One-dimensional chain melting in incommensurate potassium

Between 19 and 54 GPa, potassium has a complex composite incommensurate host-guest structure which undergoes two intraphase transitions over this pressure range. The temperature dependence of these host-guest phases is further complicated by the onset of an order-disorder transition in their guest c...

Full description

Saved in:
Bibliographic Details
Published in:Physical review. B, Condensed matter and materials physics Vol. 91; no. 14
Main Authors: McBride, E. E., Munro, K. A., Stinton, G. W., Husband, R. J., Briggs, R., Liermann, H.-P., McMahon, M. I.
Format: Journal Article
Language:English
Published: 22-04-2015
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Between 19 and 54 GPa, potassium has a complex composite incommensurate host-guest structure which undergoes two intraphase transitions over this pressure range. The temperature dependence of these host-guest phases is further complicated by the onset of an order-disorder transition in their guest chains. Here, we report single-crystal, quasi-single-crystal, and powder synchrotron x-ray diffraction measurements of this order-disorder phenomenon in incommensurate potassium to 47 GPa and 750 K. The so-called chain melting transition is clearly visible over a 22 GPa pressure range, and there are significant changes in the slope of the phase boundary which divides the ordered and disordered phases, one of which results from the intraphase transitions in the guest structure.
AbstractList Between 19 and 54 GPa, potassium has a complex composite incommensurate host-guest structure which undergoes two intraphase transitions over this pressure range. The temperature dependence of these host-guest phases is further complicated by the onset of an order-disorder transition in their guest chains. Here, we report single-crystal, quasi-single-crystal, and powder synchrotron x-ray diffraction measurements of this order-disorder phenomenon in incommensurate potassium to 47 GPa and 750 K. The so-called chain melting transition is clearly visible over a 22 GPa pressure range, and there are significant changes in the slope of the phase boundary which divides the ordered and disordered phases, one of which results from the intraphase transitions in the guest structure.
ArticleNumber 144111
Author Munro, K. A.
Stinton, G. W.
Briggs, R.
McMahon, M. I.
Husband, R. J.
McBride, E. E.
Liermann, H.-P.
Author_xml – sequence: 1
  givenname: E. E.
  surname: McBride
  fullname: McBride, E. E.
– sequence: 2
  givenname: K. A.
  surname: Munro
  fullname: Munro, K. A.
– sequence: 3
  givenname: G. W.
  surname: Stinton
  fullname: Stinton, G. W.
– sequence: 4
  givenname: R. J.
  surname: Husband
  fullname: Husband, R. J.
– sequence: 5
  givenname: R.
  surname: Briggs
  fullname: Briggs, R.
– sequence: 6
  givenname: H.-P.
  surname: Liermann
  fullname: Liermann, H.-P.
– sequence: 7
  givenname: M. I.
  surname: McMahon
  fullname: McMahon, M. I.
BookMark eNo1kE9LxDAUxIOs4K76BTz16KVrXtK0yVEX_8HCiih4C6_pqxtp07Vphf32dlk9zcAMM_BbsFnoAjF2BXwJwOXNy3YfX-nnbmlgCVkGACdsDkrxVEj1MZs8NzrlIOCMLWL84hwyk4k5M5tAaeVbCtF3AZvEbdGHpKVm8OEzmawPrmsP-djjQMmuGzBGP7YX7LTGJtLln56z94f7t9VTut48Pq9u16mTIhum_4LrEqvcISLUQlEpKHegSIhc1pWplat0RQhS5LosBZDTiIVSRpe1cPKcXR93d333PVIcbOujo6bBQN0YLRTcFLkutJqq4lh1fRdjT7Xd9b7Ffm-B2wMn-8_JGrBHTvIXrapgTw
CitedBy_id crossref_primary_10_1103_PhysRevB_97_144107
crossref_primary_10_1103_PhysRevB_101_224108
crossref_primary_10_1016_j_physleta_2021_127207
crossref_primary_10_1103_PhysRevLett_118_025501
crossref_primary_10_1088_1742_6596_950_4_042037
crossref_primary_10_1038_ncomms14260
crossref_primary_10_1038_s41467_022_32419_5
crossref_primary_10_1103_PhysRevLett_123_065701
crossref_primary_10_1103_PhysRevMaterials_2_053604
crossref_primary_10_1080_23746149_2017_1401487
crossref_primary_10_1103_PhysRevX_11_011006
crossref_primary_10_1038_s41467_023_38650_y
