1
– ident: e_1_2_8_150_1
  doi: 10.1177/0278364909353351
– ident: e_1_2_8_30_1
  doi: 10.1109/TRO.2013.2289019
– ident: e_1_2_8_176_1
  doi: 10.1007/s10404-011-0903-5
– ident: e_1_2_8_12_1
  doi: 10.1038/s41598-018-22110-5
– ident: e_1_2_8_65_1
  doi: 10.1007/s11701-011-0332-1
– ident: e_1_2_8_95_1
  doi: 10.1109/TBME.2019.2939419
– ident: e_1_2_8_131_1
  doi: 10.1118/1.3622599
– ident: e_1_2_8_120_1
– ident: e_1_2_8_34_1
  doi: 10.1177/0278364918801502
– ident: e_1_2_8_161_1
  doi: 10.1126/scirobotics.aav8006
– ident: e_1_2_8_113_1
  doi: 10.1016/j.recesp.2012.10.003
– ident: e_1_2_8_59_1
– volume: 2020
  start-page: 254
  issue: 36
  ident: e_1_2_8_162_1
  publication-title: IEEE Trans. Robot.
  contributor:
    fullname: Yang L.
– ident: e_1_2_8_154_1
  doi: 10.1038/s41467-019-10549-7
– volume: 25
  start-page: 1332
  year: 2019
  ident: e_1_2_8_91_1
  publication-title: IEEE Trans. Syst. Man Cybern.
  contributor:
    fullname: Hoang M. C.
– ident: e_1_2_8_96_1
  doi: 10.1109/TMECH.2019.2910269
– ident: e_1_2_8_118_1
– ident: e_1_2_8_157_1
  doi: 10.1038/nmat3090
– ident: e_1_2_8_170_1
  doi: 10.1126/scirobotics.aaq1155
– ident: e_1_2_8_32_1
– volume: 2020
  start-page: 490
  issue: 17
  ident: e_1_2_8_38_1
  publication-title: IEEE Trans. Autom. Sci. Eng.
  contributor:
    fullname: Yang L.
– ident: e_1_2_8_129_1
  doi: 10.1109/TRO.2016.2623339
– ident: e_1_2_8_52_1
  doi: 10.1109/TMAG.2010.2040144
– ident: e_1_2_8_63_1
  doi: 10.1055/s-0029-1243808
– ident: e_1_2_8_85_1
  doi: 10.1016/j.sna.2011.08.020
– ident: e_1_2_8_93_1
  doi: 10.1109/TRO.2016.2638446
– ident: e_1_2_8_11_1
  doi: 10.1038/nnano.2016.137
– ident: e_1_2_8_147_1
  doi: 10.1038/nature04090
– ident: e_1_2_8_148_1
  doi: 10.1021/nl2032487
– ident: e_1_2_8_69_1
  doi: 10.1109/TRO.2011.2163861
– ident: e_1_2_8_132_1
  doi: 10.1007/s10334-010-0214-y
– ident: e_1_2_8_156_1
  doi: 10.1073/pnas.0500807102
– volume: 2020
  start-page: 2500
  issue: 10
  ident: e_1_2_8_137_1
  publication-title: Sci. Rep.
  contributor:
    fullname: Ilami M.
– ident: e_1_2_8_110_1
  doi: 10.1063/1.4826141
– ident: e_1_2_8_127_1
  doi: 10.1007/s40846-015-0055-2
– ident: e_1_2_8_152_1
  doi: 10.1126/scirobotics.aav4494
– ident: e_1_2_8_121_1
– ident: e_1_2_8_134_1
  doi: 10.1118/1.2750963
– ident: e_1_2_8_136_1
  doi: 10.1142/S2424905X18500022
– ident: e_1_2_8_86_1
  doi: 10.1109/MRA.2007.380641
– ident: e_1_2_8_133_1
  doi: 10.1148/radiol.14132041
– ident: e_1_2_8_119_1
– ident: e_1_2_8_44_1
  doi: 10.1177/0278364920903107
– ident: e_1_2_8_104_1
  doi: 10.1002/aisy.201900110
– ident: e_1_2_8_135_1
– volume: 51
  start-page: 1
  year: 2015
  ident: e_1_2_8_57_1
  publication-title: IEEE Trans. Magn.
  contributor:
    fullname: Go G.
