Taking advantage of a 3D printing imperfection in the development of sound-absorbing materials

•Double-porosity materials can be 3D printed using powders as raw materials.•Main pore network designed; micropores are a side effect of the 3D printing process.•Additional acoustic energy dissipation by pressure diffusion.•Double-porosity phenomena demonstrated in designed 3D printed materials.•3D...

Full description

Saved in:
Bibliographic Details
Published in:Applied acoustics Vol. 197; p. 108941
Main Authors: Zieliński, Tomasz G., Dauchez, Nicolas, Boutin, Thomas, Leturia, Mikel, Wilkinson, Alexandre, Chevillotte, Fabien, Bécot, François-Xavier, Venegas, Rodolfo
Format: Journal Article
Language:English
Published: Elsevier Ltd 01-08-2022
Elsevier
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •Double-porosity materials can be 3D printed using powders as raw materials.•Main pore network designed; micropores are a side effect of the 3D printing process.•Additional acoustic energy dissipation by pressure diffusion.•Double-porosity phenomena demonstrated in designed 3D printed materials.•3D printing with microporosity can be used to develop acoustic materials. At first glance, it seems that modern, inexpensive additive manufacturing (AM) technologies can be used to produce innovative, efficient acoustic materials with tailored pore morphology. However, on closer inspection, it becomes rather obvious that for now this is only possible for specific solutions, such as relatively thin, but narrow-band sound absorbers. This is mainly due to the relatively poor resolutions available in low-cost AM technologies and devices, which prevents the 3D-printing of pore networks with characteristic dimensions comparable to those found in conventional broadband sound-absorbing materials. Other drawbacks relate to a number of imperfections associated with AM technologies, including porosity or rather microporosity inherent in some of them. This paper shows how the limitations mentioned above can be alleviated by 3D-printing double-porosity structures, where the main pore network can be designed and optimised, while the properties of the intentionally microporous skeleton provide the desired permeability contrast, leading to additional broadband sound energy dissipation due to pressure diffusion. The beneficial effect of additively manufactured double porosity and the phenomena associated with it are rigorously demonstrated and validated in this work, both experimentally and through precise multiscale modelling, on a comprehensive example that can serve as benchmark.
AbstractList •Double-porosity materials can be 3D printed using powders as raw materials.•Main pore network designed; micropores are a side effect of the 3D printing process.•Additional acoustic energy dissipation by pressure diffusion.•Double-porosity phenomena demonstrated in designed 3D printed materials.•3D printing with microporosity can be used to develop acoustic materials. At first glance, it seems that modern, inexpensive additive manufacturing (AM) technologies can be used to produce innovative, efficient acoustic materials with tailored pore morphology. However, on closer inspection, it becomes rather obvious that for now this is only possible for specific solutions, such as relatively thin, but narrow-band sound absorbers. This is mainly due to the relatively poor resolutions available in low-cost AM technologies and devices, which prevents the 3D-printing of pore networks with characteristic dimensions comparable to those found in conventional broadband sound-absorbing materials. Other drawbacks relate to a number of imperfections associated with AM technologies, including porosity or rather microporosity inherent in some of them. This paper shows how the limitations mentioned above can be alleviated by 3D-printing double-porosity structures, where the main pore network can be designed and optimised, while the properties of the intentionally microporous skeleton provide the desired permeability contrast, leading to additional broadband sound energy dissipation due to pressure diffusion. The beneficial effect of additively manufactured double porosity and the phenomena associated with it are rigorously demonstrated and validated in this work, both experimentally and through precise multiscale modelling, on a comprehensive example that can serve as benchmark.
At first glance, it seems that modern, inexpensive additive manufacturing (AM) technologies can be used to produce innovative, efficient acoustic materials with tailored pore morphology. However, on closer inspection, it becomes rather obvious that for now this is only possible for specific solutions, such as relatively thin, but narrow-band sound absorbers. This is mainly due to the relatively poor resolutions available in low-cost AM technologies and devices, which prevents the 3D-printing of pore networks with characteristic dimensions comparable to those found in conventional broadband sound-absorbing materials. Other drawbacks relate to a number of imperfections associated with AM technologies, including porosity or rather microporosity inherent in some of them. This paper shows how the limitations mentioned above can be alleviated by 3D-printing double-porosity structures, where the main pore network can be designed and optimised, while the properties of the intentionally microporous skeleton provide the desired permeability contrast, leading to additional broadband sound energy dissipation due to pressure diffusion. The beneficial effect of additively manufactured double porosity and the phenomena associated with it are rigorously demonstrated and validated in this work, both experimentally and through precise multi-scale modelling, on a comprehensive example that can serve as benchmark.
ArticleNumber 108941
Author Dauchez, Nicolas
Leturia, Mikel
Venegas, Rodolfo
Zieliński, Tomasz G.
Bécot, François-Xavier
Wilkinson, Alexandre
Chevillotte, Fabien
Boutin, Thomas
Author_xml – sequence: 1
  givenname: Tomasz G.
  surname: Zieliński
  fullname: Zieliński, Tomasz G.
  email: tzielins@ippt.pan.pl
  organization: Institute of Fundamental Technological Research, Polish Academy of Sciences, ul. Pawińskiego 5B, 02-106 Warsaw, Poland
– sequence: 2
  givenname: Nicolas
  surname: Dauchez
  fullname: Dauchez, Nicolas
  organization: Université de Technologie de Compiègne, Alliance Sorbonne Université, Centre de recherche Royallieu, CS 60319, 60203 Compiègne cedex, France
– sequence: 3
  givenname: Thomas
  surname: Boutin
  fullname: Boutin, Thomas
  organization: Université de Technologie de Compiègne, Alliance Sorbonne Université, Centre de recherche Royallieu, CS 60319, 60203 Compiègne cedex, France
– sequence: 4
  givenname: Mikel
  surname: Leturia
  fullname: Leturia, Mikel
  organization: Université de Technologie de Compiègne, Alliance Sorbonne Université, Centre de recherche Royallieu, CS 60319, 60203 Compiègne cedex, France
– sequence: 5
  givenname: Alexandre
  surname: Wilkinson
  fullname: Wilkinson, Alexandre
  organization: Université de Technologie de Compiègne, Alliance Sorbonne Université, Centre de recherche Royallieu, CS 60319, 60203 Compiègne cedex, France
– sequence: 6
  givenname: Fabien
  surname: Chevillotte
  fullname: Chevillotte, Fabien
  organization: MATELYS – Research Lab, 7 rue des Maraîchers (bâtiment B), F69120 Vaulx-en-Velin, France
– sequence: 7
  givenname: François-Xavier
  surname: Bécot
  fullname: Bécot, François-Xavier
  organization: MATELYS – Research Lab, 7 rue des Maraîchers (bâtiment B), F69120 Vaulx-en-Velin, France
– sequence: 8
  givenname: Rodolfo
  surname: Venegas
  fullname: Venegas, Rodolfo
  organization: University Austral of Chile, Institute of Acoustics, P.O. Box 567, Valdivia, Chile
BackLink https://hal.science/hal-04198669$$DView record in HAL
BookMark eNqFkEtLAzEQgINUsK3-Bdmrh6157PNmqY8KBS8VejLMbiZtajdZkm3Bf-8uVa-ehnl8w8w3ISPrLBJyy-iMUZbd72fQQu2OoZtxynlfLMqEXZAxK3Iel4xuRmRMKRVxVvDNFZmEsO9TytN0TD7W8GnsNgJ1AtvBFiOnI4jEY9R6Y7uhZZoWvca6M85GxkbdDiOFJzy4tkHbDUBwR6tiqILz1YA00KE3cAjX5FL3AW9-4pS8Pz-tF8t49fbyupiv4lrwpIsTAQIShkoj5QKpwBx4lkOVV5ryXAhaIsswT1XKFStrleq00FXBywwqXSoxJXfnvTs4yP7yBvyXdGDkcr6SQ40mrCyyrDyxfjY7z9beheBR_wGMysGo3Mtfo3IwKs9Ge_DhDGL_ycmgl6E2aGtUxvd6pHLmvxXf9nOFbg
CitedBy_id crossref_primary_10_1016_j_apacoust_2023_109788
crossref_primary_10_1016_j_addma_2023_103608
crossref_primary_10_3390_app14052094
crossref_primary_10_1002_adfm_202210160
crossref_primary_10_1007_s11837_023_06260_0
crossref_primary_10_3390_polym15183695
crossref_primary_10_3390_ma17030580
crossref_primary_10_1007_s12613_023_2684_8
crossref_primary_10_1007_s11665_024_09155_6
crossref_primary_10_3390_polym16010005
crossref_primary_10_1016_j_matdes_2024_113026
crossref_primary_10_1016_j_apacoust_2023_109816
crossref_primary_10_1016_j_matdes_2023_112130
crossref_primary_10_1002_advs_202305232
Cites_doi 10.1016/j.apacoust.2020.107496
10.1121/1.4999058
10.1016/j.mprp.2019.05.001
10.1103/PhysRevE.82.036313
10.1016/j.jsv.2021.116687
10.1121/1.4919806
10.1063/1.349482
10.1016/j.pmatsci.2020.100707
10.1121/1.1863052
10.1007/BF00615198
10.1063/1.858194
10.1063/1.4999053
10.1121/1.2945115
10.1016/j.apacoust.2021.108204
10.1007/s00170-020-05853-2
10.1016/j.compositesb.2020.107833
10.1063/1.858523
10.1121/1.2999050
10.1121/1.419690
10.1016/j.jsv.2020.115441
10.1016/S0020-7683(98)00091-2
10.3390/ma14071747
10.1016/j.apacoust.2004.09.008
10.1016/0022-460X(91)90652-Z
10.1016/j.matlet.2016.06.045
10.1121/1.398241
10.1063/1.5119715
10.1017/S0022112087000727
10.1002/9780470727102
10.1016/j.apacoust.2020.107244
10.1016/j.apacoust.2021.108006
10.1016/j.jsv.2017.11.013
10.3390/ma12203397
10.1016/j.apacoust.2017.01.032
10.1016/j.apacoust.2021.108606
10.1063/1.2749486
10.1063/1.5132886
10.1039/C7MH00129K
10.1121/1.3205399
10.1063/5.0054009
10.1016/j.ymssp.2021.108186
10.1121/1.2169923
10.1016/S0020-7225(98)00002-0
10.1063/5.0042563
10.1016/j.apacoust.2018.12.030
10.1063/1.3673523
10.1038/s41598-017-13706-4
10.1063/1.3407659
10.1016/j.jsv.2021.116601
10.1016/j.apacoust.2018.11.026
10.1016/j.compositesb.2018.02.012
10.1016/j.biomaterials.2010.04.050
10.3390/app11083299
10.1121/1.3473696
10.3813/AAA.919202
10.1190/1.1441123
10.1121/1.3644915
10.1006/jsvi.2000.3435
10.1103/PhysRevB.47.4964
10.1016/j.buildenv.2013.10.010
10.1016/j.compositesb.2021.109006
10.1121/1.391962
10.1121/1.2828066
10.1063/1.4890218
10.1002/adma.202104552
10.1155/2019/7029143
10.1016/j.jsv.2019.115167
10.1121/1.4824842
10.1121/1.1534607
10.1121/1.3681016
10.1121/10.0002162
ContentType Journal Article
Copyright 2022 The Author(s)
Attribution
Copyright_xml – notice: 2022 The Author(s)
– notice: Attribution
DBID 6I.