crossref_primary_10_1016_j_calphad_2024_102704
crossref_primary_10_1103_PhysRevB_104_054120
crossref_primary_10_1021_acs_jpcc_3c00898
crossref_primary_10_1103_PhysRevB_100_220101
crossref_primary_10_1103_PhysRevMaterials_4_113611
crossref_primary_10_1073_pnas_1900985116
crossref_primary_10_1063_5_0089388
crossref_primary_10_1107_S2052252517000264
crossref_primary_10_1038_s41567_021_01244_w
crossref_primary_10_1103_PhysRevB_104_104107
Cites_doi 10.1103/PhysRevB.79.064105
10.1103/PhysRevLett.83.4085
10.1103/PhysRevLett.93.055501
10.1038/nmat2796
10.1103/PhysRevLett.83.4081
10.1103/PhysRevLett.85.4896
10.1103/PhysRevB.84.054111
10.1029/JB091iB05p04673
10.1103/PhysRevB.75.184114
10.1103/PhysRevB.72.132103
10.1038/nmat3342
10.1103/PhysRevB.74.140102
10.1103/PhysRevLett.87.055501
10.1080/08957959608201408
10.1103/PhysRevB.27.3845
10.1103/PhysRevB.70.184119
10.1103/PhysRevB.61.3135
10.1080/08957959.2013.831087
10.1515/zkri-2014-1737
10.1103/PhysRevB.63.224101
10.1103/PhysRevLett.110.235501
10.1063/1.4821622
10.1103/PhysRevB.69.092106
10.1103/PhysRevB.20.751
10.1103/PhysRevB.73.214102
10.1103/PhysRevB.73.134102
10.1103/PhysRevLett.40.1507
10.1103/PhysRevB.88.054106
10.1088/1742-6596/377/1/012040
10.1103/PhysRevB.21.3110
ContentType Journal Article
DBID AAYXX
CITATION
7U5
8FD
H8D
L7M
DOI 10.1103/PhysRevB.91.144111
DatabaseName CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1550-235X
ExternalDocumentID 10_1103_PhysRevB_91_144111
GroupedDBID -~X
123
186
2-P
29O
3MX
6TJ
8NH
AAYXX
ACNCT
AENEX
AEQTI
AFFNX
AFGMR
AGDNE
ALMA_UNASSIGNED_HOLDINGS
AUAIK
CITATION
CS3
DU5
EBS
EJD
F5P
G8K
MVM
NEJ
NPBMV
P2P
RNS
ROL
S7W
SJN
TN5
WH7
XJT
YNT
ZPR
7U5
8FD
H8D
L7M
ID FETCH-LOGICAL-c324t-23708bad6caaa1f25eb2e6c15e2263fd9f5cd8dea13268bb21ec8aa75598bf2c3
IEDL.DBID ZPR
ISSN 1098-0121
IngestDate Sat Oct 26 00:17:17 EDT 2024
Fri Aug 23 01:45:44 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Issue 14
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c324t-23708bad6caaa1f25eb2e6c15e2263fd9f5cd8dea13268bb21ec8aa75598bf2c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://bib-pubdb1.desy.de/record/220815/files/McBride_et_al_2015.pdf
PQID 1709768785
PQPubID 23500
ParticipantIDs proquest_miscellaneous_1709768785
crossref_primary_10_1103_PhysRevB_91_144111
PublicationCentury 2000
PublicationDate 2015-04-22
PublicationDateYYYYMMDD 2015-04-22
PublicationDate_xml – month: 04
  year: 2015
  text: 2015-04-22
  day: 22
PublicationDecade 2010
PublicationTitle Physical review. B, Condensed matter and materials physics
PublicationYear 2015
References PhysRevB.91.144111Cc12R1
PhysRevB.91.144111Cc11R1
PhysRevB.91.144111Cc14R1
PhysRevB.91.144111Cc13R1
PhysRevB.91.144111Cc16R1
PhysRevB.91.144111Cc15R1
PhysRevB.91.144111Cc18R1
PhysRevB.91.144111Cc17R1
PhysRevB.91.144111Cc31R1
PhysRevB.91.144111Cc10R1
PhysRevB.91.144111Cc30R1
PhysRevB.91.144111Cc3R1
PhysRevB.91.144111Cc2R1
PhysRevB.91.144111Cc5R1
PhysRevB.91.144111Cc4R1
PhysRevB.91.144111Cc7R1
PhysRevB.91.144111Cc6R1
PhysRevB.91.144111Cc9R1
PhysRevB.91.144111Cc8R1
PhysRevB.91.144111Cc1R1
PhysRevB.91.144111Cc23R1
PhysRevB.91.144111Cc22R1
PhysRevB.91.144111Cc25R1
PhysRevB.91.144111Cc24R1
PhysRevB.91.144111Cc27R1
PhysRevB.91.144111Cc29R1
PhysRevB.91.144111Cc28R1
PhysRevB.91.144111Cc21R1
PhysRevB.91.144111Cc20R1
PhysRevB.91.144111Cc19R1
F. A. Lindemann (PhysRevB.91.144111Cc26R1) 1910; 11
References_xml – ident: PhysRevB.91.144111Cc5R1
  doi: 10.1103/PhysRevB.79.064105
– ident: PhysRevB.91.144111Cc2R1
  doi: 10.1103/PhysRevLett.83.4085
– ident: PhysRevB.91.144111Cc14R1
  doi: 10.1103/PhysRevLett.93.055501
– ident: PhysRevB.91.144111Cc13R1
  doi: 10.1038/nmat2796
– ident: PhysRevB.91.144111Cc1R1
  doi: 10.1103/PhysRevLett.83.4081
– ident: PhysRevB.91.144111Cc11R1
  doi: 10.1103/PhysRevLett.85.4896
– ident: PhysRevB.91.144111Cc16R1
  doi: 10.1103/PhysRevB.84.054111
– volume: 11
  start-page: 609
  year: 1910
  ident: PhysRevB.91.144111Cc26R1
  publication-title: Physik. Z.
