Taking advantage of a 3D printing imperfection in the development of sound-absorbing materials
•Double-porosity materials can be 3D printed using powders as raw materials.•Main pore network designed; micropores are a side effect of the 3D printing process.•Additional acoustic energy dissipation by pressure diffusion.•Double-porosity phenomena demonstrated in designed 3D printed materials.•3D...
Saved in:
Published in: | Applied acoustics Vol. 197; p. 108941 |
---|---|
Main Authors: | , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Elsevier Ltd
01-08-2022
Elsevier |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | •Double-porosity materials can be 3D printed using powders as raw materials.•Main pore network designed; micropores are a side effect of the 3D printing process.•Additional acoustic energy dissipation by pressure diffusion.•Double-porosity phenomena demonstrated in designed 3D printed materials.•3D printing with microporosity can be used to develop acoustic materials.
At first glance, it seems that modern, inexpensive additive manufacturing (AM) technologies can be used to produce innovative, efficient acoustic materials with tailored pore morphology. However, on closer inspection, it becomes rather obvious that for now this is only possible for specific solutions, such as relatively thin, but narrow-band sound absorbers. This is mainly due to the relatively poor resolutions available in low-cost AM technologies and devices, which prevents the 3D-printing of pore networks with characteristic dimensions comparable to those found in conventional broadband sound-absorbing materials. Other drawbacks relate to a number of imperfections associated with AM technologies, including porosity or rather microporosity inherent in some of them. This paper shows how the limitations mentioned above can be alleviated by 3D-printing double-porosity structures, where the main pore network can be designed and optimised, while the properties of the intentionally microporous skeleton provide the desired permeability contrast, leading to additional broadband sound energy dissipation due to pressure diffusion. The beneficial effect of additively manufactured double porosity and the phenomena associated with it are rigorously demonstrated and validated in this work, both experimentally and through precise multiscale modelling, on a comprehensive example that can serve as benchmark. |
---|---|
AbstractList | •Double-porosity materials can be 3D printed using powders as raw materials.•Main pore network designed; micropores are a side effect of the 3D printing process.•Additional acoustic energy dissipation by pressure diffusion.•Double-porosity phenomena demonstrated in designed 3D printed materials.•3D printing with microporosity can be used to develop acoustic materials.
At first glance, it seems that modern, inexpensive additive manufacturing (AM) technologies can be used to produce innovative, efficient acoustic materials with tailored pore morphology. However, on closer inspection, it becomes rather obvious that for now this is only possible for specific solutions, such as relatively thin, but narrow-band sound absorbers. This is mainly due to the relatively poor resolutions available in low-cost AM technologies and devices, which prevents the 3D-printing of pore networks with characteristic dimensions comparable to those found in conventional broadband sound-absorbing materials. Other drawbacks relate to a number of imperfections associated with AM technologies, including porosity or rather microporosity inherent in some of them. This paper shows how the limitations mentioned above can be alleviated by 3D-printing double-porosity structures, where the main pore network can be designed and optimised, while the properties of the intentionally microporous skeleton provide the desired permeability contrast, leading to additional broadband sound energy dissipation due to pressure diffusion. The beneficial effect of additively manufactured double porosity and the phenomena associated with it are rigorously demonstrated and validated in this work, both experimentally and through precise multiscale modelling, on a comprehensive example that can serve as benchmark. At first glance, it seems that modern, inexpensive additive manufacturing (AM) technologies can be used to produce innovative, efficient acoustic materials with tailored pore morphology. However, on closer inspection, it becomes rather obvious that for now this is only possible for specific solutions, such as relatively thin, but narrow-band sound absorbers. This is mainly due to the relatively poor resolutions available in low-cost AM technologies and devices, which prevents the 3D-printing of pore networks with characteristic dimensions comparable to those found in conventional broadband sound-absorbing materials. Other drawbacks relate to a number of imperfections associated with AM technologies, including porosity or rather microporosity inherent in some of them. This paper shows how the limitations mentioned above can be alleviated by 3D-printing double-porosity structures, where the main pore network can be designed and optimised, while the properties of the intentionally microporous skeleton provide the desired permeability contrast, leading to additional broadband sound energy dissipation due to pressure diffusion. The beneficial effect of additively manufactured double porosity and the phenomena associated with it are rigorously demonstrated and validated in this work, both experimentally and through precise multi-scale modelling, on a comprehensive example that can serve as benchmark. |
ArticleNumber | 108941 |
Author | Dauchez, Nicolas Leturia, Mikel Venegas, Rodolfo Zieliński, Tomasz G. Bécot, François-Xavier Wilkinson, Alexandre Chevillotte, Fabien Boutin, Thomas |
Author_xml | – sequence: 1 givenname: Tomasz G. surname: Zieliński fullname: Zieliński, Tomasz G. email: tzielins@ippt.pan.pl organization: Institute of Fundamental Technological Research, Polish Academy of Sciences, ul. Pawińskiego 5B, 02-106 Warsaw, Poland – sequence: 2 givenname: Nicolas surname: Dauchez fullname: Dauchez, Nicolas organization: Université de Technologie de Compiègne, Alliance Sorbonne Université, Centre de recherche Royallieu, CS 60319, 60203 Compiègne cedex, France – sequence: 3 givenname: Thomas surname: Boutin fullname: Boutin, Thomas organization: Université de Technologie de Compiègne, Alliance Sorbonne Université, Centre de recherche Royallieu, CS 60319, 60203 Compiègne cedex, France – sequence: 4 givenname: Mikel surname: Leturia fullname: Leturia, Mikel organization: Université de Technologie de Compiègne, Alliance Sorbonne Université, Centre de recherche Royallieu, CS 60319, 60203 Compiègne cedex, France – sequence: 5 givenname: Alexandre surname: Wilkinson fullname: Wilkinson, Alexandre organization: Université de Technologie de Compiègne, Alliance Sorbonne Université, Centre de recherche Royallieu, CS 60319, 60203 Compiègne cedex, France – sequence: 6 givenname: Fabien surname: Chevillotte fullname: Chevillotte, Fabien organization: MATELYS – Research Lab, 7 rue des Maraîchers (bâtiment B), F69120 Vaulx-en-Velin, France – sequence: 7 givenname: François-Xavier surname: Bécot fullname: Bécot, François-Xavier organization: MATELYS – Research Lab, 7 rue des Maraîchers (bâtiment B), F69120 Vaulx-en-Velin, France – sequence: 8 givenname: Rodolfo surname: Venegas fullname: Venegas, Rodolfo organization: University Austral of Chile, Institute of Acoustics, P.O. Box 567, Valdivia, Chile |
BackLink | https://hal.science/hal-04198669$$DView record in HAL |
BookMark | eNqFkEtLAzEQgINUsK3-Bdmrh6157PNmqY8KBS8VejLMbiZtajdZkm3Bf-8uVa-ehnl8w8w3ISPrLBJyy-iMUZbd72fQQu2OoZtxynlfLMqEXZAxK3Iel4xuRmRMKRVxVvDNFZmEsO9TytN0TD7W8GnsNgJ1AtvBFiOnI4jEY9R6Y7uhZZoWvca6M85GxkbdDiOFJzy4tkHbDUBwR6tiqILz1YA00KE3cAjX5FL3AW9-4pS8Pz-tF8t49fbyupiv4lrwpIsTAQIShkoj5QKpwBx4lkOVV5ryXAhaIsswT1XKFStrleq00FXBywwqXSoxJXfnvTs4yP7yBvyXdGDkcr6SQ40mrCyyrDyxfjY7z9beheBR_wGMysGo3Mtfo3IwKs9Ge_DhDGL_ycmgl6E2aGtUxvd6pHLmvxXf9nOFbg |
CitedBy_id | crossref_primary_10_1016_j_apacoust_2023_109788 crossref_primary_10_1016_j_addma_2023_103608 crossref_primary_10_3390_app14052094 crossref_primary_10_1002_adfm_202210160 crossref_primary_10_1007_s11837_023_06260_0 crossref_primary_10_3390_polym15183695 crossref_primary_10_3390_ma17030580 crossref_primary_10_1007_s12613_023_2684_8 crossref_primary_10_1007_s11665_024_09155_6 crossref_primary_10_3390_polym16010005 crossref_primary_10_1016_j_matdes_2024_113026 crossref_primary_10_1016_j_apacoust_2023_109816 crossref_primary_10_1016_j_matdes_2023_112130 crossref_primary_10_1002_advs_202305232 |