AAFTH
AAYXX
CITATION
1XC
VOOES
DOI 10.1016/j.apacoust.2022.108941
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1872-910X
ExternalDocumentID oai_HAL_hal_04198669v1
10_1016_j_apacoust_2022_108941
S0003682X22003152
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABMAC
ABNEU
ABTAH
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AI.
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SPD
SSQ
SST
SSZ
T5K
VH1
WUQ
XPP
ZMT
ZY4
~02
~G-
AAXKI
AAYXX
AFJKZ
AKRWK
CITATION
1XC
VOOES
ID FETCH-LOGICAL-c324t-43a3a41edfe023e03e7a267ab7bf0273309e16e75d52d19cd5f58fb8296abf9d3
ISSN 0003-682X
IngestDate Wed Oct 09 06:34:38 EDT 2024
Thu Sep 26 20:37:33 EDT 2024
Fri Feb 23 02:39:32 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Additive manufacturing
Double porosity
Multiscale modelling
Sound absorption
Pressure diffusion
Language English
License This is an open access article under the CC BY license.
Attribution: http://creativecommons.org/licenses/by
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c324t-43a3a41edfe023e03e7a267ab7bf0273309e16e75d52d19cd5f58fb8296abf9d3
ORCID 0000-0002-1474-6044
OpenAccessLink https://hal.science/hal-04198669
ParticipantIDs hal_primary_oai_HAL_hal_04198669v1
crossref_primary_10_1016_j_apacoust_2022_108941
elsevier_sciencedirect_doi_10_1016_j_apacoust_2022_108941
PublicationCentury 2000
PublicationDate August 2022
2022-08-00
2022-08
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: August 2022
PublicationDecade 2020
PublicationTitle Applied acoustics
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Melchels, Feijen, Grijpma (b0025) 2010; 31
Roncen, Fellah, Ogam (b0450) 2022; 520
Kuschmitz, Ring, Watschke, Langer, Vietor (b0165) 2021; 14
Boulvert, Humbert, Romero-García, Gabard, Fotsing, Ross, Mardjono, Groby (b0175) 2022; 523
Fotsing, Dubourg, Ross, Mardjono (b0115) 2019; 148
Costa-Baptista, Fotsing, Mardjono, Therriault, Ross (b0170) 2022; 55
Carbajo, Molina-Jordá, Maiorano, Fang (b0060) 2021; 182
Ring, Langer (b0120) 2019; 12
Dowling, Kennedy, O’Shaughnessy, Trimble (b0200) 2020; 186
Zieliński (b0070) 2016
Venegas, Zieliński, Núñez, Bécot (b0345) 2021; 220
Setaki, Tenpierik, Turrin, van Timmeren (b0035) 2014; 72
Venegas R. Microstructure influence on acoustical properties of multiscale porous materials [Ph.D. thesis]. University of Salford, Salford, United Kingdom; 2011.
Salissou, Panneton, Doutres (b0415) 2012; 131
Achdou, Avellaneda (b0320) 1992; 4
Boulvert, Costa-Baptista, Cavalieri, Perna, Fotsing, Romero-García, Gabard, Ross, Mardjono, Groby (b0105) 2020; 164
McGee, Jiang, Qian, Jiac, Wang, Meng, Chronopoulos, Chen, Zuo (b0090) 2019; 30
Chevillotte, Perrot, Panneton (b0280) 2010; 128
Zieliński (b0290) 2014; 116
Cavalieri, Boulvert, Romero-García, Gabard, Escouflaire, Regnard, Groby (b0145) 2021; 129
Johnston, Sharma (b0100) 2021; 41
Núñez, Venegas, Zieliński, Bécot (b0350) 2021; 33
Zieliński (b0440) 2015; 137
Boutin, Geindreau (b0455) 2008; 124
Ngo, Kashani, Imbalzano, Nguyen, Hui (b0010) 2018; 143
Chevillotte, Perrot (b0330) 2017; 142
Zhang, Zhu, Li, Wang, Shi, Tang, Li, Yang (b0030) 2021; 48
Opiela, Zieliński, Attenborough (b0185) 2022; 218
.
Williams, Piglione, Rønneberg, Jones, Pham, Davies, Hooper (b0195) 2019; 30
Zieliński, Opiela, Pawłowski, Dauchez, Boutin, Kennedy, Trimble, Rice (b0075) 2019
Suárez, del Mar Espinosa (b0160) 2020; 109
Perrot, Chevillotte, Hoang, Bonnet, Bécot, Gautron, Duval (b0285) 2012; 111
Kim, Yoon (b0155) 2021; 178
du Plessis (b0190) 2019; 30
Venegas, Umnova (b0225) 2011; 130
Wang, Fan (b0400) 2013
Jiménez, Romero-García, Pagneux, Groby (b0135) 2017; 7
Olny, Panneton (b0425) 2008; 123
Zhang, Qu (b0180) 2022; 189
Chevillotte, Perrot, Guillon (b0220) 2013; 134
Zieliński, Venegas, Perrot, Červenka, Chevillotte, Attenborough (b0295) 2020; 483
Boutin, Geindreau (b0460) 2010; 82
Salissou, Panneton (b0390) 2007; 101
Olny, Boutin (b0215) 2003; 114
Cortis, Berryman (b0325) 2010; 22
Li, Yu, Zhai (b0110) 2021; 33
Pride, Morgan, Gangi (b0370) 1993; 47
Yang, Chen, Fu, Sheng (b0130) 2017; 4
Rice, Kennedy, Göransson, Dowling, Trimble (b0140) 2020; 472
Gasser, Paun, Bréchet (b0265) 2005; 117
Venegas, Boutin, Umnova (b0355) 2017; 29
Attenborough (b0340) 2021; 11
Sgard, Olny, Atalla, Castel (b0235) 2005; 66
Liu, Zhan, Fard, Davy (b0040) 2016; 181
ISO 10534–2: Determination of sound absorption coefficient and impedance in impedance tubes; 1998.
Carbajo, Ghaffari Mosanenzadeh, Kim, Fang (b0055) 2020; 169
Venegas, Boutin (b0240) 2018; 418
Lafarge (b0255) 1993
Iwase T, Izumi Y, Kawabata R. A new measuring method for sound propagation constant by using sound tube without any air spaces back of a test material. In InterNoise98, Christchurch, New Zeland; 1998. pp. 1265–1268.
Auriault, Boutin (b0205) 1994; 14
Gibson, Rosen, Stucker (b0005) 2015
Zieliński, Opiela, Pawłowski, Dauchez, Boutin, Kennedy, Trimble, Rice, Van Damme, Hannema, Wróbel, Kim, Ghaffari Mosanenzadeh, Fang, Yang, Briere de La Hosseraye, Hornikx, Salze, Galland, Boonen, Carvalho de Sousa, Deckers, Gaborit, Groby (b0085) 2020; 36
Carbajo, Ghaffari Mosanenzadeh, Kim, Fang (b0050) 2020; 116
Firdaouss, Guermond, Lafarge (b0310) 1998; 36
Boulvert, Cavalieri, Costa-Baptista, Schwan, Romero-García, Gabard, Fotsing, Ross, Mardjono, Groby (b0095) 2019; 126
Atalla, Panneton, Sgard, Olny (b0230) 2001; 243
Zieliński, Chevillotte, Deckers (b0065) 2019; 146
Lee, Leamy, Nadler (b0275) 2009; 126
Liu, Zhan, Fard, Davy (b0045) 2017; 121
Cuenca, Gøransson, De Ryck, Lähivaara (b0445) 2022; 163
Avellaneda, Torquato (b0380) 1991; 3
Jaouen, Gourdon, Glé (b0430) 2020; 148
Opiela, Zieliński, Attenborough (b0125) 2020
Auriault, Borne, Chambon (b0250) 1985; 77
Utsuno, Tanaka, Fujikawa, Seybert (b0405) 1989; 86
Mostafaei, Elliott, Barnes, Li, Tan, Cramer, Nandwana, Chmielus (b0020) 2021; 119
Johnson, Koplik, Dashen (b0360) 1987; 176
Kennedy, Flanagan, Dowling, Bennett, Rice, Trimble (b0080) 2019; 2019
Boutin, Royer, Auriault (b0210) 1998; 35
Perrot, Chevillotte, Panneton (b0270) 2008; 124
Trinh, Guilleminot, Perrot (b0335) 2021; 210
Venegas, Boutin (b0300) 2018; 104
Cummings (b0315) 1991; 151
Opiela, Zieliński (b0150) 2020; 187
Rhodes M. (Ed.), Introduction to Particle Technology, 2nd ed. John Wiley & Sons, Chichester; 2008.