  contributor:
    fullname: F. A. Lindemann
– ident: PhysRevB.91.144111Cc19R1
  doi: 10.1029/JB091iB05p04673
– ident: PhysRevB.91.144111Cc24R1
  doi: 10.1103/PhysRevB.75.184114
– ident: PhysRevB.91.144111Cc9R1
  doi: 10.1103/PhysRevB.72.132103
– ident: PhysRevB.91.144111Cc8R1
  doi: 10.1038/nmat3342
– ident: PhysRevB.91.144111Cc4R1
  doi: 10.1103/PhysRevB.74.140102
– ident: PhysRevB.91.144111Cc3R1
  doi: 10.1103/PhysRevLett.87.055501
– ident: PhysRevB.91.144111Cc27R1
  doi: 10.1080/08957959608201408
– ident: PhysRevB.91.144111Cc31R1
  doi: 10.1103/PhysRevB.27.3845
– ident: PhysRevB.91.144111Cc12R1
  doi: 10.1103/PhysRevB.70.184119
– ident: PhysRevB.91.144111Cc6R1
  doi: 10.1103/PhysRevB.61.3135
– ident: PhysRevB.91.144111Cc22R1
  doi: 10.1080/08957959.2013.831087
– ident: PhysRevB.91.144111Cc25R1
  doi: 10.1515/zkri-2014-1737
– ident: PhysRevB.91.144111Cc21R1
  doi: 10.1103/PhysRevB.63.224101
– ident: PhysRevB.91.144111Cc7R1
  doi: 10.1103/PhysRevLett.110.235501
– ident: PhysRevB.91.144111Cc18R1
  doi: 10.1063/1.4821622
– ident: PhysRevB.91.144111Cc20R1
  doi: 10.1103/PhysRevB.69.092106
– ident: PhysRevB.91.144111Cc30R1
  doi: 10.1103/PhysRevB.20.751
– ident: PhysRevB.91.144111Cc15R1
  doi: 10.1103/PhysRevB.73.214102
– ident: PhysRevB.91.144111Cc10R1
  doi: 10.1103/PhysRevB.73.134102
– ident: PhysRevB.91.144111Cc28R1
  doi: 10.1103/PhysRevLett.40.1507
– ident: PhysRevB.91.144111Cc23R1
  doi: 10.1103/PhysRevB.88.054106
– ident: PhysRevB.91.144111Cc17R1
  doi: 10.1088/1742-6596/377/1/012040
– ident: PhysRevB.91.144111Cc29R1
  doi: 10.1103/PhysRevB.21.3110
SSID ssj0014942
Score 1.9796221
Snippet Between 19 and 54 GPa, potassium has a complex composite incommensurate host-guest structure which undergoes two intraphase transitions over this pressure...
SourceID proquest
crossref
SourceType Aggregation Database
SubjectTerms Chains
Condensed matter
Melting
Order disorder
Phase boundaries
Phases
Potassium
Synchrotrons
Title One-dimensional chain melting in incommensurate potassium
URI https://search.proquest.com/docview/1709768785
Volume 91
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aELz4FuuLFbxpNMk-kj36aPGkUBW8hTxmUXC3xXb9_WZ2u0Khl95CAmGZhJ1v-Ob7Qsil9egiJR31AX7SJLaOmswl1JuAkTLhQLjmEdtX-fyhHgdok3O9nMHnLL7FTsgR_N7f5ByZSN4KeZXijVhk9E8ZJHnSUpuoGeOCdwqZpVssZqHFn3CTWYbbq33TDtmaI8jorj3yXbIG1R7ZaDo53XSf5C8VUI-e_a3fRuQ-Q_EflfCNDc5RGKIfQ4nrNdpERJPxLADor7o8IO_DwdvDE52_j0BdgEEzKmLJlDU-c8YYXog0VMmQOZ5CwFRx4fMClf8eTKg4M2Wt4OCUMRI92W0hXHxIetW4giMSAXAImR5nIRHArCyKlEGcK1DM8axPrrp46Ulrg6Gb8oHFuguGzrlug9EnF11IdbitSEGYCsb1VHPJAv5RUqXHK-14QjYDUkmRxhHilPRmPzWckfWpr8-bW_AH5yGvpw
link.rule.ids 315,782,786,2881,27935,27936
linkProvider American Physical Society
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=One-dimensional+chain+melting+in+incommensurate+potassium&rft.jtitle=Physical+review.+B%2C+Condensed+matter+and+materials+physics&rft.au=McBride%2C+E+E&rft.au=Munro%2C+K+A&rft.au=Stinton%2C+G+W&rft.au=Husband%2C+R+J&rft.date=2015-04-22&rft.issn=1098-0121&rft.eissn=1550-235X&rft.volume=91&rft.issue=14&rft_id=info:doi/10.1103%2FPhysRevB.91.144111&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1098-0121&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1098-0121&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1098-0121&client=summon