Cites_doi | 10.1016/j.apacoust.2020.107496 10.1121/1.4999058 10.1016/j.mprp.2019.05.001 10.1103/PhysRevE.82.036313 10.1016/j.jsv.2021.116687 10.1121/1.4919806 10.1063/1.349482 10.1016/j.pmatsci.2020.100707 10.1121/1.1863052 10.1007/BF00615198 10.1063/1.858194 10.1063/1.4999053 10.1121/1.2945115 10.1016/j.apacoust.2021.108204 10.1007/s00170-020-05853-2 10.1016/j.compositesb.2020.107833 10.1063/1.858523 10.1121/1.2999050 10.1121/1.419690 10.1016/j.jsv.2020.115441 10.1016/S0020-7683(98)00091-2 10.3390/ma14071747 10.1016/j.apacoust.2004.09.008 10.1016/0022-460X(91)90652-Z 10.1016/j.matlet.2016.06.045 10.1121/1.398241 10.1063/1.5119715 10.1017/S0022112087000727 10.1002/9780470727102 10.1016/j.apacoust.2020.107244 10.1016/j.apacoust.2021.108006 10.1016/j.jsv.2017.11.013 10.3390/ma12203397 10.1016/j.apacoust.2017.01.032 10.1016/j.apacoust.2021.108606 10.1063/1.2749486 10.1063/1.5132886 10.1039/C7MH00129K 10.1121/1.3205399 10.1063/5.0054009 10.1016/j.ymssp.2021.108186 10.1121/1.2169923 10.1016/S0020-7225(98)00002-0 10.1063/5.0042563 10.1016/j.apacoust.2018.12.030 10.1063/1.3673523 10.1038/s41598-017-13706-4 10.1063/1.3407659 10.1016/j.jsv.2021.116601 10.1016/j.apacoust.2018.11.026 10.1016/j.compositesb.2018.02.012 10.1016/j.biomaterials.2010.04.050 10.3390/app11083299 10.1121/1.3473696 10.3813/AAA.919202 10.1190/1.1441123 10.1121/1.3644915 10.1006/jsvi.2000.3435 10.1103/PhysRevB.47.4964 10.1016/j.buildenv.2013.10.010 10.1016/j.compositesb.2021.109006 10.1121/1.391962 10.1121/1.2828066 10.1063/1.4890218 10.1002/adma.202104552 10.1155/2019/7029143 10.1016/j.jsv.2019.115167 10.1121/1.4824842 10.1121/1.1534607 10.1121/1.3681016 10.1121/10.0002162 |
ContentType | Journal Article |
Copyright | 2022 The Author(s) Attribution |
Copyright_xml | – notice: 2022 The Author(s) – notice: Attribution |
DBID | 6I. AAFTH AAYXX CITATION 1XC VOOES |
DOI | 10.1016/j.apacoust.2022.108941 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1872-910X |
ExternalDocumentID | oai_HAL_hal_04198669v1 10_1016_j_apacoust_2022_108941 S0003682X22003152 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABMAC ABNEU ABTAH ABXDB ABYKQ ACDAQ ACFVG ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AI. AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SET SEW SPC SPCBC SPD SSQ SST SSZ T5K VH1 WUQ XPP ZMT ZY4 ~02 ~G- AAXKI AAYXX AFJKZ AKRWK CITATION 1XC VOOES |
ID | FETCH-LOGICAL-c324t-43a3a41edfe023e03e7a267ab7bf0273309e16e75d52d19cd5f58fb8296abf9d3 |
ISSN | 0003-682X |
IngestDate | Wed Oct 09 06:34:38 EDT 2024 Thu Sep 26 20:37:33 EDT 2024 Fri Feb 23 02:39:32 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Additive manufacturing Double porosity Multiscale modelling Sound absorption Pressure diffusion |
Language | English |
License | This is an open access article under the CC BY license. Attribution: http://creativecommons.org/licenses/by |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c324t-43a3a41edfe023e03e7a267ab7bf0273309e16e75d52d19cd5f58fb8296abf9d3 |
ORCID | 0000-0002-1474-6044 |
OpenAccessLink | https://hal.science/hal-04198669 |
ParticipantIDs | hal_primary_oai_HAL_hal_04198669v1 crossref_primary_10_1016_j_apacoust_2022_108941 elsevier_sciencedirect_doi_10_1016_j_apacoust_2022_108941 |
PublicationCentury | 2000 |
PublicationDate | August 2022 2022-08-00 2022-08 |
PublicationDateYYYYMMDD | 2022-08-01 |
PublicationDate_xml | – month: 08 year: 2022 text: August 2022 |
PublicationDecade | 2020 |
PublicationTitle | Applied acoustics |
PublicationYear | 2022 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Melchels, Feijen, Grijpma (b0025) 2010; 31 Roncen, Fellah, Ogam (b0450) 2022; 520 Kuschmitz, Ring, Watschke, Langer, Vietor (b0165) 2021; 14 Boulvert, Humbert, Romero-García, Gabard, Fotsing, Ross, Mardjono, Groby (b0175) 2022; 523 Fotsing, Dubourg, Ross, Mardjono (b0115) 2019; 148 Costa-Baptista, Fotsing, Mardjono, Therriault, Ross (b0170) 2022; 55 Carbajo, Molina-Jordá, Maiorano, Fang (b0060) 2021; 182 Ring, Langer (b0120) 2019; 12 Dowling, Kennedy, O’Shaughnessy, Trimble (b0200) 2020; 186 Zieliński (b0070) 2016 Venegas, Zieliński, Núñez, Bécot (b0345) 2021; 220 Setaki, Tenpierik, Turrin, van Timmeren (b0035) 2014; 72 Venegas R. Microstructure influence on acoustical properties of multiscale porous materials [Ph.D. thesis]. University of Salford, Salford, United Kingdom; 2011. Salissou, Panneton, Doutres (b0415) 2012; 131 Achdou, Avellaneda (b0320) 1992; 4 Boulvert, Costa-Baptista, Cavalieri, Perna, Fotsing, Romero-García, Gabard, Ross, Mardjono, Groby (b0105) 2020; 164 McGee, Jiang, Qian, Jiac, Wang, Meng, Chronopoulos, Chen, Zuo (b0090) 2019; 30 Chevillotte, Perrot, Panneton (b0280) 2010; 128 Zieliński (b0290) 2014; 116 Cavalieri, Boulvert, Romero-García, Gabard, Escouflaire, Regnard, Groby (b0145) 2021; 129 Johnston, Sharma (b0100) 2021; 41 Núñez, Venegas, Zieliński, Bécot (b0350) 2021; 33 Zieliński (b0440) 2015; 137 Boutin, Geindreau (b0455) 2008; 124 Ngo, Kashani, Imbalzano, Nguyen, Hui (b0010) 2018; 143 Chevillotte, Perrot (b0330) 2017; 142 Zhang, Zhu, Li, Wang, Shi, Tang, Li, Yang (b0030) 2021; 48 Opiela, Zieliński, Attenborough (b0185) 2022; 218 . Williams, Piglione, Rønneberg, Jones, Pham, Davies, Hooper (b0195) 2019; 30 Zieliński, Opiela, Pawłowski, Dauchez, Boutin, Kennedy, Trimble, Rice (b0075) 2019 Suárez, del Mar Espinosa (b0160) 2020; 109 Perrot, Chevillotte, Hoang, Bonnet, Bécot, Gautron, Duval (b0285) 2012; 111 Kim, Yoon (b0155) 2021; 178 du Plessis (b0190) 2019; 30 Venegas, Umnova (b0225) 2011; 130 Wang, Fan (b0400) 2013 Jiménez, Romero-García, Pagneux, Groby (b0135) 2017; 7 Olny, Panneton (b0425) 2008; 123 Zhang, Qu (b0180) 2022; 189 Chevillotte, Perrot, Guillon (b0220) 2013; 134 Zieliński, Venegas, Perrot, Červenka, Chevillotte, Attenborough (b0295) 2020; 483 Boutin, Geindreau (b0460) 2010; 82 Salissou, Panneton (b0390) 2007; 101 Olny, Boutin (b0215) 2003; 114 Cortis, Berryman (b0325) 2010; 22 Li, Yu, Zhai (b0110) 2021; 33 Pride, Morgan, Gangi (b0370) 1993; 47 Yang, Chen, Fu, Sheng (b0130) 2017; 4 Rice, Kennedy, Göransson, Dowling, Trimble (b0140) 2020; 472 Gasser, Paun, Bréchet (b0265) 2005; 117 Venegas, Boutin, Umnova (b0355) 2017; 29 Attenborough (b0340) 2021; 11 Sgard, Olny, Atalla, Castel (b0235) 2005; 66 Liu, Zhan, Fard, Davy (b0040) 2016; 181 ISO 10534–2: Determination of sound absorption coefficient and impedance in impedance tubes; 1998. Carbajo, Ghaffari Mosanenzadeh, Kim, Fang (b0055) 2020; 169 Venegas, Boutin (b0240) 2018; 418 Lafarge (b0255) 1993 Iwase T, Izumi Y, Kawabata R. A new measuring method for sound propagation constant by using sound tube without any air spaces back of a test material. In InterNoise98, Christchurch, New Zeland; 1998. pp. 1265–1268. Auriault, Boutin (b0205) 1994; 14 Gibson, Rosen, Stucker (b0005) 2015 Zieliński, Opiela, Pawłowski, Dauchez, Boutin, Kennedy, Trimble, Rice, Van Damme, Hannema, Wróbel, Kim, Ghaffari Mosanenzadeh, Fang, Yang, Briere de La Hosseraye, Hornikx, Salze, Galland, Boonen, Carvalho de Sousa, Deckers, Gaborit, Groby (b0085) 2020; 36 Carbajo, Ghaffari Mosanenzadeh, Kim, Fang (b0050) 2020; 116 Firdaouss, Guermond, Lafarge (b0310) 1998; 36 Boulvert, Cavalieri, Costa-Baptista, Schwan, Romero-García, Gabard, Fotsing, Ross, Mardjono, Groby (b0095) 2019; 126 Atalla, Panneton, Sgard, Olny (b0230) 2001; 243 Zieliński, Chevillotte, Deckers (b0065) 2019; 146 Lee, Leamy, Nadler (b0275) 2009; 126 Liu, Zhan, Fard, Davy (b0045) 2017; 121 Cuenca, Gøransson, De Ryck, Lähivaara (b0445) 2022; 163 Avellaneda, Torquato (b0380) 1991; 3 Jaouen, Gourdon, Glé (b0430) 2020; 148 Opiela, Zieliński, Attenborough (b0125) 2020 Auriault, Borne, Chambon (b0250) 1985; 77 Utsuno, Tanaka, Fujikawa, Seybert (b0405) 1989; 86 Mostafaei, Elliott, Barnes, Li, Tan, Cramer, Nandwana, Chmielus (b0020) 2021; 119 Johnson, Koplik, Dashen (b0360) 1987; 176 Kennedy, Flanagan, Dowling, Bennett, Rice, Trimble (b0080) 2019; 2019 Boutin, Royer, Auriault (b0210) 1998; 35 Perrot, Chevillotte, Panneton (b0270) 2008; 124 Trinh, Guilleminot, Perrot (b0335) 2021; 210 Venegas, Boutin (b0300) 2018; 104 Cummings (b0315) 1991; 151 Opiela, Zieliński (b0150) 2020; 187 Rhodes M. (Ed.), Introduction to Particle Technology, 2nd ed. John Wiley & Sons, Chichester; 2008. Champoux, Allard (b0365) 1991; 70 