Champoux, Allard (b0365) 1991; 70
Panneton, Olny (b0420) 2006; 119
Brown (b0375) 1980; 45
ISO 9053-1:2018: Acoustics – Determination of airflow resistance – Part 1: Static airflow method; 2018.
Dini, Ghaffari, Jafar, Hamidreza, Marjan (b0015) 2020; 75
Allard, Atalla (b0305) 2009
Lafarge, Lemarinier, Allard, Tarnow (b0260) 1997; 102
Allard (10.1016/j.apacoust.2022.108941_b0305) 2009
Utsuno (10.1016/j.apacoust.2022.108941_b0405) 1989; 86
Auriault (10.1016/j.apacoust.2022.108941_b0250) 1985; 77
Zhang (10.1016/j.apacoust.2022.108941_b0030) 2021; 48
Zhang (10.1016/j.apacoust.2022.108941_b0180) 2022; 189
Zieliński (10.1016/j.apacoust.2022.108941_b0295) 2020; 483
Ring (10.1016/j.apacoust.2022.108941_b0120) 2019; 12
Lee (10.1016/j.apacoust.2022.108941_b0275) 2009; 126
Sgard (10.1016/j.apacoust.2022.108941_b0235) 2005; 66
Núñez (10.1016/j.apacoust.2022.108941_b0350) 2021; 33
Olny (10.1016/j.apacoust.2022.108941_b0215) 2003; 114
Liu (10.1016/j.apacoust.2022.108941_b0040) 2016; 181
Lafarge (10.1016/j.apacoust.2022.108941_b0255) 1993
Li (10.1016/j.apacoust.2022.108941_b0110) 2021; 33
Lafarge (10.1016/j.apacoust.2022.108941_b0260) 1997; 102
10.1016/j.apacoust.2022.108941_b0385
Salissou (10.1016/j.apacoust.2022.108941_b0415) 2012; 131
Kennedy (10.1016/j.apacoust.2022.108941_b0080) 2019; 2019
Venegas (10.1016/j.apacoust.2022.108941_b0300) 2018; 104
Zieliński (10.1016/j.apacoust.2022.108941_b0440) 2015; 137
Setaki (10.1016/j.apacoust.2022.108941_b0035) 2014; 72
Carbajo (10.1016/j.apacoust.2022.108941_b0055) 2020; 169
Cavalieri (10.1016/j.apacoust.2022.108941_b0145) 2021; 129
Carbajo (10.1016/j.apacoust.2022.108941_b0060) 2021; 182
Roncen (10.1016/j.apacoust.2022.108941_b0450) 2022; 520
Costa-Baptista (10.1016/j.apacoust.2022.108941_b0170) 2022; 55
Mostafaei (10.1016/j.apacoust.2022.108941_b0020) 2021; 119
Carbajo (10.1016/j.apacoust.2022.108941_b0050) 2020; 116
Dowling (10.1016/j.apacoust.2022.108941_b0200) 2020; 186
Attenborough (10.1016/j.apacoust.2022.108941_b0340) 2021; 11
Yang (10.1016/j.apacoust.2022.108941_b0130) 2017; 4
Chevillotte (10.1016/j.apacoust.2022.108941_b0330) 2017; 142
Zieliński (10.1016/j.apacoust.2022.108941_b0070) 2016
Boulvert (10.1016/j.apacoust.2022.108941_b0095) 2019; 126
Chevillotte (10.1016/j.apacoust.2022.108941_b0280) 2010; 128
Brown (10.1016/j.apacoust.2022.108941_b0375) 1980; 45
Venegas (10.1016/j.apacoust.2022.108941_b0225) 2011; 130
Pride (10.1016/j.apacoust.2022.108941_b0370) 1993; 47
Avellaneda (10.1016/j.apacoust.2022.108941_b0380) 1991; 3
Atalla (10.1016/j.apacoust.2022.108941_b0230) 2001; 243
Cuenca (10.1016/j.apacoust.2022.108941_b0445) 2022; 163
Chevillotte (10.1016/j.apacoust.2022.108941_b0220) 2013; 134
Boutin (10.1016/j.apacoust.2022.108941_b0460) 2010; 82
Cortis (10.1016/j.apacoust.2022.108941_b0325) 2010; 22
10.1016/j.apacoust.2022.108941_b0410
Champoux (10.1016/j.apacoust.2022.108941_b0365) 1991; 70
Salissou (10.1016/j.apacoust.2022.108941_b0390) 2007; 101
10.1016/j.apacoust.2022.108941_b0435
Boulvert (10.1016/j.apacoust.2022.108941_b0105) 2020; 164
du Plessis (10.1016/j.apacoust.2022.108941_b0190) 2019; 30
Perrot (10.1016/j.apacoust.2022.108941_b0270) 2008; 124
Wang (10.1016/j.apacoust.2022.108941_b0400) 2013
Venegas (10.1016/j.apacoust.2022.108941_b0240) 2018; 418
Jaouen (10.1016/j.apacoust.2022.108941_b0430) 2020; 148
Gibson (10.1016/j.apacoust.2022.108941_b0005) 2015
Suárez (10.1016/j.apacoust.2022.108941_b0160) 2020; 109
Johnston (10.1016/j.apacoust.2022.108941_b0100) 2021; 41
Trinh (10.1016/j.apacoust.2022.108941_b0335) 2021; 210
Fotsing (10.1016/j.apacoust.2022.108941_b0115) 2019; 148
Jiménez (10.1016/j.apacoust.2022.108941_b0135) 2017; 7
Kim (10.1016/j.apacoust.2022.108941_b0155) 2021; 178
Perrot (10.1016/j.apacoust.2022.108941_b0285) 2012; 111
Zieliński (10.1016/j.apacoust.2022.108941_b0290) 2014; 116
Ngo (10.1016/j.apacoust.2022.108941_b0010) 2018; 143
Opiela (10.1016/j.apacoust.2022.108941_b0150) 2020; 187
Dini (10.1016/j.apacoust.2022.108941_b0015) 2020; 75
Venegas (10.1016/j.apacoust.2022.108941_b0355) 2017; 29
10.1016/j.apacoust.2022.108941_b0245
Kuschmitz (10.1016/j.apacoust.2022.108941_b0165) 2021; 14
Venegas (10.1016/j.apacoust.2022.108941_b0345) 2021; 220
Olny (10.1016/j.apacoust.2022.108941_b0425) 2008; 123
Firdaouss (10.1016/j.apacoust.2022.108941_b0310) 1998; 36
Johnson (10.1016/j.apacoust.2022.108941_b0360) 1987; 176
Melchels (10.1016/j.apacoust.2022.108941_b0025) 2010; 31
Zieliński (10.1016/j.apacoust.2022.108941_b0085) 2020; 36
Gasser (10.1016/j.apacoust.2022.108941_b0265) 2005; 117
Opiela (10.1016/j.apacoust.2022.108941_b0125) 2020
Opiela (10.1016/j.apacoust.2022.108941_b0185) 2022; 218
Cummings (10.1016/j.apacoust.2022.108941_b0315) 1991; 151
Boutin (10.1016/j.apacoust.2022.108941_b0210) 1998; 35
Zieliński (10.1016/j.apacoust.2022.108941_b0065) 2019; 146
Liu (10.1016/j.apacoust.2022.108941_b0045) 2017; 121
McGee (10.1016/j.apacoust.2022.108941_b0090) 2019; 30
Boulvert (10.1016/j.apacoust.2022.108941_b0175) 2022; 523
Williams (10.1016/j.apacoust.2022.108941_b0195) 2019; 30
Panneton (10.1016/j.apacoust.2022.108941_b0420) 2006; 119
10.1016/j.apacoust.2022.108941_b0395
Auriault (10.1016/j.apacoust.2022.108941_b0205) 1994; 14
Achdou (10.1016/j.apacoust.2022.108941_b0320) 1992; 4
Boutin (10.1016/j.apacoust.2022.108941_b0455) 2008; 124
Zieliński (10.1016/j.apacoust.2022.108941_b0075) 2019
Rice (10.1016/j.apacoust.2022.108941_b0140) 2020; 472
References_xml – volume: 186
  year: 2020
  ident: b0200
  article-title: A review of critical repeatability and reproducibility issues in powder bed fusion
  publication-title: Mater Design
  contributor:
    fullname: Trimble
– volume: 163
  year: 2022
  ident: b0445
  article-title: Deterministic and statistical methods for the characterisation of poroelastic media from multi-observation sound absorption measurements
  publication-title: Mech Syst Signal Process
  contributor:
    fullname: Lähivaara
– volume: 72
  start-page: 188
  year: 2014
  end-page: 200
  ident: b0035
  article-title: Acoustic absorbers by additive manufacturing
  publication-title: Build Environ
  contributor:
    fullname: van Timmeren
– volume: 33
  start-page: 2104552
  year: 2021
  ident: b0110
  article-title: Additively manufactured deformation-recoverable and broadband sound-absorbing microlattice inspired by the concept of traditional perforated panels
  publication-title: Adv Mater
  contributor:
    fullname: Zhai
– start-page: 409
  year: 2020
  end-page: 420
  ident: b0125
  article-title: Manufacturing, modeling, and experimental verification of slitted sound absorbers
  publication-title: Proceedings of ISMA2020 International Conference on Noise and Vibration Engineering and USD2020 International Conference on Uncertainty in Structural Dynamics
  contributor:
    fullname: Attenborough
– volume: 102
  start-page: 1995
  year: 1997
  end-page: 2006
  ident: b0260
  article-title: Dynamic compressibility of air in porous structures at audible frequencies
  publication-title: J Acoust Soc Am
  contributor:
    fullname: Tarnow
– start-page: 4505
  year: 2019
  end-page: 4512
  ident: b0075
  article-title: Differences in sound absorption of samples with periodic porosity produced using various Additive Manufacturing Technologies
  publication-title: Proceedings of the 23rd International Congress on Acoustics integrating 4th EAA Euroregio
  contributor:
    fullname: Rice
– volume: 218
  year: 2022
  ident: b0185
  article-title: Limitations on validating slitted sound absorber designs through budget additive manufacturing
  publication-title: Mater Design
  contributor:
    fullname: Attenborough
– volume: 86
  start-page: 637
  year: 1989
  end-page: 643
  ident: b0405
  article-title: Transfer function method for measuring characteristic impedance and propagation constant of porous materials
  publication-title: J Acoust Soc Am
  contributor:
    fullname: Seybert
– volume: 483
  year: 2020
  ident: b0295
  article-title: Benchmarks for microstructure-based modelling of sound absorbing rigid-frame porous media
  publication-title: J Sound Vib
  contributor:
    fullname: Attenborough
– start-page: 95
  year: 2016
  end-page: 104
  ident: b0070
  article-title: Pore-size effects in sound absorbing foams with periodic microstructure: modelling and experimental verification using 3D printed specimens
  publication-title: Proceedings of ISMA2016 International Conference on Noise and Vibration Engineering and USD2016 International Conference on Uncertainty in Structural Dynamics
  contributor:
    fullname: Zieliński
– volume: 210
  year: 2021
  ident: b0335
  article-title: On the sensitivity of the design of composite sound absorbing structures
  publication-title: Mater Design
  contributor:
    fullname: Perrot
– volume: 126
  start-page: 1862
  year: 2009
  end-page: 1870
  ident: b0275
  article-title: Acoustic absorption calculation in irreducible porous media: A unified computational approach
