Performance comparison of PRF schedules for medium PRF radar

Previous work has shown how evolutionary algorithms (EAs) are an effective tool in optimising the selection of pulse repetition frequency (PRF) values of medium PRF schedules in an airborne fire control radar (FCR) application requiring target data in three PRFs. The optimisation is driven by the re...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on aerospace and electronic systems Vol. 42; no. 2; pp. 601 - 611
Main Authors: Wiley, D., Parry, S., Alabaster, C., Hughes, E.
Format: Journal Article
Language:English
Published: New York IEEE 01-04-2006
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Previous work has shown how evolutionary algorithms (EAs) are an effective tool in optimising the selection of pulse repetition frequency (PRF) values of medium PRF schedules in an airborne fire control radar (FCR) application requiring target data in three PRFs. The optimisation is driven by the requirement to minimise range/Doppler blindness whilst maintaining full decodability. In this paper we detail work in which the optimisation process is applied to design novel short medium PRF schedules requiring target data in just two PRFs. The paper reports on the testing of a variety of near-optimum schedules to compare their blindness, decoding, and ghosting performances. The results show that in many situations, the 2 of N schedules are a practical alternative to conventional 3 of N processing.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0018-9251
1557-9603
DOI:10.1109/TAES.2006.1642575