Panneton, Olny (b0420) 2006; 119 Brown (b0375) 1980; 45 ISO 9053-1:2018: Acoustics – Determination of airflow resistance – Part 1: Static airflow method; 2018. Dini, Ghaffari, Jafar, Hamidreza, Marjan (b0015) 2020; 75 Allard, Atalla (b0305) 2009 Lafarge, Lemarinier, Allard, Tarnow (b0260) 1997; 102 Allard (10.1016/j.apacoust.2022.108941_b0305) 2009 Utsuno (10.1016/j.apacoust.2022.108941_b0405) 1989; 86 Auriault (10.1016/j.apacoust.2022.108941_b0250) 1985; 77 Zhang (10.1016/j.apacoust.2022.108941_b0030) 2021; 48 Zhang (10.1016/j.apacoust.2022.108941_b0180) 2022; 189 Zieliński (10.1016/j.apacoust.2022.108941_b0295) 2020; 483 Ring (10.1016/j.apacoust.2022.108941_b0120) 2019; 12 Lee (10.1016/j.apacoust.2022.108941_b0275) 2009; 126 Sgard (10.1016/j.apacoust.2022.108941_b0235) 2005; 66 Núñez (10.1016/j.apacoust.2022.108941_b0350) 2021; 33 Olny (10.1016/j.apacoust.2022.108941_b0215) 2003; 114 Liu (10.1016/j.apacoust.2022.108941_b0040) 2016; 181 Lafarge (10.1016/j.apacoust.2022.108941_b0255) 1993 Li (10.1016/j.apacoust.2022.108941_b0110) 2021; 33 Lafarge (10.1016/j.apacoust.2022.108941_b0260) 1997; 102 10.1016/j.apacoust.2022.108941_b0385 Salissou (10.1016/j.apacoust.2022.108941_b0415) 2012; 131 Kennedy (10.1016/j.apacoust.2022.108941_b0080) 2019; 2019 Venegas (10.1016/j.apacoust.2022.108941_b0300) 2018; 104 Zieliński (10.1016/j.apacoust.2022.108941_b0440) 2015; 137 Setaki (10.1016/j.apacoust.2022.108941_b0035) 2014; 72 Carbajo (10.1016/j.apacoust.2022.108941_b0055) 2020; 169 Cavalieri (10.1016/j.apacoust.2022.108941_b0145) 2021; 129 Carbajo (10.1016/j.apacoust.2022.108941_b0060) 2021; 182 Roncen (10.1016/j.apacoust.2022.108941_b0450) 2022; 520 Costa-Baptista (10.1016/j.apacoust.2022.108941_b0170) 2022; 55 Mostafaei (10.1016/j.apacoust.2022.108941_b0020) 2021; 119 Carbajo (10.1016/j.apacoust.2022.108941_b0050) 2020; 116 Dowling (10.1016/j.apacoust.2022.108941_b0200) 2020; 186 Attenborough (10.1016/j.apacoust.2022.108941_b0340) 2021; 11 Yang (10.1016/j.apacoust.2022.108941_b0130) 2017; 4 Chevillotte (10.1016/j.apacoust.2022.108941_b0330) 2017; 142 Zieliński (10.1016/j.apacoust.2022.108941_b0070) 2016 Boulvert (10.1016/j.apacoust.2022.108941_b0095) 2019; 126 Chevillotte (10.1016/j.apacoust.2022.108941_b0280) 2010; 128 Brown (10.1016/j.apacoust.2022.108941_b0375) 1980; 45 Venegas (10.1016/j.apacoust.2022.108941_b0225) 2011; 130 Pride (10.1016/j.apacoust.2022.108941_b0370) 1993; 47 Avellaneda (10.1016/j.apacoust.2022.108941_b0380) 1991; 3 Atalla (10.1016/j.apacoust.2022.108941_b0230) 2001; 243 Cuenca (10.1016/j.apacoust.2022.108941_b0445) 2022; 163 Chevillotte (10.1016/j.apacoust.2022.108941_b0220) 2013; 134 Boutin (10.1016/j.apacoust.2022.108941_b0460) 2010; 82 Cortis (10.1016/j.apacoust.2022.108941_b0325) 2010; 22 10.1016/j.apacoust.2022.108941_b0410 Champoux (10.1016/j.apacoust.2022.108941_b0365) 1991; 70 Salissou (10.1016/j.apacoust.2022.108941_b0390) 2007; 101 10.1016/j.apacoust.2022.108941_b0435 Boulvert (10.1016/j.apacoust.2022.108941_b0105) 2020; 164 du Plessis (10.1016/j.apacoust.2022.108941_b0190) 2019; 30 Perrot (10.1016/j.apacoust.2022.108941_b0270) 2008; 124 Wang (10.1016/j.apacoust.2022.108941_b0400) 2013 Venegas (10.1016/j.apacoust.2022.108941_b0240) 2018; 418 Jaouen (10.1016/j.apacoust.2022.108941_b0430) 2020; 148 Gibson (10.1016/j.apacoust.2022.108941_b0005) 2015 Suárez (10.1016/j.apacoust.2022.108941_b0160) 2020; 109 Johnston (10.1016/j.apacoust.2022.108941_b0100) 2021; 41 Trinh (10.1016/j.apacoust.2022.108941_b0335) 2021; 210 Fotsing (10.1016/j.apacoust.2022.108941_b0115) 2019; 148 Jiménez (10.1016/j.apacoust.2022.108941_b0135) 2017; 7 Kim (10.1016/j.apacoust.2022.108941_b0155) 2021; 178 Perrot (10.1016/j.apacoust.2022.108941_b0285) 2012; 111 Zieliński (10.1016/j.apacoust.2022.108941_b0290) 2014; 116 Ngo (10.1016/j.apacoust.2022.108941_b0010) 2018; 143 Opiela (10.1016/j.apacoust.2022.108941_b0150) 2020; 187 Dini (10.1016/j.apacoust.2022.108941_b0015) 2020; 75 Venegas (10.1016/j.apacoust.2022.108941_b0355) 2017; 29 10.1016/j.apacoust.2022.108941_b0245 Kuschmitz (10.1016/j.apacoust.2022.108941_b0165) 2021; 14 Venegas (10.1016/j.apacoust.2022.108941_b0345) 2021; 220 Olny (10.1016/j.apacoust.2022.108941_b0425) 2008; 123 Firdaouss (10.1016/j.apacoust.2022.108941_b0310) 1998; 36 Johnson (10.1016/j.apacoust.2022.108941_b0360) 1987; 176 Melchels (10.1016/j.apacoust.2022.108941_b0025) 2010; 31 Zieliński (10.1016/j.apacoust.2022.108941_b0085) 2020; 36 Gasser (10.1016/j.apacoust.2022.108941_b0265) 2005; 117 Opiela (10.1016/j.apacoust.2022.108941_b0125) 2020 Opiela (10.1016/j.apacoust.2022.108941_b0185) 2022; 218 Cummings (10.1016/j.apacoust.2022.108941_b0315) 1991; 151 Boutin (10.1016/j.apacoust.2022.108941_b0210) 1998; 35 Zieliński (10.1016/j.apacoust.2022.108941_b0065) 2019; 146 Liu (10.1016/j.apacoust.2022.108941_b0045) 2017; 121 McGee (10.1016/j.apacoust.2022.108941_b0090) 2019; 30 Boulvert (10.1016/j.apacoust.2022.108941_b0175) 2022; 523 Williams (10.1016/j.apacoust.2022.108941_b0195) 2019; 30 Panneton (10.1016/j.apacoust.2022.108941_b0420) 2006; 119 10.1016/j.apacoust.2022.108941_b0395 Auriault (10.1016/j.apacoust.2022.108941_b0205) 1994; 14 Achdou (10.1016/j.apacoust.2022.108941_b0320) 1992; 4 Boutin (10.1016/j.apacoust.2022.108941_b0455) 2008; 124 Zieliński (10.1016/j.apacoust.2022.108941_b0075) 2019 Rice (10.1016/j.apacoust.2022.108941_b0140) 2020; 472 |
References_xml | – volume: 186 year: 2020 ident: b0200 article-title: A review of critical repeatability and reproducibility issues in powder bed fusion publication-title: Mater Design contributor: fullname: Trimble – volume: 163 year: 2022 ident: b0445 article-title: Deterministic and statistical methods for the characterisation of poroelastic media from multi-observation sound absorption measurements publication-title: Mech Syst Signal Process contributor: fullname: Lähivaara – volume: 72 start-page: 188 year: 2014 end-page: 200 ident: b0035 article-title: Acoustic absorbers by additive manufacturing publication-title: Build Environ contributor: fullname: van Timmeren – volume: 33 start-page: 2104552 year: 2021 ident: b0110 article-title: Additively manufactured deformation-recoverable and broadband sound-absorbing microlattice inspired by the concept of traditional perforated panels publication-title: Adv Mater contributor: fullname: Zhai – start-page: 409 year: 2020 end-page: 420 ident: b0125 article-title: Manufacturing, modeling, and experimental verification of slitted sound absorbers publication-title: Proceedings of ISMA2020 International Conference on Noise and Vibration Engineering and USD2020 International Conference on Uncertainty in Structural Dynamics contributor: fullname: Attenborough – volume: 102 start-page: 1995 year: 1997 end-page: 2006 ident: b0260 article-title: Dynamic compressibility of air in porous structures at audible frequencies publication-title: J Acoust Soc Am contributor: fullname: Tarnow – start-page: 4505 year: 2019 end-page: 4512 ident: b0075 article-title: Differences in sound absorption of samples with periodic porosity produced using various Additive Manufacturing Technologies publication-title: Proceedings of the 23rd International Congress on Acoustics integrating 4th EAA Euroregio contributor: fullname: Rice – volume: 218 year: 2022 ident: b0185 article-title: Limitations on validating slitted sound absorber designs through budget additive manufacturing publication-title: Mater Design contributor: fullname: Attenborough – volume: 86 start-page: 637 year: 1989 end-page: 643 ident: b0405 article-title: Transfer function method for measuring characteristic impedance and propagation constant of porous materials publication-title: J Acoust Soc Am contributor: fullname: Seybert – volume: 483 year: 2020 ident: b0295 article-title: Benchmarks for microstructure-based modelling of sound absorbing rigid-frame porous media publication-title: J Sound Vib contributor: fullname: Attenborough – start-page: 95 year: 2016 end-page: 104 ident: b0070 article-title: Pore-size effects in sound absorbing foams with periodic microstructure: modelling and experimental verification using 3D printed specimens publication-title: Proceedings of ISMA2016 International Conference on Noise and Vibration Engineering and USD2016 International Conference on Uncertainty in Structural Dynamics contributor: fullname: Zieliński – volume: 210 year: 2021 ident: b0335 article-title: On the sensitivity of the design of composite sound absorbing structures