  publication-title: J Acoust Soc Am
  contributor:
    fullname: Nadler
– volume: 111
  year: 2012
  ident: b0285
  article-title: Microstructure, transport, and acoustic properties of open-cell foam samples: Experiments and three-dimensional numerical simulations
  publication-title: J Appl Phys
  contributor:
    fullname: Duval
– volume: 70
  start-page: 1975
  year: 1991
  end-page: 1979
  ident: b0365
  article-title: Dynamic tortuosity and bulk modulus in air-saturated porous media
  publication-title: J Appl Phys
  contributor:
    fullname: Allard
– volume: 128
  start-page: 1766
  year: 2010
  end-page: 1776
  ident: b0280
  article-title: Microstructure based model for sound absorption predictions of perforated closed-cell metallic foams
  publication-title: J Acoust Soc Am
  contributor:
    fullname: Panneton
– volume: 129
  year: 2021
  ident: b0145
  article-title: Rapid additive manufacturing of optimized anisotropic metaporous surfaces for broadband absorption
  publication-title: J Appl Phys
  contributor:
    fullname: Groby
– volume: 30
  year: 2019
  ident: b0190
  article-title: Effects of process parameters on porosity in laser powder bed fusion revealed by X-ray tomography
  publication-title: Addit Manuf
  contributor:
    fullname: du Plessis
– year: 1993
  ident: b0255
  article-title: Propagation du son dans les matériaux poreux à structure rigide saturés par un fluide viscothermique
  contributor:
    fullname: Lafarge
– volume: 104
  start-page: 623
  year: 2018
  end-page: 635
  ident: b0300
  article-title: Enhancing sound attenuation in permeable heterogeneous materials via diffusion processes
  publication-title: Acta Acust United With Acust
  contributor:
    fullname: Boutin
– volume: 75
  start-page: 95
  year: 2020
  end-page: 100
  ident: b0015
  article-title: A review of binder jet process parameters; powder, binder, printing and sintering condition
  publication-title: Met Powder Rep
  contributor:
    fullname: Marjan
– volume: 30
  year: 2019
  ident: b0090
  article-title: 3D printed architected hollow sphere foams with low-frequency phononic band gaps
  publication-title: Addit Manuf
  contributor:
    fullname: Zuo
– volume: 47
  start-page: 4964
  year: 1993
  end-page: 4978
  ident: b0370
  article-title: Drag forces of porous-medium acoustics
  publication-title: Phys Rev B
  contributor:
    fullname: Gangi
– volume: 109
  start-page: 2691
  year: 2020
  end-page: 2705
  ident: b0160
  article-title: Assessment on the use of additive manufacturing technologies for acoustic applications
  publication-title: Int J Adv Manuf Technol
  contributor:
    fullname: del Mar Espinosa
– volume: 169
  year: 2020
  ident: b0055
  article-title: Multi-layer perforated panel absorbers with oblique perforations
  publication-title: Appl Acoust
  contributor:
    fullname: Fang
– volume: 146
  start-page: 261
  year: 2019
  end-page: 279
  ident: b0065
  article-title: Sound absorption of plates with micro-slits backed with air cavities: Analytical estimations, numerical calculations and experimental validations
  publication-title: Appl Acoust
  contributor:
    fullname: Deckers
– volume: 243
  start-page: 659
  year: 2001
  end-page: 678
  ident: b0230
  article-title: Acoustic absorption of macro-perforated porous materials
  publication-title: J Sound Vib
  contributor:
    fullname: Olny
– volume: 4
  start-page: 2651
  year: 1992
  end-page: 2673
  ident: b0320
  article-title: Influence of pore roughness and pore-size dispersion in estimating the permeability of a porous medium from electrical measurements
  publication-title: Physic of Fluids A
  contributor:
    fullname: Avellaneda
– volume: 29
  year: 2017
  ident: b0355
  article-title: Acoustics of multiscale sorptive porous materials
  publication-title: Phys Fluids
  contributor:
    fullname: Umnova
– volume: 126
  year: 2019
  ident: b0095
  article-title: Optimally graded porous material for broadband perfect absorption of sound
  publication-title: J Appl Phys
  contributor:
    fullname: Groby
– volume: 66
  start-page: 625
  year: 2005
  end-page: 651
  ident: b0235
  article-title: On the use of perforations to improve the sound absorption of porous materials
  publication-title: Appl Acoust
  contributor:
    fullname: Castel
– volume: 131
  start-page: EL216
  year: 2012
  end-page: EL222
  ident: b0415
  article-title: Complement to standard method for measuring normal incidence sound transmission loss with three microphones
  publication-title: J Acoust Soc Am
  contributor:
    fullname: Doutres
– volume: 7
  start-page: 13595
  year: 2017
  ident: b0135
  article-title: Rainbow-trapping absorbers: Broadband, perfect and asymmetric sound absorption by subwavelength panels for transmission problems
  publication-title: Scientific Rep
  contributor:
    fullname: Groby
– volume: 11
  start-page: 3299
  year: 2021
  ident: b0340
  article-title: Analytical approximations for sub wavelength sound absorption by porous layers with labyrinthine slit perforations
  publication-title: Appl Sci
  contributor:
    fullname: Attenborough
– volume: 151
  start-page: 63
  year: 1991
  end-page: 75
  ident: b0315
  article-title: Impedance tube measurements on porous media: The effects of air-gaps around the sample
  publication-title: J Sound Vib
  contributor:
    fullname: Cummings
– volume: 520
  year: 2022
  ident: b0450
  article-title: Addressing the ill-posedness of multi-layer porous media characterization in impedance tubes through the addition of air gaps behind the sample: Numerical validation
  publication-title: J Sound Vib
  contributor:
    fullname: Ogam
– volume: 418
  start-page: 221
  year: 2018
  end-page: 239
  ident: b0240
  article-title: Acoustics of permeable heterogeneous materials with local non-equilibrium pressure states
  publication-title: J Sound Vib
  contributor:
    fullname: Boutin
– volume: 4
  start-page: 673
  year: 2017
  end-page: 680
  ident: b0130
  article-title: Optimal sound-absorbing structures
  publication-title: Mater Horizons
  contributor:
    fullname: Sheng
– volume: 189
  year: 2022
  ident: b0180
  article-title: Viscous and thermal dissipation during the sound propagation in the continuously graded phononic crystals
  publication-title: Appl Acoust
  contributor:
    fullname: Qu
– volume: 2019
  start-page: 7029143
  year: 2019
  ident: b0080
  article-title: The influence of additive manufacturing processes on the performance of a periodic acoustic metamaterial
  publication-title: Int J Polym Sci
  contributor:
    fullname: Trimble
– volume: 176
  start-page: 379
  year: 1987
  end-page: 402
  ident: b0360
  article-title: Theory of dynamic permeability and tortuosity in fluid-saturated porous media
  publication-title: J Fluid Mech
  contributor:
    fullname: Dashen
– volume: 117
  start-page: 2090
  year: 2005
  end-page: 2099
  ident: b0265
  article-title: Absorptive properties of rigid porous media: Application to face centered cubic sphere packing
  publication-title: J Acoust Soc Am
  contributor:
    fullname: Bréchet
– volume: 33
  year: 2021
  ident: b0350
  article-title: Equivalent fluid approach to modeling the acoustical properties of polydisperse heterogeneous porous composites
  publication-title: Phys Fluids
  contributor:
    fullname: Bécot
– volume: 164
  year: 2020
  ident: b0105
  article-title: Acoustic modeling of micro-lattices obtained by additive manufacturing
  publication-title: Appl Acoust
  contributor:
    fullname: Groby
– volume: 142
  start-page: 1130
  year: 2017
  end-page: 1140
  ident: b0330
  article-title: Effect of the three dimensional microstructure on the sound absorption of foams: A parametric study
  publication-title: J Acoust Soc Am
  contributor:
    fullname: Perrot
– volume: 181
  start-page: 296
  year: 2016
  end-page: 299
  ident: b0040
  article-title: Acoustic properties of a porous polycarbonate material produced by additive manufacturing
  publication-title: Mater Lett
  contributor:
    fullname: Davy
– volume: 45
  start-page: 1269
  year: 1980
  end-page: 1275
  ident: b0375
  article-title: Connection between formation factor for electrical resistivity and fluid-solid coupling factor in Biot’s equations for acoustic waves in fluid-filled porous media
  publication-title: Geophysics
  contributor:
    fullname: Brown
– volume: 137
  start-page: 3232
  year: 2015
  end-page: 3243
  ident: b0440
  article-title: Normalized inverse characterization of sound absorbing rigid porous media
  publication-title: J Acoust Soc Am
  contributor:
    fullname: Zieliński
– volume: 12
  start-page: 3397
  year: 2019
  ident: b0120
  article-title: Design, experimental and numerical characterization of 3D-printed porous absorbers
  publication-title: Materials
  contributor:
    fullname: Langer
– volume: 3
  start-page: 2529
  year: 1991
  end-page: 2540
