Manual interception of moving targets II. On-line control of overlapping submovements

We studied the kinematic characteristics of arm movements and their relation to a stimulus moving with a wide range of velocity and acceleration. The target traveled at constant acceleration, constant deceleration, or constant velocity for 0.5-2.0 s, until it arrived at a location where it was requi...

Full description

Saved in:
Bibliographic Details
Published in:Experimental brain research Vol. 116; no. 3; pp. 421 - 433
Main Authors: LEE, D, PORT, N. L, GEORGOPOULOS, A. P
Format: Journal Article
Language:English
Published: Berlin Springer 06-10-1997
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We studied the kinematic characteristics of arm movements and their relation to a stimulus moving with a wide range of velocity and acceleration. The target traveled at constant acceleration, constant deceleration, or constant velocity for 0.5-2.0 s, until it arrived at a location where it was required to be intercepted. For fast moving targets, subjects produced single movements with symmetrical, bell-shaped velocity profiles. In contrast, for slowly moving targets, hand velocity profiles displayed multiple peaks, which suggests a control mechanism that produces a series of discrete submovements according to characteristics of target motion. To analyze how temporal and spatial aspects of these submovements are influenced by target motion, we decomposed the vertical hand velocity profiles into bell-shaped velocity pulses according to the minimum-jerk model. The number of submovements was roughly proportional to the movement time, resulting in a relatively constant submovement frequency (approximately 2.5 Hz). On the other hand, the submovement onset asynchrony showed significantly more variability than the intersubmovement interval, indicating that the submovement onset was delayed more following a submovement with a longer duration. Examination of submovement amplitude and its relation to target motion revealed that the subjects achieved interception mainly by producing a series of submovements that would keep the displacement of the hand proportional to the first-order estimate of target position at the end of each submovement along the axis of hand movement. Finally, we did not find any evidence that information regarding target acceleration is properly utilized in the production of submovements.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0014-4819
1432-1106
DOI:10.1007/pl00005770