publication-title: Mater Design contributor: fullname: Perrot – volume: 126 start-page: 1862 year: 2009 end-page: 1870 ident: b0275 article-title: Acoustic absorption calculation in irreducible porous media: A unified computational approach publication-title: J Acoust Soc Am contributor: fullname: Nadler – volume: 111 year: 2012 ident: b0285 article-title: Microstructure, transport, and acoustic properties of open-cell foam samples: Experiments and three-dimensional numerical simulations publication-title: J Appl Phys contributor: fullname: Duval – volume: 70 start-page: 1975 year: 1991 end-page: 1979 ident: b0365 article-title: Dynamic tortuosity and bulk modulus in air-saturated porous media publication-title: J Appl Phys contributor: fullname: Allard – volume: 128 start-page: 1766 year: 2010 end-page: 1776 ident: b0280 article-title: Microstructure based model for sound absorption predictions of perforated closed-cell metallic foams publication-title: J Acoust Soc Am contributor: fullname: Panneton – volume: 129 year: 2021 ident: b0145 article-title: Rapid additive manufacturing of optimized anisotropic metaporous surfaces for broadband absorption publication-title: J Appl Phys contributor: fullname: Groby – volume: 30 year: 2019 ident: b0190 article-title: Effects of process parameters on porosity in laser powder bed fusion revealed by X-ray tomography publication-title: Addit Manuf contributor: fullname: du Plessis – year: 1993 ident: b0255 article-title: Propagation du son dans les matériaux poreux à structure rigide saturés par un fluide viscothermique contributor: fullname: Lafarge – volume: 104 start-page: 623 year: 2018 end-page: 635 ident: b0300 article-title: Enhancing sound attenuation in permeable heterogeneous materials via diffusion processes publication-title: Acta Acust United With Acust contributor: fullname: Boutin – volume: 75 start-page: 95 year: 2020 end-page: 100 ident: b0015 article-title: A review of binder jet process parameters; powder, binder, printing and sintering condition publication-title: Met Powder Rep contributor: fullname: Marjan – volume: 30 year: 2019 ident: b0090 article-title: 3D printed architected hollow sphere foams with low-frequency phononic band gaps publication-title: Addit Manuf contributor: fullname: Zuo – volume: 47 start-page: 4964 year: 1993 end-page: 4978 ident: b0370 article-title: Drag forces of porous-medium acoustics publication-title: Phys Rev B contributor: fullname: Gangi – volume: 109 start-page: 2691 year: 2020 end-page: 2705 ident: b0160 article-title: Assessment on the use of additive manufacturing technologies for acoustic applications publication-title: Int J Adv Manuf Technol contributor: fullname: del Mar Espinosa – volume: 169 year: 2020 ident: b0055 article-title: Multi-layer perforated panel absorbers with oblique perforations publication-title: Appl Acoust contributor: fullname: Fang – volume: 146 start-page: 261 year: 2019 end-page: 279 ident: b0065 article-title: Sound absorption of plates with micro-slits backed with air cavities: Analytical estimations, numerical calculations and experimental validations publication-title: Appl Acoust contributor: fullname: Deckers – volume: 243 start-page: 659 year: 2001 end-page: 678 ident: b0230 article-title: Acoustic absorption of macro-perforated porous materials publication-title: J Sound Vib contributor: fullname: Olny – volume: 4 start-page: 2651 year: 1992 end-page: 2673 ident: b0320 article-title: Influence of pore roughness and pore-size dispersion in estimating the permeability of a porous medium from electrical measurements publication-title: Physic of Fluids A contributor: fullname: Avellaneda – volume: 29 year: 2017 ident: b0355 article-title: Acoustics of multiscale sorptive porous materials publication-title: Phys Fluids contributor: fullname: Umnova – volume: 126 year: 2019 ident: b0095 article-title: Optimally graded porous material for broadband perfect absorption of sound publication-title: J Appl Phys contributor: fullname: Groby – volume: 66 start-page: 625 year: 2005 end-page: 651 ident: b0235 article-title: On the use of perforations to improve the sound absorption of porous materials publication-title: Appl Acoust contributor: fullname: Castel – volume: 131 start-page: EL216 year: 2012 end-page: EL222 ident: b0415 article-title: Complement to standard method for measuring normal incidence sound transmission loss with three microphones publication-title: J Acoust Soc Am contributor: fullname: Doutres – volume: 7 start-page: 13595 year: 2017 ident: b0135 article-title: Rainbow-trapping absorbers: Broadband, perfect and asymmetric sound absorption by subwavelength panels for transmission problems publication-title: Scientific Rep contributor: fullname: Groby – volume: 11 start-page: 3299 year: 2021 ident: b0340 article-title: Analytical approximations for sub wavelength sound absorption by porous layers with labyrinthine slit perforations publication-title: Appl Sci contributor: fullname: Attenborough – volume: 151 start-page: 63 year: 1991 end-page: 75 ident: b0315 article-title: Impedance tube measurements on porous media: The effects of air-gaps around the sample publication-title: J Sound Vib contributor: fullname: Cummings – volume: 520 year: 2022 ident: b0450 article-title: Addressing the ill-posedness of multi-layer porous media characterization in impedance tubes through the addition of air gaps behind the sample: Numerical validation publication-title: J Sound Vib contributor: fullname: Ogam – volume: 418 start-page: 221 year: 2018 end-page: 239 ident: b0240 article-title: Acoustics of permeable heterogeneous materials with local non-equilibrium pressure states publication-title: J Sound Vib contributor: fullname: Boutin – volume: 4 start-page: 673 year: 2017 end-page: 680 ident: b0130 article-title: Optimal sound-absorbing structures publication-title: Mater Horizons contributor: fullname: Sheng – volume: 189 year: 2022 ident: b0180 article-title: Viscous and thermal dissipation during the sound propagation in the continuously graded phononic crystals publication-title: Appl Acoust contributor: fullname: Qu – volume: 2019 start-page: 7029143 year: 2019 ident: b0080 article-title: The influence of additive manufacturing processes on the performance of a periodic acoustic metamaterial publication-title: Int J Polym Sci contributor: fullname: Trimble – volume: 176 start-page: 379 year: 1987 end-page: 402 ident: b0360 article-title: Theory of dynamic permeability and tortuosity in fluid-saturated porous media publication-title: J Fluid Mech contributor: fullname: Dashen – volume: 117 start-page: 2090 year: 2005 end-page: 2099 ident: b0265 article-title: Absorptive properties of rigid porous media: Application to face centered cubic sphere packing publication-title: J Acoust Soc Am contributor: fullname: Bréchet – volume: 33 year: 2021 ident: b0350 article-title: Equivalent fluid approach to modeling the acoustical properties of polydisperse heterogeneous porous composites publication-title: Phys Fluids contributor: fullname: Bécot – volume: 164 year: 2020 ident: b0105 article-title: Acoustic modeling of micro-lattices obtained by additive manufacturing publication-title: Appl Acoust contributor: fullname: Groby – volume: 142 start-page: 1130 year: 2017 end-page: 1140 ident: b0330 article-title: Effect of the three dimensional microstructure on the sound absorption of foams: A parametric study publication-title: J Acoust Soc Am contributor: fullname: Perrot – volume: 181 start-page: 296 year: 2016 end-page: 299 ident: b0040 article-title: Acoustic properties of a porous polycarbonate material produced by additive manufacturing publication-title: Mater Lett contributor: fullname: Davy – volume: 45 start-page: 1269 year: 1980 end-page: 1275 ident: b0375 article-title: Connection between formation factor for electrical resistivity and fluid-solid coupling factor in Biot’s equations for acoustic waves in fluid-filled porous media publication-title: Geophysics contributor: fullname: Brown – volume: 137 start-page: 3232 year: 2015 end-page: 3243 ident: b0440 article-title: Normalized inverse characterization of sound absorbing rigid porous media publication-title: J Acoust Soc Am contributor: fullname: Zieliński – volume: 12 start-page: 3397 year: 2019 ident: b0120 article-title: Design, experimental and numerical characterization of 3D-printed porous absorbers publication-title: Materials