  ident: b0380
  article-title: Rigorous link between fluid permeability, electrical conductivity, and relaxation times for transport in porous media
  publication-title: Phys Fluids A
  contributor:
    fullname: Torquato
– volume: 178
  year: 2021
  ident: b0155
  article-title: Active acoustic absorption device using additive manufacturing technique for normal incident wave
  publication-title: Appl Acoust
  contributor:
    fullname: Yoon
– volume: 14
  start-page: 1747
  year: 2021
  ident: b0165
  article-title: Design and additive manufacturing of porous sound absorbers—A machine-learning approach
  publication-title: Materials
  contributor:
    fullname: Vietor
– volume: 148
  start-page: 322
  year: 2019
  end-page: 331
  ident: b0115
  article-title: Acoustic properties of periodic micro-structures obtained by additive manufacturing
  publication-title: Appl Acoust
  contributor:
    fullname: Mardjono
– start-page: 42
  year: 2013
  end-page: 76
  ident: b0400
  article-title: 2 – Particle characterization and behavior relevant to fluidized bed combustion and gasification systems
  publication-title: Fluidized Bed Technologies for Near-Zero Emission Combustion and Gasification, Woodhead Publishing Series in Energy
  contributor:
    fullname: Fan
– volume: 48
  year: 2021
  ident: b0030
  article-title: The recent development of vat photopolymerization: A review
  publication-title: Addit Manuf
  contributor:
    fullname: Yang
– volume: 36
  year: 2020
  ident: b0085
  article-title: Reproducibility of sound-absorbing periodic porous materials using additive manufacturing technologies: Round robin study
  publication-title: Addit Manuf
  contributor:
    fullname: Groby
– volume: 143
  start-page: 172
  year: 2018
  end-page: 196
  ident: b0010
  article-title: Additive manufacturing (3D printing): A review of materials, methods, applications and challenges
  publication-title: Compos Part B: Eng
  contributor:
    fullname: Hui
– volume: 116
  year: 2014
  ident: b0290
  article-title: Microstructure-based calculations and experimental results for sound absorbing porous layers of randomly packed rigid spherical beads
  publication-title: J Appl Phys
  contributor:
    fullname: Zieliński
– volume: 36
  start-page: 1035
  year: 1998
  end-page: 1046
  ident: b0310
  article-title: Some remarks on the acoustic parameters of sharp-edged porous media
  publication-title: Int J Eng Sci
  contributor:
    fullname: Lafarge
– volume: 121
  start-page: 25
  year: 2017
  end-page: 32
  ident: b0045
  article-title: Acoustic properties of multilayer sound absorbers with a 3D printed micro-perforated panel
  publication-title: Appl Acoust
  contributor:
    fullname: Davy
– volume: 116
  year: 2020
  ident: b0050
  article-title: Sound absorption of acoustic resonators with oblique perforations
  publication-title: Appl Phys Lett
  contributor:
    fullname: Fang
– volume: 472
  year: 2020
  ident: b0140
  article-title: Design of a Kelvin cell acoustic metamaterial
  publication-title: J Sound Vib
  contributor:
    fullname: Trimble
– volume: 130
  start-page: 2765
  year: 2011
  end-page: 2776
  ident: b0225
  article-title: Acoustical properties of double porosity granular materials
  publication-title: J Acoust Soc Am
  contributor:
    fullname: Umnova
– volume: 123
  start-page: 814
  year: 2008
  end-page: 824
  ident: b0425
  article-title: Acoustical determination of the parameters governing thermal dissipation in porous media
  publication-title: J Acoust Soc Am
  contributor:
    fullname: Panneton
– volume: 182
  year: 2021
  ident: b0060
  article-title: Sound absorption of macro-perforated additively manufactured media
  publication-title: Appl Acoust
  contributor:
    fullname: Fang
– volume: 119
  year: 2021
  ident: b0020
  article-title: Binder jet 3D printing—Process parameters, materials, properties, modeling, and challenges
  publication-title: Prog Mater Sci
  contributor:
    fullname: Chmielus
– volume: 220
  year: 2021
  ident: b0345
  article-title: Acoustics of porous composites
  publication-title: Compos Part B
  contributor:
    fullname: Bécot
– volume: 119
  start-page: 2027
  year: 2006
  end-page: 2040
  ident: b0420
  article-title: Acoustical determination of the parameters governing viscous dissipation in porous media
  publication-title: J Acoust Soc Am
  contributor:
    fullname: Olny
– volume: 187
  year: 2020
  ident: b0150
  article-title: Microstructural design, manufacturing and modelling of an adaptable porous composite sound absorber
  publication-title: Compos Part B: Eng
  contributor:
    fullname: Zieliński
– volume: 148
  start-page: 1998
  year: 2020
  end-page: 2005
  ident: b0430
  article-title: Estimation of all six parameters of johnson-champoux-allard-lafarge model for acoustical porous materials from impedance tube measurements
  publication-title: J Acoust Soc Am
  contributor:
    fullname: Glé
– volume: 77
  start-page: 1641
  year: 1985
  end-page: 1650
  ident: b0250
  article-title: Dynamics of porous saturated media, checking of the generalized law of Darcy
  publication-title: J Acoust Soc Am
  contributor:
    fullname: Chambon
– volume: 22
  year: 2010
  ident: b0325
  article-title: Frequency-dependent viscous flow in channels with fractal rough surfaces
  publication-title: Phys Fluids
  contributor:
    fullname: Berryman
– volume: 41
  year: 2021
  ident: b0100
  article-title: Additive manufacturing of fibrous sound absorbers
  publication-title: Addit Manuf
  contributor:
    fullname: Sharma
– volume: 30
  year: 2019
  ident: b0195
  article-title: In situ thermography for laser powder bed fusion: Effects of layer temperature on porosity, microstructure and mechanical properties
  publication-title: Addit Manuf
  contributor:
    fullname: Hooper
– year: 2015
  ident: b0005
  article-title: Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing
  contributor:
    fullname: Stucker
– volume: 134
  start-page: 4681
  year: 2013
  end-page: 4690
  ident: b0220
  article-title: A direct link between microstructure and acoustical macro-behavior of real double porosity foams
  publication-title: J Acoust Soc Am
  contributor:
    fullname: Guillon
– volume: 114
  start-page: 73
  year: 2003
  end-page: 89
  ident: b0215
  article-title: Acoustic wave propagation in double porosity media
  publication-title: J Acoust Soc Am
  contributor:
    fullname: Boutin
– year: 2009
  ident: b0305
  article-title: Propagation of Sound in Porous Media: Modeling Sound Absorbing Materials
  contributor:
    fullname: Atalla
– volume: 82
  year: 2010
  ident: b0460
  article-title: Periodic homogenization and consistent estimates of transport parameters through sphere and polyhedron packings in the whole porosity range
  publication-title: Phys Rev E
  contributor:
    fullname: Geindreau
– volume: 31
  start-page: 6121
  year: 2010
  end-page: 6130
  ident: b0025
  article-title: A review on stereolithography and its applications in biomedical engineering
  publication-title: Biomaterials
  contributor:
    fullname: Grijpma
– volume: 124
  start-page: 940
  year: 2008
  end-page: 948
  ident: b0270
  article-title: Bottom-up approach for microstructure optimization of sound absorbing materials
  publication-title: J Acoust Soc Am
  contributor:
    fullname: Panneton
– volume: 523
  year: 2022
  ident: b0175
  article-title: Perfect, broadband, and sub-wavelength absorption with asymmetric absorbers: Realization for duct acoustics with 3d printed porous resonators
  publication-title: J Sound Vib
  contributor:
    fullname: Groby
– volume: 101
  year: 2007
  ident: b0390
  article-title: Pressure/mass method to measure open porosity of porous solids
  publication-title: J Appl Phys
  contributor:
    fullname: Panneton
– volume: 124
  start-page: 3576
  year: 2008
  end-page: 3593
  ident: b0455
  article-title: Estimates and bounds of dynamic permeability of granular media
  publication-title: J Acoust Soc Am
  contributor:
    fullname: Geindreau
– volume: 14
  start-page: 143
  year: 1994
  end-page: 162
  ident: b0205
  article-title: Deformable porous media with double porosity III: Acoustics
  publication-title: Transp Porous Media
  contributor:
    fullname: Boutin
– volume: 35
  start-page: 4709
  year: 1998
  end-page: 4737
  ident: b0210
  article-title: Acoustic absorption of porous surfacing with dual porosity
  publication-title: Int J Solids Struct
  contributor:
    fullname: Auriault
– volume: 55
  year: 2022
  ident: b0170
  article-title: Design and fused filament fabrication of multilayered microchannels for subwavelength and broadband sound absorption
  publication-title: Addit Manuf
  contributor:
    fullname: Ross
– volume: 169
  year: 2020
  ident: 10.1016/j.apacoust.2022.108941_b0055
  article-title: Multi-layer perforated panel absorbers with oblique perforations
  publication-title: Appl Acoust