– ident: e_1_2_8_99_1
  doi: 10.1109/LRA.2018.2863358
– ident: e_1_2_8_158_1
  doi: 10.1038/s41586-018-0185-0
– ident: e_1_2_8_166_1
  doi: 10.1109/JSEN.2007.912552
– ident: e_1_2_8_149_1
  doi: 10.1021/nn101861n
– ident: e_1_2_8_174_1
  doi: 10.1021/acsnano.7b08344
– ident: e_1_2_8_56_1
  doi: 10.1118/1.4939228
– ident: e_1_2_8_105_1
– ident: e_1_2_8_22_1
  doi: 10.1002/mp.12299
– volume: 2020
  start-page: 4700
  issue: 67
  ident: e_1_2_8_36_1
  publication-title: IEEE Trans. Ind. Electron.
  contributor:
    fullname: Li D.
– ident: e_1_2_8_88_1
  doi: 10.1016/j.sna.2010.04.037
– ident: e_1_2_8_146_1
  doi: 10.1002/aisy.202070052
– ident: e_1_2_8_5_1
  doi: 10.1038/s41578-018-0016-9
– ident: e_1_2_8_66_1
  doi: 10.1109/LRA.2019.2894907
– ident: e_1_2_8_40_1
  doi: 10.1109/TRO.2015.2424051
– ident: e_1_2_8_178_1
  doi: 10.3390/mi10020104
– ident: e_1_2_8_100_1
– ident: e_1_2_8_81_1
– volume: 2020
  start-page: 704
  issue: 5
  ident: e_1_2_8_126_1
  publication-title: IEEE Robot. Autom. Lett.
  contributor:
    fullname: Heunis C. M.
– ident: e_1_2_8_145_1
  doi: 10.1002/aisy.201900069
– ident: e_1_2_8_153_1
  doi: 10.1038/s41467-018-06491-9
– ident: e_1_2_8_115_1
  doi: 10.1109/LRA.2018.2846800
– ident: e_1_2_8_142_1
  doi: 10.1109/TRO.2013.2257581
– ident: e_1_2_8_143_1
  doi: 10.1063/1.3079655
– ident: e_1_2_8_39_1
– ident: e_1_2_8_124_1
  doi: 10.1109/TRO.2018.2875393
– ident: e_1_2_8_151_1
  doi: 10.1109/TRO.2011.2170330
– ident: e_1_2_8_159_1
  doi: 10.1177/0278364918784366
– ident: e_1_2_8_8_1
  doi: 10.1109/JPROC.2014.2385105
– ident: e_1_2_8_50_1
  doi: 10.1007/s11517-009-0574-5
– ident: e_1_2_8_51_1
  doi: 10.1063/1.1684235
– ident: e_1_2_8_175_1
  doi: 10.1038/ncomms4124
– ident: e_1_2_8_109_1
  doi: 10.1109/TRO.2018.2885218
– ident: e_1_2_8_155_1
  doi: 10.1038/nature25443
– ident: e_1_2_8_177_1
  doi: 10.1016/j.cis.2019.04.003
– year: 2020
  ident: e_1_2_8_182_1
  publication-title: IEEE/ASME Trans. Mechatron.
  contributor:
    fullname: Nguyen K. T.
– volume: 2020
  start-page: 1
  issue: 13
  ident: e_1_2_8_24_1
  publication-title: Intell. Serv. Robot.
  contributor:
    fullname: Hwang J.