contributor: fullname: Langer – volume: 3 start-page: 2529 year: 1991 end-page: 2540 ident: b0380 article-title: Rigorous link between fluid permeability, electrical conductivity, and relaxation times for transport in porous media publication-title: Phys Fluids A contributor: fullname: Torquato – volume: 178 year: 2021 ident: b0155 article-title: Active acoustic absorption device using additive manufacturing technique for normal incident wave publication-title: Appl Acoust contributor: fullname: Yoon – volume: 14 start-page: 1747 year: 2021 ident: b0165 article-title: Design and additive manufacturing of porous sound absorbers—A machine-learning approach publication-title: Materials contributor: fullname: Vietor – volume: 148 start-page: 322 year: 2019 end-page: 331 ident: b0115 article-title: Acoustic properties of periodic micro-structures obtained by additive manufacturing publication-title: Appl Acoust contributor: fullname: Mardjono – start-page: 42 year: 2013 end-page: 76 ident: b0400 article-title: 2 – Particle characterization and behavior relevant to fluidized bed combustion and gasification systems publication-title: Fluidized Bed Technologies for Near-Zero Emission Combustion and Gasification, Woodhead Publishing Series in Energy contributor: fullname: Fan – volume: 48 year: 2021 ident: b0030 article-title: The recent development of vat photopolymerization: A review publication-title: Addit Manuf contributor: fullname: Yang – volume: 36 year: 2020 ident: b0085 article-title: Reproducibility of sound-absorbing periodic porous materials using additive manufacturing technologies: Round robin study publication-title: Addit Manuf contributor: fullname: Groby – volume: 143 start-page: 172 year: 2018 end-page: 196 ident: b0010 article-title: Additive manufacturing (3D printing): A review of materials, methods, applications and challenges publication-title: Compos Part B: Eng contributor: fullname: Hui – volume: 116 year: 2014 ident: b0290 article-title: Microstructure-based calculations and experimental results for sound absorbing porous layers of randomly packed rigid spherical beads publication-title: J Appl Phys contributor: fullname: Zieliński – volume: 36 start-page: 1035 year: 1998 end-page: 1046 ident: b0310 article-title: Some remarks on the acoustic parameters of sharp-edged porous media publication-title: Int J Eng Sci contributor: fullname: Lafarge – volume: 121 start-page: 25 year: 2017 end-page: 32 ident: b0045 article-title: Acoustic properties of multilayer sound absorbers with a 3D printed micro-perforated panel publication-title: Appl Acoust contributor: fullname: Davy – volume: 116 year: 2020 ident: b0050 article-title: Sound absorption of acoustic resonators with oblique perforations publication-title: Appl Phys Lett contributor: fullname: Fang – volume: 472 year: 2020 ident: b0140 article-title: Design of a Kelvin cell acoustic metamaterial publication-title: J Sound Vib contributor: fullname: Trimble – volume: 130 start-page: 2765 year: 2011 end-page: 2776 ident: b0225 article-title: Acoustical properties of double porosity granular materials publication-title: J Acoust Soc Am contributor: fullname: Umnova – volume: 123 start-page: 814 year: 2008 end-page: 824 ident: b0425 article-title: Acoustical determination of the parameters governing thermal dissipation in porous media publication-title: J Acoust Soc Am contributor: fullname: Panneton – volume: 182 year: 2021 ident: b0060 article-title: Sound absorption of macro-perforated additively manufactured media publication-title: Appl Acoust contributor: fullname: Fang – volume: 119 year: 2021 ident: b0020 article-title: Binder jet 3D printing—Process parameters, materials, properties, modeling, and challenges publication-title: Prog Mater Sci contributor: fullname: Chmielus – volume: 220 year: 2021 ident: b0345 article-title: Acoustics of porous composites publication-title: Compos Part B contributor: fullname: Bécot – volume: 119 start-page: 2027 year: 2006 end-page: 2040 ident: b0420 article-title: Acoustical determination of the parameters governing viscous dissipation in porous media publication-title: J Acoust Soc Am contributor: fullname: Olny – volume: 187 year: 2020 ident: b0150 article-title: Microstructural design, manufacturing and modelling of an adaptable porous composite sound absorber publication-title: Compos Part B: Eng contributor: fullname: Zieliński – volume: 148 start-page: 1998 year: 2020 end-page: 2005 ident: b0430 article-title: Estimation of all six parameters of johnson-champoux-allard-lafarge model for acoustical porous materials from impedance tube measurements publication-title: J Acoust Soc Am contributor: fullname: Glé – volume: 77 start-page: 1641 year: 1985 end-page: 1650 ident: b0250 article-title: Dynamics of porous saturated media, checking of the generalized law of Darcy publication-title: J Acoust Soc Am contributor: fullname: Chambon – volume: 22 year: 2010 ident: b0325 article-title: Frequency-dependent viscous flow in channels with fractal rough surfaces publication-title: Phys Fluids contributor: fullname: Berryman – volume: 41 year: 2021 ident: b0100 article-title: Additive manufacturing of fibrous sound absorbers publication-title: Addit Manuf contributor: fullname: Sharma – volume: 30 year: 2019 ident: b0195 article-title: In situ thermography for laser powder bed fusion: Effects of layer temperature on porosity, microstructure and mechanical properties publication-title: Addit Manuf contributor: fullname: Hooper – year: 2015 ident: b0005 article-title: Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing contributor: fullname: Stucker – volume: 134 start-page: 4681 year: 2013 end-page: 4690 ident: b0220 article-title: A direct link between microstructure and acoustical macro-behavior of real double porosity foams publication-title: J Acoust Soc Am contributor: fullname: Guillon – volume: 114 start-page: 73 year: 2003 end-page: 89 ident: b0215 article-title: Acoustic wave propagation in double porosity media publication-title: J Acoust Soc Am contributor: fullname: Boutin – year: 2009 ident: b0305 article-title: Propagation of Sound in Porous Media: Modeling Sound Absorbing Materials contributor: fullname: Atalla – volume: 82 year: 2010 ident: b0460 article-title: Periodic homogenization and consistent estimates of transport parameters through sphere and polyhedron packings in the whole porosity range publication-title: Phys Rev E contributor: fullname: Geindreau – volume: 31 start-page: 6121 year: 2010 end-page: 6130 ident: b0025 article-title: A review on stereolithography and its applications in biomedical engineering publication-title: Biomaterials contributor: fullname: Grijpma – volume: 124 start-page: 940 year: 2008 end-page: 948 ident: b0270 article-title: Bottom-up approach for microstructure optimization of sound absorbing materials publication-title: J Acoust Soc Am contributor: fullname: Panneton – volume: 523 year: 2022 ident: b0175 article-title: Perfect, broadband, and sub-wavelength absorption with asymmetric absorbers: Realization for duct acoustics with 3d printed porous resonators publication-title: J Sound Vib contributor: fullname: Groby – volume: 101 year: 2007 ident: b0390 article-title: Pressure/mass method to measure open porosity of porous solids publication-title: J Appl Phys contributor: fullname: Panneton – volume: 124 start-page: 3576 year: 2008 end-page: 3593 ident: b0455 article-title: Estimates and bounds of dynamic permeability of granular media publication-title: J Acoust Soc Am contributor: fullname: Geindreau – volume: 14 start-page: 143 year: 1994 end-page: 162 ident: b0205 article-title: Deformable porous media with double porosity III: Acoustics publication-title: Transp Porous Media contributor: fullname: Boutin – volume: 35 start-page: 4709 year: 1998 end-page: 4737 ident: b0210 article-title: Acoustic absorption of porous surfacing with dual porosity publication-title: Int J Solids Struct contributor: fullname: Auriault – volume: 55 year: 2022 ident: b0170 article-title: Design and fused filament fabrication of multilayered microchannels for subwavelength and broadband sound absorption publication-title: Addit Manuf contributor: fullname: Ross – volume: 169 year: 2020 ident: 10.1016/j.apacoust.2022.108941_b0055 article-title: Multi-layer perforated panel absorbers with oblique perforations publication-title: Appl Acoust doi: 10.1016/j.apacoust.2020.107496 