  doi: 10.1016/j.apacoust.2020.107496
  contributor:
    fullname: Carbajo
– volume: 142
  start-page: 1130
  year: 2017
  ident: 10.1016/j.apacoust.2022.108941_b0330
  article-title: Effect of the three dimensional microstructure on the sound absorption of foams: A parametric study
  publication-title: J Acoust Soc Am
  doi: 10.1121/1.4999058
  contributor:
    fullname: Chevillotte
– volume: 75
  start-page: 95
  year: 2020
  ident: 10.1016/j.apacoust.2022.108941_b0015
  article-title: A review of binder jet process parameters; powder, binder, printing and sintering condition
  publication-title: Met Powder Rep
  doi: 10.1016/j.mprp.2019.05.001
  contributor:
    fullname: Dini
– volume: 82
  year: 2010
  ident: 10.1016/j.apacoust.2022.108941_b0460
  article-title: Periodic homogenization and consistent estimates of transport parameters through sphere and polyhedron packings in the whole porosity range
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.82.036313
  contributor:
    fullname: Boutin
– volume: 523
  year: 2022
  ident: 10.1016/j.apacoust.2022.108941_b0175
  article-title: Perfect, broadband, and sub-wavelength absorption with asymmetric absorbers: Realization for duct acoustics with 3d printed porous resonators
  publication-title: J Sound Vib
  doi: 10.1016/j.jsv.2021.116687
  contributor:
    fullname: Boulvert
– year: 1993
  ident: 10.1016/j.apacoust.2022.108941_b0255
  contributor:
    fullname: Lafarge
– volume: 137
  start-page: 3232
  year: 2015
  ident: 10.1016/j.apacoust.2022.108941_b0440
  article-title: Normalized inverse characterization of sound absorbing rigid porous media
  publication-title: J Acoust Soc Am
  doi: 10.1121/1.4919806
  contributor:
    fullname: Zieliński
– volume: 218
  year: 2022
  ident: 10.1016/j.apacoust.2022.108941_b0185
  article-title: Limitations on validating slitted sound absorber designs through budget additive manufacturing
  publication-title: Mater Design
  contributor:
    fullname: Opiela
– volume: 70
  start-page: 1975
  year: 1991
  ident: 10.1016/j.apacoust.2022.108941_b0365
  article-title: Dynamic tortuosity and bulk modulus in air-saturated porous media
  publication-title: J Appl Phys
  doi: 10.1063/1.349482
  contributor:
    fullname: Champoux
– volume: 119
  year: 2021
  ident: 10.1016/j.apacoust.2022.108941_b0020
  article-title: Binder jet 3D printing—Process parameters, materials, properties, modeling, and challenges
  publication-title: Prog Mater Sci
  doi: 10.1016/j.pmatsci.2020.100707
  contributor:
    fullname: Mostafaei
– volume: 117
  start-page: 2090
  year: 2005
  ident: 10.1016/j.apacoust.2022.108941_b0265
  article-title: Absorptive properties of rigid porous media: Application to face centered cubic sphere packing
  publication-title: J Acoust Soc Am
  doi: 10.1121/1.1863052
  contributor:
    fullname: Gasser
– volume: 14
  start-page: 143
  year: 1994
  ident: 10.1016/j.apacoust.2022.108941_b0205
  article-title: Deformable porous media with double porosity III: Acoustics
  publication-title: Transp Porous Media
  doi: 10.1007/BF00615198
  contributor:
    fullname: Auriault
– volume: 3
  start-page: 2529
  year: 1991
  ident: 10.1016/j.apacoust.2022.108941_b0380
  article-title: Rigorous link between fluid permeability, electrical conductivity, and relaxation times for transport in porous media
  publication-title: Phys Fluids A
  doi: 10.1063/1.858194
  contributor:
    fullname: Avellaneda
– volume: 29
  year: 2017
  ident: 10.1016/j.apacoust.2022.108941_b0355
  article-title: Acoustics of multiscale sorptive porous materials
  publication-title: Phys Fluids
  doi: 10.1063/1.4999053
  contributor:
    fullname: Venegas
– year: 2015
  ident: 10.1016/j.apacoust.2022.108941_b0005
  contributor:
    fullname: Gibson
– volume: 124
  start-page: 940
  year: 2008
  ident: 10.1016/j.apacoust.2022.108941_b0270
  article-title: Bottom-up approach for microstructure optimization of sound absorbing materials
  publication-title: J Acoust Soc Am
  doi: 10.1121/1.2945115
  contributor:
    fullname: Perrot
– volume: 182
  year: 2021
  ident: 10.1016/j.apacoust.2022.108941_b0060
  article-title: Sound absorption of macro-perforated additively manufactured media
  publication-title: Appl Acoust
  doi: 10.1016/j.apacoust.2021.108204
  contributor:
    fullname: Carbajo
– volume: 109
  start-page: 2691
  year: 2020
  ident: 10.1016/j.apacoust.2022.108941_b0160
  article-title: Assessment on the use of additive manufacturing technologies for acoustic applications
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-020-05853-2
  contributor:
    fullname: Suárez
– volume: 187
  year: 2020
  ident: 10.1016/j.apacoust.2022.108941_b0150
  article-title: Microstructural design, manufacturing and modelling of an adaptable porous composite sound absorber
  publication-title: Compos Part B: Eng
  doi: 10.1016/j.compositesb.2020.107833
  contributor:
    fullname: Opiela
– volume: 4
  start-page: 2651
  year: 1992
  ident: 10.1016/j.apacoust.2022.108941_b0320
  article-title: Influence of pore roughness and pore-size dispersion in estimating the permeability of a porous medium from electrical measurements
  publication-title: Physic of Fluids A
  doi: 10.1063/1.858523
  contributor:
    fullname: Achdou
– volume: 124
  start-page: 3576
  year: 2008
  ident: 10.1016/j.apacoust.2022.108941_b0455
  article-title: Estimates and bounds of dynamic permeability of granular media
  publication-title: J Acoust Soc Am
  doi: 10.1121/1.2999050
  contributor:
    fullname: Boutin
– volume: 102
  start-page: 1995
  year: 1997
  ident: 10.1016/j.apacoust.2022.108941_b0260
  article-title: Dynamic compressibility of air in porous structures at audible frequencies
  publication-title: J Acoust Soc Am
  doi: 10.1121/1.419690
  contributor:
    fullname: Lafarge
– volume: 483
  year: 2020
  ident: 10.1016/j.apacoust.2022.108941_b0295
  article-title: Benchmarks for microstructure-based modelling of sound absorbing rigid-frame porous media
  publication-title: J Sound Vib
  doi: 10.1016/j.jsv.2020.115441
  contributor:
    fullname: Zieliński
– volume: 35
  start-page: 4709
  year: 1998
  ident: 10.1016/j.apacoust.2022.108941_b0210
  article-title: Acoustic absorption of porous surfacing with dual porosity
  publication-title: Int J Solids Struct
  doi: 10.1016/S0020-7683(98)00091-2
  contributor:
    fullname: Boutin
– volume: 14
  start-page: 1747
  year: 2021
  ident: 10.1016/j.apacoust.2022.108941_b0165
  article-title: Design and additive manufacturing of porous sound absorbers—A machine-learning approach
  publication-title: Materials
  doi: 10.3390/ma14071747
  contributor:
    fullname: Kuschmitz
– volume: 55
  year: 2022
  ident: 10.1016/j.apacoust.2022.108941_b0170
  article-title: Design and fused filament fabrication of multilayered microchannels for subwavelength and broadband sound absorption
  publication-title: Addit Manuf
  contributor:
    fullname: Costa-Baptista
– volume: 66
  start-page: 625
  year: 2005
  ident: 10.1016/j.apacoust.2022.108941_b0235
  article-title: On the use of perforations to improve the sound absorption of porous materials
  publication-title: Appl Acoust
  doi: 10.1016/j.apacoust.2004.09.008
  contributor:
    fullname: Sgard
– year: 2009
  ident: 10.1016/j.apacoust.2022.108941_b0305
  contributor:
    fullname: Allard
– volume: 151
  start-page: 63
  year: 1991
  ident: 10.1016/j.apacoust.2022.108941_b0315
  article-title: Impedance tube measurements on porous media: The effects of air-gaps around the sample
  publication-title: J Sound Vib
  doi: 10.1016/0022-460X(91)90652-Z
  contributor:
    fullname: Cummings
– volume: 181
  start-page: 296
  year: 2016
  ident: 10.1016/j.apacoust.2022.108941_b0040
  article-title: Acoustic properties of a porous polycarbonate material produced by additive manufacturing
  publication-title: Mater Lett
  doi: 10.1016/j.matlet.2016.06.045
  contributor:
    fullname: Liu
– volume: 86
  start-page: 637
  year: 1989
  ident: 10.1016/j.apacoust.2022.108941_b0405
  article-title: Transfer function method for measuring characteristic impedance and propagation constant of porous materials
  publication-title: J Acoust Soc Am
  doi: 10.1121/1.398241
  contributor:
    fullname: Utsuno
– volume: 126
  year: 2019
  ident: 10.1016/j.apacoust.2022.108941_b0095
  article-title: Optimally graded porous material for broadband perfect absorption of sound
  publication-title: J Appl Phys
  doi: 10.1063/1.5119715
  contributor:
    fullname: Boulvert
– volume: 176
  start-page: 379
  year: 1987
  ident: 10.1016/j.apacoust.2022.108941_b0360
  article-title: Theory of dynamic permeability and tortuosity in fluid-saturated porous media
  publication-title: J Fluid Mech
  doi: 10.1017/S0022112087000727
  contributor:
    fullname: Johnson
– ident: 10.1016/j.apacoust.2022.108941_b0395
  doi: 10.1002/9780470727102
– volume: 164
  year: 2020