– ident: e_1_2_8_55_1
– ident: e_1_2_8_19_1
  doi: 10.1002/aisy.201900035
– ident: e_1_2_8_21_1
  doi: 10.3390/mi6091346
– ident: e_1_2_8_28_1
  doi: 10.1016/j.sna.2010.08.014
– ident: e_1_2_8_43_1
  doi: 10.1109/TMAG.2012.2205014
– ident: e_1_2_8_61_1
  doi: 10.1097/HP.0000000000000112
– ident: e_1_2_8_122_1
  doi: 10.1109/TMAG.2019.2917370
– ident: e_1_2_8_141_1
– ident: e_1_2_8_67_1
  doi: 10.1109/TRO.2017.2694841
– ident: e_1_2_8_116_1
  doi: 10.1161/CIRCEP.110.959692
– ident: e_1_2_8_164_1
  doi: 10.1038/s41467-019-13576-6
– ident: e_1_2_8_89_1
  doi: 10.1109/TRO.2009.2028761
– ident: e_1_2_8_90_1
  doi: 10.1109/TRO.2013.2281557
– ident: e_1_2_8_128_1
  doi: 10.1177/0278364916683443
– volume: 56
  start-page: 571
  year: 1958
  ident: e_1_2_8_26_1
  publication-title: Trans. Am. Ophthalmol. Soc.
  contributor:
    fullname: McCaslin M. F.
– ident: e_1_2_8_47_1
  doi: 10.1109/TRO.2017.2719687
– ident: e_1_2_8_138_1
  doi: 10.1016/j.mechmachtheory.2019.04.008
– ident: e_1_2_8_62_1
  doi: 10.1017/S0263574709990361
– ident: e_1_2_8_125_1
– ident: e_1_2_8_73_1
  doi: 10.1111/j.1540-8167.2007.00708.x
– ident: e_1_2_8_168_1
  doi: 10.1002/adfm.201502248
– ident: e_1_2_8_9_1
  doi: 10.1146/annurev-bioeng-010510-103409
– ident: e_1_2_8_163_1
SSID ssj0002171027
Score 2.5927672
Snippet A magnetic field, which is transparent and relatively safe to biological tissue, is a powerful tool for remote actuation and wireless control of magnetic...
SourceID doaj
crossref
wiley
SourceType Open Website
Aggregation Database
Publisher
SubjectTerms biomedical applications
magnetic actuation
medical robots and systems
microrobots
miniature robots
Title Magnetic Actuation Systems for Miniature Robots: A Review
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faisy.202000082
https://doaj.org/article/a493b0e4a7ae4944a6d9f8833e89bd5c
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ09T8MwEIYt6MSCQIAoX_KAxBTVsS-1zRagVRnKQEGCKTp_BHVJEW0H_j12EiI6dWFMFMXJe4nvLvE9R8j10KFRYHzCjYq_GT1P0BqW2FS4FJVzDmJx8mQmn97UwyhicrpWX3FNWIMHboQbIGhhmAeU6EED4NDpMnbI9Uobl9l69mX6TzIV5-AQaAfPKX8pjYwPcL78Dukgr4MkvuGFalj_ZnBae5fxAdlvw0KaN5dzSHZ8dUT0FD-qWGRI81jmESWkLWGchliTTufVvOZy0ueFWayWtzSnzbf-Y_I6Hr3cT5K21UFiBc94YgEj-Q8UT0vpwkuGQjPugIf8TNjUoE95qdGUIJ00KLjzaqhTJW0QM7hocUJ61aLyp4Qa5qQFITINErxTxjJEhpkFa6AE3Sc3v7defDZEi6JhF_MiilR0IvXJXVSmOyqSqOsdwT5Fa59im336hNe6bhmryB9n793W2X-MfE724gmbBWEXpLf6WvtLsrt066v6YfkBWfDBLw
link.rule.ids 315,783,787,867,2109,27936,27937
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Magnetic+Actuation+Systems+for+Miniature+Robots%3A+A+Review&rft.jtitle=Advanced+intelligent+systems&rft.au=Yang%2C+Zhengxin&rft.au=Zhang%2C+Li&rft.date=2020-09-01&rft.issn=2640-4567&rft.eissn=2640-4567&rft.volume=2&rft.issue=9&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Faisy.202000082&rft.externalDBID=10.1002%252Faisy.202000082&rft.externalDocID=AISY202000082
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2640-4567&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2640-4567&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2640-4567&client=summon