contributor: fullname: Carbajo – volume: 142 start-page: 1130 year: 2017 ident: 10.1016/j.apacoust.2022.108941_b0330 article-title: Effect of the three dimensional microstructure on the sound absorption of foams: A parametric study publication-title: J Acoust Soc Am doi: 10.1121/1.4999058 contributor: fullname: Chevillotte – volume: 75 start-page: 95 year: 2020 ident: 10.1016/j.apacoust.2022.108941_b0015 article-title: A review of binder jet process parameters; powder, binder, printing and sintering condition publication-title: Met Powder Rep doi: 10.1016/j.mprp.2019.05.001 contributor: fullname: Dini – volume: 82 year: 2010 ident: 10.1016/j.apacoust.2022.108941_b0460 article-title: Periodic homogenization and consistent estimates of transport parameters through sphere and polyhedron packings in the whole porosity range publication-title: Phys Rev E doi: 10.1103/PhysRevE.82.036313 contributor: fullname: Boutin – volume: 523 year: 2022 ident: 10.1016/j.apacoust.2022.108941_b0175 article-title: Perfect, broadband, and sub-wavelength absorption with asymmetric absorbers: Realization for duct acoustics with 3d printed porous resonators publication-title: J Sound Vib doi: 10.1016/j.jsv.2021.116687 contributor: fullname: Boulvert – year: 1993 ident: 10.1016/j.apacoust.2022.108941_b0255 contributor: fullname: Lafarge – volume: 137 start-page: 3232 year: 2015 ident: 10.1016/j.apacoust.2022.108941_b0440 article-title: Normalized inverse characterization of sound absorbing rigid porous media publication-title: J Acoust Soc Am doi: 10.1121/1.4919806 contributor: fullname: Zieliński – volume: 218 year: 2022 ident: 10.1016/j.apacoust.2022.108941_b0185 article-title: Limitations on validating slitted sound absorber designs through budget additive manufacturing publication-title: Mater Design contributor: fullname: Opiela – volume: 70 start-page: 1975 year: 1991 ident: 10.1016/j.apacoust.2022.108941_b0365 article-title: Dynamic tortuosity and bulk modulus in air-saturated porous media publication-title: J Appl Phys doi: 10.1063/1.349482 contributor: fullname: Champoux – volume: 119 year: 2021 ident: 10.1016/j.apacoust.2022.108941_b0020 article-title: Binder jet 3D printing—Process parameters, materials, properties, modeling, and challenges publication-title: Prog Mater Sci doi: 10.1016/j.pmatsci.2020.100707 contributor: fullname: Mostafaei – volume: 117 start-page: 2090 year: 2005 ident: 10.1016/j.apacoust.2022.108941_b0265 article-title: Absorptive properties of rigid porous media: Application to face centered cubic sphere packing publication-title: J Acoust Soc Am doi: 10.1121/1.1863052 contributor: fullname: Gasser – volume: 14 start-page: 143 year: 1994 ident: 10.1016/j.apacoust.2022.108941_b0205 article-title: Deformable porous media with double porosity III: Acoustics publication-title: Transp Porous Media doi: 10.1007/BF00615198 contributor: fullname: Auriault – volume: 3 start-page: 2529 year: 1991 ident: 10.1016/j.apacoust.2022.108941_b0380 article-title: Rigorous link between fluid permeability, electrical conductivity, and relaxation times for transport in porous media publication-title: Phys Fluids A doi: 10.1063/1.858194 contributor: fullname: Avellaneda – volume: 29 year: 2017 ident: 10.1016/j.apacoust.2022.108941_b0355 article-title: Acoustics of multiscale sorptive porous materials publication-title: Phys Fluids doi: 10.1063/1.4999053 contributor: fullname: Venegas – year: 2015 ident: 10.1016/j.apacoust.2022.108941_b0005 contributor: fullname: Gibson – volume: 124 start-page: 940 year: 2008 ident: 10.1016/j.apacoust.2022.108941_b0270 article-title: Bottom-up approach for microstructure optimization of sound absorbing materials publication-title: J Acoust Soc Am doi: 10.1121/1.2945115 contributor: fullname: Perrot – volume: 182 year: 2021 ident: 10.1016/j.apacoust.2022.108941_b0060 article-title: Sound absorption of macro-perforated additively manufactured media publication-title: Appl Acoust doi: 10.1016/j.apacoust.2021.108204 contributor: fullname: Carbajo – volume: 109 start-page: 2691 year: 2020 ident: 10.1016/j.apacoust.2022.108941_b0160 article-title: Assessment on the use of additive manufacturing technologies for acoustic applications publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-020-05853-2 contributor: fullname: Suárez – volume: 187 year: 2020 ident: 10.1016/j.apacoust.2022.108941_b0150 article-title: Microstructural design, manufacturing and modelling of an adaptable porous composite sound absorber publication-title: Compos Part B: Eng doi: 10.1016/j.compositesb.2020.107833 contributor: fullname: Opiela – volume: 4 start-page: 2651 year: 1992 ident: 10.1016/j.apacoust.2022.108941_b0320 article-title: Influence of pore roughness and pore-size dispersion in estimating the permeability of a porous medium from electrical measurements publication-title: Physic of Fluids A doi: 10.1063/1.858523 contributor: fullname: Achdou – volume: 124 start-page: 3576 year: 2008 ident: 10.1016/j.apacoust.2022.108941_b0455 article-title: Estimates and bounds of dynamic permeability of granular media publication-title: J Acoust Soc Am doi: 10.1121/1.2999050 contributor: fullname: Boutin – volume: 102 start-page: 1995 year: 1997 ident: 10.1016/j.apacoust.2022.108941_b0260 article-title: Dynamic compressibility of air in porous structures at audible frequencies publication-title: J Acoust Soc Am doi: 10.1121/1.419690 contributor: fullname: Lafarge – volume: 483 year: 2020 ident: 10.1016/j.apacoust.2022.108941_b0295 article-title: Benchmarks for microstructure-based modelling of sound absorbing rigid-frame porous media publication-title: J Sound Vib doi: 10.1016/j.jsv.2020.115441 contributor: fullname: Zieliński – volume: 35 start-page: 4709 year: 1998 ident: 10.1016/j.apacoust.2022.108941_b0210 article-title: Acoustic absorption of porous surfacing with dual porosity publication-title: Int J Solids Struct doi: 10.1016/S0020-7683(98)00091-2 contributor: fullname: Boutin – volume: 14 start-page: 1747 year: 2021 ident: 10.1016/j.apacoust.2022.108941_b0165 article-title: Design and additive manufacturing of porous sound absorbers—A machine-learning approach publication-title: Materials doi: 10.3390/ma14071747 contributor: fullname: Kuschmitz – volume: 55 year: 2022 ident: 10.1016/j.apacoust.2022.108941_b0170 article-title: Design and fused filament fabrication of multilayered microchannels for subwavelength and broadband sound absorption publication-title: Addit Manuf contributor: fullname: Costa-Baptista – volume: 66 start-page: 625 year: 2005 ident: 10.1016/j.apacoust.2022.108941_b0235 article-title: On the use of perforations to improve the sound absorption of porous materials publication-title: Appl Acoust doi: 10.1016/j.apacoust.2004.09.008 contributor: fullname: Sgard – year: 2009 ident: 10.1016/j.apacoust.2022.108941_b0305 contributor: fullname: Allard – volume: 151 start-page: 63 year: 1991 ident: 10.1016/j.apacoust.2022.108941_b0315 article-title: Impedance tube measurements on porous media: The effects of air-gaps around the sample publication-title: J Sound Vib doi: 10.1016/0022-460X(91)90652-Z contributor: fullname: Cummings – volume: 181 start-page: 296 year: 2016 ident: 10.1016/j.apacoust.2022.108941_b0040 article-title: Acoustic properties of a porous polycarbonate material produced by additive manufacturing publication-title: Mater Lett doi: 10.1016/j.matlet.2016.06.045 contributor: fullname: Liu – volume: 86 start-page: 637 year: 1989 ident: 10.1016/j.apacoust.2022.108941_b0405 article-title: Transfer function method for measuring characteristic impedance and propagation constant of porous materials publication-title: J Acoust Soc Am doi: 10.1121/1.398241 contributor: fullname: Utsuno – volume: 126 year: 2019 ident: 10.1016/j.apacoust.2022.108941_b0095 article-title: Optimally graded porous material for broadband perfect absorption of sound publication-title: J Appl Phys doi: 10.1063/1.5119715 contributor: fullname: Boulvert – volume: 176 start-page: 379 year: 1987 ident: 10.1016/j.apacoust.2022.108941_b0360 article-title: Theory of dynamic permeability and tortuosity in fluid-saturated porous media publication-title: J Fluid Mech doi: 10.1017/S0022112087000727 contributor: fullname: Johnson – ident: 10.1016/j.apacoust.2022.108941_b0395 doi: 10.1002/9780470727102 – volume: 164 year: 2020 ident: 10.1016/j.apacoust.2022.108941_b0105 article-title: Acoustic modeling of micro-lattices obtained by additive