  ident: 10.1016/j.apacoust.2022.108941_b0105
  article-title: Acoustic modeling of micro-lattices obtained by additive manufacturing
  publication-title: Appl Acoust
  doi: 10.1016/j.apacoust.2020.107244
  contributor:
    fullname: Boulvert
– volume: 178
  year: 2021
  ident: 10.1016/j.apacoust.2022.108941_b0155
  article-title: Active acoustic absorption device using additive manufacturing technique for normal incident wave
  publication-title: Appl Acoust
  doi: 10.1016/j.apacoust.2021.108006
  contributor:
    fullname: Kim
– volume: 418
  start-page: 221
  year: 2018
  ident: 10.1016/j.apacoust.2022.108941_b0240
  article-title: Acoustics of permeable heterogeneous materials with local non-equilibrium pressure states
  publication-title: J Sound Vib
  doi: 10.1016/j.jsv.2017.11.013
  contributor:
    fullname: Venegas
– volume: 12
  start-page: 3397
  year: 2019
  ident: 10.1016/j.apacoust.2022.108941_b0120
  article-title: Design, experimental and numerical characterization of 3D-printed porous absorbers
  publication-title: Materials
  doi: 10.3390/ma12203397
  contributor:
    fullname: Ring
– volume: 121
  start-page: 25
  year: 2017
  ident: 10.1016/j.apacoust.2022.108941_b0045
  article-title: Acoustic properties of multilayer sound absorbers with a 3D printed micro-perforated panel
  publication-title: Appl Acoust
  doi: 10.1016/j.apacoust.2017.01.032
  contributor:
    fullname: Liu
– volume: 30
  year: 2019
  ident: 10.1016/j.apacoust.2022.108941_b0195
  article-title: In situ thermography for laser powder bed fusion: Effects of layer temperature on porosity, microstructure and mechanical properties
  publication-title: Addit Manuf
  contributor:
    fullname: Williams
– volume: 189
  year: 2022
  ident: 10.1016/j.apacoust.2022.108941_b0180
  article-title: Viscous and thermal dissipation during the sound propagation in the continuously graded phononic crystals
  publication-title: Appl Acoust
  doi: 10.1016/j.apacoust.2021.108606
  contributor:
    fullname: Zhang
– volume: 101
  year: 2007
  ident: 10.1016/j.apacoust.2022.108941_b0390
  article-title: Pressure/mass method to measure open porosity of porous solids
  publication-title: J Appl Phys
  doi: 10.1063/1.2749486
  contributor:
    fullname: Salissou
– volume: 116
  year: 2020
  ident: 10.1016/j.apacoust.2022.108941_b0050
  article-title: Sound absorption of acoustic resonators with oblique perforations
  publication-title: Appl Phys Lett
  doi: 10.1063/1.5132886
  contributor:
    fullname: Carbajo
– volume: 36
  year: 2020
  ident: 10.1016/j.apacoust.2022.108941_b0085
  article-title: Reproducibility of sound-absorbing periodic porous materials using additive manufacturing technologies: Round robin study
  publication-title: Addit Manuf
  contributor:
    fullname: Zieliński
– volume: 4
  start-page: 673
  year: 2017
  ident: 10.1016/j.apacoust.2022.108941_b0130
  article-title: Optimal sound-absorbing structures
  publication-title: Mater Horizons
  doi: 10.1039/C7MH00129K
  contributor:
    fullname: Yang
– volume: 126
  start-page: 1862
  year: 2009
  ident: 10.1016/j.apacoust.2022.108941_b0275
  article-title: Acoustic absorption calculation in irreducible porous media: A unified computational approach
  publication-title: J Acoust Soc Am
  doi: 10.1121/1.3205399
  contributor:
    fullname: Lee
– volume: 33
  year: 2021
  ident: 10.1016/j.apacoust.2022.108941_b0350
  article-title: Equivalent fluid approach to modeling the acoustical properties of polydisperse heterogeneous porous composites
  publication-title: Phys Fluids
  doi: 10.1063/5.0054009
  contributor:
    fullname: Núñez
– volume: 163
  year: 2022
  ident: 10.1016/j.apacoust.2022.108941_b0445
  article-title: Deterministic and statistical methods for the characterisation of poroelastic media from multi-observation sound absorption measurements
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2021.108186
  contributor:
    fullname: Cuenca
– volume: 119
  start-page: 2027
  year: 2006
  ident: 10.1016/j.apacoust.2022.108941_b0420
  article-title: Acoustical determination of the parameters governing viscous dissipation in porous media
  publication-title: J Acoust Soc Am
  doi: 10.1121/1.2169923
  contributor:
    fullname: Panneton
– volume: 36
  start-page: 1035
  year: 1998
  ident: 10.1016/j.apacoust.2022.108941_b0310
  article-title: Some remarks on the acoustic parameters of sharp-edged porous media
  publication-title: Int J Eng Sci
  doi: 10.1016/S0020-7225(98)00002-0
  contributor:
    fullname: Firdaouss
– volume: 129
  year: 2021
  ident: 10.1016/j.apacoust.2022.108941_b0145
  article-title: Rapid additive manufacturing of optimized anisotropic metaporous surfaces for broadband absorption
  publication-title: J Appl Phys
  doi: 10.1063/5.0042563
  contributor:
    fullname: Cavalieri
– volume: 30
  year: 2019
  ident: 10.1016/j.apacoust.2022.108941_b0090
  article-title: 3D printed architected hollow sphere foams with low-frequency phononic band gaps
  publication-title: Addit Manuf
  contributor:
    fullname: McGee
– volume: 148
  start-page: 322
  year: 2019
  ident: 10.1016/j.apacoust.2022.108941_b0115
  article-title: Acoustic properties of periodic micro-structures obtained by additive manufacturing
  publication-title: Appl Acoust
  doi: 10.1016/j.apacoust.2018.12.030
  contributor:
    fullname: Fotsing
– volume: 111
  year: 2012
  ident: 10.1016/j.apacoust.2022.108941_b0285
  article-title: Microstructure, transport, and acoustic properties of open-cell foam samples: Experiments and three-dimensional numerical simulations
  publication-title: J Appl Phys
  doi: 10.1063/1.3673523
  contributor:
    fullname: Perrot
– volume: 7
  start-page: 13595
  year: 2017
  ident: 10.1016/j.apacoust.2022.108941_b0135
  article-title: Rainbow-trapping absorbers: Broadband, perfect and asymmetric sound absorption by subwavelength panels for transmission problems
  publication-title: Scientific Rep
  doi: 10.1038/s41598-017-13706-4
  contributor:
    fullname: Jiménez
– volume: 22
  year: 2010
  ident: 10.1016/j.apacoust.2022.108941_b0325
  article-title: Frequency-dependent viscous flow in channels with fractal rough surfaces
  publication-title: Phys Fluids
  doi: 10.1063/1.3407659
  contributor:
    fullname: Cortis
– volume: 520
  year: 2022
  ident: 10.1016/j.apacoust.2022.108941_b0450
  article-title: Addressing the ill-posedness of multi-layer porous media characterization in impedance tubes through the addition of air gaps behind the sample: Numerical validation
  publication-title: J Sound Vib
  doi: 10.1016/j.jsv.2021.116601
  contributor:
    fullname: Roncen
– ident: 10.1016/j.apacoust.2022.108941_b0245
– volume: 146
  start-page: 261
  year: 2019
  ident: 10.1016/j.apacoust.2022.108941_b0065
  article-title: Sound absorption of plates with micro-slits backed with air cavities: Analytical estimations, numerical calculations and experimental validations
  publication-title: Appl Acoust
  doi: 10.1016/j.apacoust.2018.11.026
  contributor:
    fullname: Zieliński
– volume: 210
  year: 2021
  ident: 10.1016/j.apacoust.2022.108941_b0335
  article-title: On the sensitivity of the design of composite sound absorbing structures
  publication-title: Mater Design
  contributor:
    fullname: Trinh
– start-page: 95
  year: 2016
  ident: 10.1016/j.apacoust.2022.108941_b0070
  article-title: Pore-size effects in sound absorbing foams with periodic microstructure: modelling and experimental verification using 3D printed specimens
  contributor:
    fullname: Zieliński
– volume: 143
  start-page: 172
  year: 2018
  ident: 10.1016/j.apacoust.2022.108941_b0010
  article-title: Additive manufacturing (3D printing): A review of materials, methods, applications and challenges
  publication-title: Compos Part B: Eng
  doi: 10.1016/j.compositesb.2018.02.012
  contributor:
    fullname: Ngo
– volume: 31
  start-page: 6121
  year: 2010
  ident: 10.1016/j.apacoust.2022.108941_b0025
  article-title: A review on stereolithography and its applications in biomedical engineering
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2010.04.050
  contributor:
    fullname: Melchels
– volume: 41
  year: 2021
  ident: 10.1016/j.apacoust.2022.108941_b0100
  article-title: Additive manufacturing of fibrous sound absorbers
  publication-title: Addit Manuf
  contributor:
    fullname: Johnston
– volume: 11
  start-page: 3299
  year: 2021
  ident: 10.1016/j.apacoust.2022.108941_b0340
  article-title: Analytical approximations for sub wavelength sound absorption by porous layers with labyrinthine slit perforations
  publication-title: Appl Sci
  doi: 10.3390/app11083299
  contributor:
    fullname: Attenborough
– volume: 128
  start-page: 1766
  year: 2010
  ident: 10.1016/j.apacoust.2022.108941_b0280
  article-title: Microstructure based model for sound absorption predictions of perforated closed-cell metallic foams
  publication-title: J Acoust Soc Am