manufacturing publication-title: Appl Acoust doi: 10.1016/j.apacoust.2020.107244 contributor: fullname: Boulvert – volume: 178 year: 2021 ident: 10.1016/j.apacoust.2022.108941_b0155 article-title: Active acoustic absorption device using additive manufacturing technique for normal incident wave publication-title: Appl Acoust doi: 10.1016/j.apacoust.2021.108006 contributor: fullname: Kim – volume: 418 start-page: 221 year: 2018 ident: 10.1016/j.apacoust.2022.108941_b0240 article-title: Acoustics of permeable heterogeneous materials with local non-equilibrium pressure states publication-title: J Sound Vib doi: 10.1016/j.jsv.2017.11.013 contributor: fullname: Venegas – volume: 12 start-page: 3397 year: 2019 ident: 10.1016/j.apacoust.2022.108941_b0120 article-title: Design, experimental and numerical characterization of 3D-printed porous absorbers publication-title: Materials doi: 10.3390/ma12203397 contributor: fullname: Ring – volume: 121 start-page: 25 year: 2017 ident: 10.1016/j.apacoust.2022.108941_b0045 article-title: Acoustic properties of multilayer sound absorbers with a 3D printed micro-perforated panel publication-title: Appl Acoust doi: 10.1016/j.apacoust.2017.01.032 contributor: fullname: Liu – volume: 30 year: 2019 ident: 10.1016/j.apacoust.2022.108941_b0195 article-title: In situ thermography for laser powder bed fusion: Effects of layer temperature on porosity, microstructure and mechanical properties publication-title: Addit Manuf contributor: fullname: Williams – volume: 189 year: 2022 ident: 10.1016/j.apacoust.2022.108941_b0180 article-title: Viscous and thermal dissipation during the sound propagation in the continuously graded phononic crystals publication-title: Appl Acoust doi: 10.1016/j.apacoust.2021.108606 contributor: fullname: Zhang – volume: 101 year: 2007 ident: 10.1016/j.apacoust.2022.108941_b0390 article-title: Pressure/mass method to measure open porosity of porous solids publication-title: J Appl Phys doi: 10.1063/1.2749486 contributor: fullname: Salissou – volume: 116 year: 2020 ident: 10.1016/j.apacoust.2022.108941_b0050 article-title: Sound absorption of acoustic resonators with oblique perforations publication-title: Appl Phys Lett doi: 10.1063/1.5132886 contributor: fullname: Carbajo – volume: 36 year: 2020 ident: 10.1016/j.apacoust.2022.108941_b0085 article-title: Reproducibility of sound-absorbing periodic porous materials using additive manufacturing technologies: Round robin study publication-title: Addit Manuf contributor: fullname: Zieliński – volume: 4 start-page: 673 year: 2017 ident: 10.1016/j.apacoust.2022.108941_b0130 article-title: Optimal sound-absorbing structures publication-title: Mater Horizons doi: 10.1039/C7MH00129K contributor: fullname: Yang – volume: 126 start-page: 1862 year: 2009 ident: 10.1016/j.apacoust.2022.108941_b0275 article-title: Acoustic absorption calculation in irreducible porous media: A unified computational approach publication-title: J Acoust Soc Am doi: 10.1121/1.3205399 contributor: fullname: Lee – volume: 33 year: 2021 ident: 10.1016/j.apacoust.2022.108941_b0350 article-title: Equivalent fluid approach to modeling the acoustical properties of polydisperse heterogeneous porous composites publication-title: Phys Fluids doi: 10.1063/5.0054009 contributor: fullname: Núñez – volume: 163 year: 2022 ident: 10.1016/j.apacoust.2022.108941_b0445 article-title: Deterministic and statistical methods for the characterisation of poroelastic media from multi-observation sound absorption measurements publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2021.108186 contributor: fullname: Cuenca – volume: 119 start-page: 2027 year: 2006 ident: 10.1016/j.apacoust.2022.108941_b0420 article-title: Acoustical determination of the parameters governing viscous dissipation in porous media publication-title: J Acoust Soc Am doi: 10.1121/1.2169923 contributor: fullname: Panneton – volume: 36 start-page: 1035 year: 1998 ident: 10.1016/j.apacoust.2022.108941_b0310 article-title: Some remarks on the acoustic parameters of sharp-edged porous media publication-title: Int J Eng Sci doi: 10.1016/S0020-7225(98)00002-0 contributor: fullname: Firdaouss – volume: 129 year: 2021 ident: 10.1016/j.apacoust.2022.108941_b0145 article-title: Rapid additive manufacturing of optimized anisotropic metaporous surfaces for broadband absorption publication-title: J Appl Phys doi: 10.1063/5.0042563 contributor: fullname: Cavalieri – volume: 30 year: 2019 ident: 10.1016/j.apacoust.2022.108941_b0090 article-title: 3D printed architected hollow sphere foams with low-frequency phononic band gaps publication-title: Addit Manuf contributor: fullname: McGee – volume: 148 start-page: 322 year: 2019 ident: 10.1016/j.apacoust.2022.108941_b0115 article-title: Acoustic properties of periodic micro-structures obtained by additive manufacturing publication-title: Appl Acoust doi: 10.1016/j.apacoust.2018.12.030 contributor: fullname: Fotsing – volume: 111 year: 2012 ident: 10.1016/j.apacoust.2022.108941_b0285 article-title: Microstructure, transport, and acoustic properties of open-cell foam samples: Experiments and three-dimensional numerical simulations publication-title: J Appl Phys doi: 10.1063/1.3673523 contributor: fullname: Perrot – volume: 7 start-page: 13595 year: 2017 ident: 10.1016/j.apacoust.2022.108941_b0135 article-title: Rainbow-trapping absorbers: Broadband, perfect and asymmetric sound absorption by subwavelength panels for transmission problems publication-title: Scientific Rep doi: 10.1038/s41598-017-13706-4 contributor: fullname: Jiménez – volume: 22 year: 2010 ident: 10.1016/j.apacoust.2022.108941_b0325 article-title: Frequency-dependent viscous flow in channels with fractal rough surfaces publication-title: Phys Fluids doi: 10.1063/1.3407659 contributor: fullname: Cortis – volume: 520 year: 2022 ident: 10.1016/j.apacoust.2022.108941_b0450 article-title: Addressing the ill-posedness of multi-layer porous media characterization in impedance tubes through the addition of air gaps behind the sample: Numerical validation publication-title: J Sound Vib doi: 10.1016/j.jsv.2021.116601 contributor: fullname: Roncen – ident: 10.1016/j.apacoust.2022.108941_b0245 – volume: 146 start-page: 261 year: 2019 ident: 10.1016/j.apacoust.2022.108941_b0065 article-title: Sound absorption of plates with micro-slits backed with air cavities: Analytical estimations, numerical calculations and experimental validations publication-title: Appl Acoust doi: 10.1016/j.apacoust.2018.11.026 contributor: fullname: Zieliński – volume: 210 year: 2021 ident: 10.1016/j.apacoust.2022.108941_b0335 article-title: On the sensitivity of the design of composite sound absorbing structures publication-title: Mater Design contributor: fullname: Trinh – start-page: 95 year: 2016 ident: 10.1016/j.apacoust.2022.108941_b0070 article-title: Pore-size effects in sound absorbing foams with periodic microstructure: modelling and experimental verification using 3D printed specimens contributor: fullname: Zieliński – volume: 143 start-page: 172 year: 2018 ident: 10.1016/j.apacoust.2022.108941_b0010 article-title: Additive manufacturing (3D printing): A review of materials, methods, applications and challenges publication-title: Compos Part B: Eng doi: 10.1016/j.compositesb.2018.02.012 contributor: fullname: Ngo – volume: 31 start-page: 6121 year: 2010 ident: 10.1016/j.apacoust.2022.108941_b0025 article-title: A review on stereolithography and its applications in biomedical engineering publication-title: Biomaterials doi: 10.1016/j.biomaterials.2010.04.050 contributor: fullname: Melchels – volume: 41 year: 2021 ident: 10.1016/j.apacoust.2022.108941_b0100 article-title: Additive manufacturing of fibrous sound absorbers publication-title: Addit Manuf contributor: fullname: Johnston – volume: 11 start-page: 3299 year: 2021 ident: 10.1016/j.apacoust.2022.108941_b0340 article-title: Analytical approximations for sub wavelength sound absorption by porous layers with labyrinthine slit perforations publication-title: Appl Sci doi: 10.3390/app11083299 contributor: fullname: Attenborough – volume: 128 start-page: 1766 year: 2010 ident: 10.1016/j.apacoust.2022.108941_b0280 article-title: Microstructure based model for sound absorption predictions of perforated closed-cell metallic foams publication-title: J Acoust Soc Am doi: 10.1121/1.3473696 contributor: fullname: Chevillotte – volume: 104 start-page: 623 year: 2018 ident: 10.1016/j.apacoust.2022.108941_b0300 article-title: Enhancing sound attenuation in permeable heterogeneous materials via diffusion processes publication-title: Acta Acust United With Acust doi: 10.3813/AAA.919202 contributor: fullname: Venegas – volume: 30 year: 2019 ident: 10.1016/j.apacoust.2022.108941_b0190 article-title: Effects of process parameters on porosity in laser powder bed fusion revealed by X-ray tomography publication-title: Addit Manuf contributor: fullname: du Plessis – volume: 45 start-page: 1269 year: 1980 ident: 10.1016/j.apacoust.2022.108941_b0375 article-title: Connection between formation factor for electrical resistivity and fluid-solid coupling factor in Biot’s equations for acoustic waves in fluid-filled porous media publication-title: Geophysics doi: 10.1190/1.1441123 contributor: fullname: Brown – volume: 186 year: 2020 ident: 10.1016/j.apacoust.2022.108941_b0200 article-title: A review of critical repeatability and reproducibility issues in powder bed fusion publication-title: Mater Design contributor: fullname: Dowling – volume: 130 start-page: 2765 year: 2011 ident: 10.1016/j.apacoust.2022.108941_b0225 article-title: Acoustical properties of double porosity granular materials publication-title: J Acoust Soc Am doi: 10.1121/1.3644915 contributor: fullname: Venegas – volume: 243 start-page: 659 year: 2001 ident: 10.1016/j.apacoust.2022.108941_b0230 article-title: Acoustic absorption of macro-perforated porous materials publication-title: J Sound Vib doi: 10.1006/jsvi.2000.3435 contributor: fullname: Atalla – volume: 47 start-page: 4964 year: 1993 ident: 10.1016/j.apacoust.2022.108941_b0370 article-title: Drag forces of porous-medium acoustics publication-title: Phys Rev B doi: 10.1103/PhysRevB.47.4964 contributor: fullname: Pride – volume: 48 year: 2021 ident: 10.1016/j.apacoust.2022.108941_b0030 article-title: The recent development of vat photopolymerization: A review publication-title: Addit Manuf contributor: fullname: Zhang – volume: 72 start-page: 188 year: 2014 ident: 10.1016/j.apacoust.2022.108941_b0035 article-title: Acoustic absorbers by additive manufacturing publication-title: Build Environ doi: 10.1016/j.buildenv.2013.10.010 contributor: fullname: Setaki – volume: 220 year: 2021 ident: 10.1016/j.apacoust.2022.108941_b0345 article-title: Acoustics of porous composites publication-title: Compos Part B doi: 10.1016/j.compositesb.2021.109006 contributor: fullname: Venegas – start-page: 4505 year: 2019 ident: 10.1016/j.apacoust.2022.108941_b0075 article-title: Differences in sound absorption of samples with periodic porosity produced using various Additive Manufacturing Technologies contributor: fullname: Zieliński – volume: 77 start-page: 1641 year: 1985 ident: 10.1016/j.apacoust.2022.108941_b0250 article-title: Dynamics of porous saturated media, checking of the generalized law of Darcy publication-title: J Acoust Soc Am doi: 10.1121/1.391962 contributor: fullname: Auriault – volume: 123 start-page: 814 year: 2008 ident: 10.1016/j.apacoust.2022.108941_b0425 article-title: Acoustical determination of the parameters governing thermal dissipation in porous media publication-title: J Acoust Soc Am doi: 10.1121/1.2828066 contributor: fullname: Olny – volume: 116 year: 2014 ident: 10.1016/j.apacoust.2022.108941_b0290 article-title: Microstructure-based calculations and experimental results for sound absorbing porous layers of randomly packed rigid spherical beads publication-title: J Appl Phys doi: 10.1063/1.4890218 contributor: fullname: Zieliński – ident: 10.1016/j.apacoust.2022.108941_b0410 – volume: 33 start-page: 2104552 year: 2021 ident: 10.1016/j.apacoust.2022.108941_b0110 article-title: Additively manufactured deformation-recoverable and broadband sound-absorbing microlattice inspired by the concept of traditional perforated panels publication-title: Adv Mater doi: 10.1002/adma.202104552 contributor: fullname: Li – start-page: 42 year: 2013 ident: 10.1016/j.apacoust.2022.108941_b0400 article-title: 2 – Particle characterization and behavior relevant to fluidized bed combustion and gasification systems contributor: fullname: Wang – volume: 2019 start-page: 7029143 year: 2019 ident: 10.1016/j.apacoust.2022.108941_b0080 article-title: The influence of additive manufacturing processes on the performance of a periodic acoustic metamaterial publication-title: Int J Polym Sci doi: 10.1155/2019/7029143 contributor: fullname: Kennedy – volume: 472 year: 2020 ident: 10.1016/j.apacoust.2022.108941_b0140 article-title: Design of a Kelvin cell acoustic metamaterial publication-title: J Sound Vib doi: 10.1016/j.jsv.2019.115167 contributor: fullname: Rice – volume: 134 start-page: 4681 year: 2013 ident: 10.1016/j.apacoust.2022.108941_b0220 article-title: A direct link between microstructure and acoustical macro-behavior of real double porosity foams publication-title: J Acoust Soc Am doi: 10.1121/1.4824842 contributor: fullname: Chevillotte – ident: 10.1016/j.apacoust.2022.108941_b0435 – start-page: 409 year: 2020 ident: 10.1016/j.apacoust.2022.108941_b0125 article-title: Manufacturing, modeling, and experimental verification of slitted sound absorbers contributor: fullname: Opiela – volume: 114 start-page: 73 year: 2003 ident: 10.1016/j.apacoust.2022.108941_b0215 article-title: Acoustic wave propagation in double porosity media publication-title: J Acoust Soc Am doi: 10.1121/1.1534607 contributor: fullname: Olny – volume: 131 start-page: EL216 year: 2012 ident: 10.1016/j.apacoust.2022.108941_b0415 article-title: Complement to standard method for measuring normal incidence sound transmission loss with three microphones publication-title: J Acoust Soc Am doi: 10.1121/1.3681016 contributor: fullname: Salissou – volume: 148 start-page: 1998 year: 2020 ident: 10.1016/j.apacoust.2022.108941_b0430 article-title: Estimation of all six parameters of johnson-champoux-allard-lafarge model for acoustical porous materials from impedance tube measurements publication-title: J Acoust Soc Am doi: 10.1121/10.0002162 contributor: fullname: Jaouen – ident: 10.1016/j.apacoust.2022.108941_b0385 |
SSID | ssj0000255 |
Score | 2.4546595 |
Snippet | •Double-porosity materials can be 3D printed using powders as raw materials.•Main pore network designed; micropores are a side effect of the 3D printing... At first glance, it seems that modern, inexpensive additive manufacturing (AM) technologies can be used to produce innovative, efficient acoustic materials... |
SourceID | hal crossref elsevier |
SourceType | Open Access Repository Aggregation Database Publisher |
StartPage | 108941 |
SubjectTerms | Acoustics Additive manufacturing Double porosity Engineering Sciences Multiscale modelling Pressure diffusion Sound absorption |
Title | Taking advantage of a 3D printing imperfection in the development of sound-absorbing materials |
URI | https://dx.doi.org/10.1016/j.apacoust.2022.108941 https://hal.science/hal-04198669 |
Volume | 197 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLbaTkhwmGCA2NiQhdipSkn8I46P1VooCLisSBUHIid2tAzUTv3BYX_9nuM4CQMECHGJIkuvTv0-PX95-fweQi8oUOIkEjrIIi0DlkckUIrogBvguoXdMCJ7Gnl2Lj4sksmUTXs9r4lqx_6rp2EMfG1Pzv6Ft5sfhQG4B5_DFbwO1z_ze9Veyn3b3yqXElBDOhnaDF6lcS6BKa-dBKuROepWO2QNNrbZUqCyzWqdWROgte7Zu1zWE1iIqVVLsIadfyrN1_L0jJ8mrO6KPbcqpOvh61GbGN8BWq4bLKo2W7_a1XUNOtqlSjEEm6NT9r4vv9RC_zpdAW-6XixX59D8OZpWtOTiMg3ipGqsDruSC8WJIBCKw8V3sdqJeX-I-y4FcTkCglH955Gd2uonpSurdaum9nlVhwfmI1abB4jsoz0CkYoP0N74zXTxtt3MCee-6aI16Bwy__lsv-I3_Qufqa-Yy_w-2q9fOfDYYeUB6pnlAbrXKUR5gO5UQuB88xB9dvjBDX7wqsAK0wn2-MFd_OByiQE_uIMfa3ALP7jBzyP08dV0fjYL6h4cQQ5UexswqqhikdGFAXZnQmqEIrFQmcgKWwqJhtJEsRFcc6IjmWte8KTIEiJjlRVS08dosFwtzROECVOU5DnjBUtYoYUUQPZNKJSwJZFyfohe-pVLr1ypldRrEC9Tv9apXevUrfUhkn6B05owOiKYAi5-a_scPNJMZKusz8bvUjsWskgmcSy_RUf_MMFTdLfF_zEabNc7c4L6G717VoPsBiq4nW8 |
link.rule.ids | 230,315,782,786,887,27935,27936 |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Taking+advantage+of+a+3D+printing+imperfection+in+the+development+of+sound-absorbing+materials&rft.jtitle=Applied+acoustics&rft.au=Zieli%C5%84ski%2C+Tomasz+G.&rft.au=Dauchez%2C+Nicolas&rft.au=Boutin%2C+Thomas&rft.au=Leturia%2C+Mikel&rft.date=2022-08-01&rft.pub=Elsevier+Ltd&rft.issn=0003-682X&rft.eissn=1872-910X&rft.volume=197&rft_id=info:doi/10.1016%2Fj.apacoust.2022.108941&rft.externalDocID=S0003682X22003152 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-682X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-682X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-682X&client=summon |