  doi: 10.1121/1.3473696
  contributor:
    fullname: Chevillotte
– volume: 104
  start-page: 623
  year: 2018
  ident: 10.1016/j.apacoust.2022.108941_b0300
  article-title: Enhancing sound attenuation in permeable heterogeneous materials via diffusion processes
  publication-title: Acta Acust United With Acust
  doi: 10.3813/AAA.919202
  contributor:
    fullname: Venegas
– volume: 30
  year: 2019
  ident: 10.1016/j.apacoust.2022.108941_b0190
  article-title: Effects of process parameters on porosity in laser powder bed fusion revealed by X-ray tomography
  publication-title: Addit Manuf
  contributor:
    fullname: du Plessis
– volume: 45
  start-page: 1269
  year: 1980
  ident: 10.1016/j.apacoust.2022.108941_b0375
  article-title: Connection between formation factor for electrical resistivity and fluid-solid coupling factor in Biot’s equations for acoustic waves in fluid-filled porous media
  publication-title: Geophysics
  doi: 10.1190/1.1441123
  contributor:
    fullname: Brown
– volume: 186
  year: 2020
  ident: 10.1016/j.apacoust.2022.108941_b0200
  article-title: A review of critical repeatability and reproducibility issues in powder bed fusion
  publication-title: Mater Design
  contributor:
    fullname: Dowling
– volume: 130
  start-page: 2765
  year: 2011
  ident: 10.1016/j.apacoust.2022.108941_b0225
  article-title: Acoustical properties of double porosity granular materials
  publication-title: J Acoust Soc Am
  doi: 10.1121/1.3644915
  contributor:
    fullname: Venegas
– volume: 243
  start-page: 659
  year: 2001
  ident: 10.1016/j.apacoust.2022.108941_b0230
  article-title: Acoustic absorption of macro-perforated porous materials
  publication-title: J Sound Vib
  doi: 10.1006/jsvi.2000.3435
  contributor:
    fullname: Atalla
– volume: 47
  start-page: 4964
  year: 1993
  ident: 10.1016/j.apacoust.2022.108941_b0370
  article-title: Drag forces of porous-medium acoustics
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.47.4964
  contributor:
    fullname: Pride
– volume: 48
  year: 2021
  ident: 10.1016/j.apacoust.2022.108941_b0030
  article-title: The recent development of vat photopolymerization: A review
  publication-title: Addit Manuf
  contributor:
    fullname: Zhang
– volume: 72
  start-page: 188
  year: 2014
  ident: 10.1016/j.apacoust.2022.108941_b0035
  article-title: Acoustic absorbers by additive manufacturing
  publication-title: Build Environ
  doi: 10.1016/j.buildenv.2013.10.010
  contributor:
    fullname: Setaki
– volume: 220
  year: 2021
  ident: 10.1016/j.apacoust.2022.108941_b0345
  article-title: Acoustics of porous composites
  publication-title: Compos Part B
  doi: 10.1016/j.compositesb.2021.109006
  contributor:
    fullname: Venegas
– start-page: 4505
  year: 2019
  ident: 10.1016/j.apacoust.2022.108941_b0075
  article-title: Differences in sound absorption of samples with periodic porosity produced using various Additive Manufacturing Technologies
  contributor:
    fullname: Zieliński
– volume: 77
  start-page: 1641
  year: 1985
  ident: 10.1016/j.apacoust.2022.108941_b0250
  article-title: Dynamics of porous saturated media, checking of the generalized law of Darcy
  publication-title: J Acoust Soc Am
  doi: 10.1121/1.391962
  contributor:
    fullname: Auriault
– volume: 123
  start-page: 814
  year: 2008
  ident: 10.1016/j.apacoust.2022.108941_b0425
  article-title: Acoustical determination of the parameters governing thermal dissipation in porous media
  publication-title: J Acoust Soc Am
  doi: 10.1121/1.2828066
  contributor:
    fullname: Olny
– volume: 116
  year: 2014
  ident: 10.1016/j.apacoust.2022.108941_b0290
  article-title: Microstructure-based calculations and experimental results for sound absorbing porous layers of randomly packed rigid spherical beads
  publication-title: J Appl Phys
  doi: 10.1063/1.4890218
  contributor:
    fullname: Zieliński
– ident: 10.1016/j.apacoust.2022.108941_b0410
– volume: 33
  start-page: 2104552
  year: 2021
  ident: 10.1016/j.apacoust.2022.108941_b0110
  article-title: Additively manufactured deformation-recoverable and broadband sound-absorbing microlattice inspired by the concept of traditional perforated panels
  publication-title: Adv Mater
  doi: 10.1002/adma.202104552
  contributor:
    fullname: Li
– start-page: 42
  year: 2013
  ident: 10.1016/j.apacoust.2022.108941_b0400
  article-title: 2 – Particle characterization and behavior relevant to fluidized bed combustion and gasification systems
  contributor:
    fullname: Wang
– volume: 2019
  start-page: 7029143
  year: 2019
  ident: 10.1016/j.apacoust.2022.108941_b0080
  article-title: The influence of additive manufacturing processes on the performance of a periodic acoustic metamaterial
  publication-title: Int J Polym Sci
  doi: 10.1155/2019/7029143
  contributor:
    fullname: Kennedy
– volume: 472
  year: 2020
  ident: 10.1016/j.apacoust.2022.108941_b0140
  article-title: Design of a Kelvin cell acoustic metamaterial
  publication-title: J Sound Vib
  doi: 10.1016/j.jsv.2019.115167
  contributor:
    fullname: Rice
– volume: 134
  start-page: 4681
  year: 2013
  ident: 10.1016/j.apacoust.2022.108941_b0220
  article-title: A direct link between microstructure and acoustical macro-behavior of real double porosity foams
  publication-title: J Acoust Soc Am
  doi: 10.1121/1.4824842
  contributor:
    fullname: Chevillotte
– ident: 10.1016/j.apacoust.2022.108941_b0435
– start-page: 409
  year: 2020
  ident: 10.1016/j.apacoust.2022.108941_b0125
  article-title: Manufacturing, modeling, and experimental verification of slitted sound absorbers
  contributor:
    fullname: Opiela
– volume: 114
  start-page: 73
  year: 2003
  ident: 10.1016/j.apacoust.2022.108941_b0215
  article-title: Acoustic wave propagation in double porosity media
  publication-title: J Acoust Soc Am
  doi: 10.1121/1.1534607
  contributor:
    fullname: Olny
– volume: 131
  start-page: EL216
  year: 2012
  ident: 10.1016/j.apacoust.2022.108941_b0415
  article-title: Complement to standard method for measuring normal incidence sound transmission loss with three microphones
  publication-title: J Acoust Soc Am
  doi: 10.1121/1.3681016
  contributor:
    fullname: Salissou
– volume: 148
  start-page: 1998
  year: 2020
  ident: 10.1016/j.apacoust.2022.108941_b0430
  article-title: Estimation of all six parameters of johnson-champoux-allard-lafarge model for acoustical porous materials from impedance tube measurements
  publication-title: J Acoust Soc Am
  doi: 10.1121/10.0002162
  contributor:
    fullname: Jaouen
– ident: 10.1016/j.apacoust.2022.108941_b0385
SSID ssj0000255
Score 2.4546595
Snippet •Double-porosity materials can be 3D printed using powders as raw materials.•Main pore network designed; micropores are a side effect of the 3D printing...
At first glance, it seems that modern, inexpensive additive manufacturing (AM) technologies can be used to produce innovative, efficient acoustic materials...
SourceID hal
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Publisher
StartPage 108941
SubjectTerms Acoustics
Additive manufacturing
Double porosity
Engineering Sciences
Multiscale modelling
Pressure diffusion
Sound absorption
Title Taking advantage of a 3D printing imperfection in the development of sound-absorbing materials
URI https://dx.doi.org/10.1016/j.apacoust.2022.108941
https://hal.science/hal-04198669
Volume 197
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLbaTkhwmGCA2NiQhdipSkn8I46P1VooCLisSBUHIid2tAzUTv3BYX_9nuM4CQMECHGJIkuvTv0-PX95-fweQi8oUOIkEjrIIi0DlkckUIrogBvguoXdMCJ7Gnl2Lj4sksmUTXs9r4lqx_6rp2EMfG1Pzv6Ft5sfhQG4B5_DFbwO1z_ze9Veyn3b3yqXElBDOhnaDF6lcS6BKa-dBKuROepWO2QNNrbZUqCyzWqdWROgte7Zu1zWE1iIqVVLsIadfyrN1_L0jJ8mrO6KPbcqpOvh61GbGN8BWq4bLKo2W7_a1XUNOtqlSjEEm6NT9r4vv9RC_zpdAW-6XixX59D8OZpWtOTiMg3ipGqsDruSC8WJIBCKw8V3sdqJeX-I-y4FcTkCglH955Gd2uonpSurdaum9nlVhwfmI1abB4jsoz0CkYoP0N74zXTxtt3MCee-6aI16Bwy__lsv-I3_Qufqa-Yy_w-2q9fOfDYYeUB6pnlAbrXKUR5gO5UQuB88xB9dvjBDX7wqsAK0wn2-MFd_OByiQE_uIMfa3ALP7jBzyP08dV0fjYL6h4cQQ5UexswqqhikdGFAXZnQmqEIrFQmcgKWwqJhtJEsRFcc6IjmWte8KTIEiJjlRVS08dosFwtzROECVOU5DnjBUtYoYUUQPZNKJSwJZFyfohe-pVLr1ypldRrEC9Tv9apXevUrfUhkn6B05owOiKYAi5-a_scPNJMZKusz8bvUjsWskgmcSy_RUf_MMFTdLfF_zEabNc7c4L6G717VoPsBiq4nW8
link.rule.ids 230,315,782,786,887,27935,27936
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Taking+advantage+of+a+3D+printing+imperfection+in+the+development+of+sound-absorbing+materials&rft.jtitle=Applied+acoustics&rft.au=Zieli%C5%84ski%2C+Tomasz+G.&rft.au=Dauchez%2C+Nicolas&rft.au=Boutin%2C+Thomas&rft.au=Leturia%2C+Mikel&rft.date=2022-08-01&rft.pub=Elsevier+Ltd&rft.issn=0003-682X&rft.eissn=1872-910X&rft.volume=197&rft_id=info:doi/10.1016%2Fj.apacoust.2022.108941&rft.externalDocID=S0003682X22003152
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-682X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-682X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-682X&client=summon