A Hybrid Framework for 3-D Human Motion Tracking
In this paper, we present a hybrid framework for articulated 3-D human motion tracking from multiple synchronized cameras with potential uses in surveillance systems. Although the recovery of 3-D motion provides richer information for event understanding, existing methods based on either determinist...
Saved in:
Published in: | IEEE transactions on circuits and systems for video technology Vol. 18; no. 8; pp. 1075 - 1084 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
New York
IEEE
01-08-2008
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | In this paper, we present a hybrid framework for articulated 3-D human motion tracking from multiple synchronized cameras with potential uses in surveillance systems. Although the recovery of 3-D motion provides richer information for event understanding, existing methods based on either deterministic search or stochastic sampling lack robustness or efficiency. We therefore propose a hybrid sample-and-refine framework that combines both stochastic sampling and deterministic optimization to achieve a good compromise between efficiency and robustness. Similar motion patterns are used to learn a compact low-dimensional representation of the motion statistics. Sampling in a low-dimensional space is implemented during tracking, which reduces the number of particles drastically. We also incorporate a local optimization method based on simulated physical force/moment into our framework, which further improves the optimality of the tracking. Experimental results on several real human motion sequences show the accuracy and robustness of our method, which also has a higher sampling efficiency than most particle filtering-based methods. |
---|---|
AbstractList | In this paper, we present a hybrid framework for articulated 3-D human motion tracking from multiple synchronized cameras with potential uses in surveillance systems. In this paper, we present a hybrid framework for articulated 3-D human motion tracking from multiple synchronized cameras with potential uses in surveillance systems. Although the recovery of 3-D motion provides richer information for event understanding, existing methods based on either deterministic search or stochastic sampling lack robustness or efficiency. We therefore propose a hybrid sample-and-refine framework that combines both stochastic sampling and deterministic optimization to achieve a good compromise between efficiency and robustness. Similar motion patterns are used to learn a compact low-dimensional representation of the motion statistics. Sampling in a low-dimensional space is implemented during tracking, which reduces the number of particles drastically. We also incorporate a local optimization method based on simulated physical force/moment into our framework, which further improves the optimality of the tracking. Experimental results on several real human motion sequences show the accuracy and robustness of our method, which also has a higher sampling efficiency than most particle filtering-based methods. |
Author | Bingbing Ni Winkler, S. Kassim, A.A. |
Author_xml | – sequence: 1 surname: Bingbing Ni fullname: Bingbing Ni organization: Dept. of Electr. & Comput. Eng., Nat. Univ. of Singapore, Singapore – sequence: 2 givenname: A.A. surname: Kassim fullname: Kassim, A.A. organization: Dept. of Electr. & Comput. Eng., Nat. Univ. of Singapore, Singapore – sequence: 3 givenname: S. surname: Winkler fullname: Winkler, S. |
BookMark | eNpdkD1PwzAQhi1UJErhByCWiIEtxeev2GNVKEUqYiCwWo7joLRNXOxGqP-elCAGpntPet7T6TlHo9a3DqErwFMArO7y-et7PiUYy6kiGWB5gsbAuUwJwXzUZ8whlQT4GTqPcY0xMMmyMcKzZHkoQl0mi2Aa9-XDJql8SGh6nyy7xrTJs9_Xvk3yYOymbj8u0GllttFd_s4Jels85PNlunp5fJrPVqmlhO5Th1VWlSUulaCFyYA7VlgCqiT9CkIUJaXUqixTomIYc-VKYSUIzh2VVhg6QbfD3V3wn52Le93U0brt1rTOd1FTxpTkmerBm3_g2neh7X_TCgiRXErRQzBANvgYg6v0LtSNCQcNWB8F6h-B-ihQDwL7zvXQqZ1zfzzjjEqu6Dettmtc |
CODEN | ITCTEM |
CitedBy_id | crossref_primary_10_1109_TCSVT_2015_2433172 crossref_primary_10_1109_TCSVT_2010_2087590 crossref_primary_10_1016_j_neucom_2019_02_021 crossref_primary_10_1109_TCSVT_2016_2564878 crossref_primary_10_1016_j_patrec_2018_06_032 crossref_primary_10_1109_TCSVT_2016_2527218 crossref_primary_10_1007_s11042_019_7416_8 crossref_primary_10_1186_1687_5281_2013_34 crossref_primary_10_1109_TIP_2010_2055880 crossref_primary_10_1007_s13369_015_1955_8 crossref_primary_10_1109_MSP_2010_937395 crossref_primary_10_1109_TSMCB_2010_2044240 |
Cites_doi | 10.1109/CVPR.1998.698581 10.1109/CVPR.2000.854758 10.1007/11919629_7 10.1109/34.121791 10.1126/science.290.5500.2319 10.1109/CVPR.1998.698580 10.1006/cviu.2000.0892 10.1006/cviu.2000.0897 10.1162/neco.1997.9.7.1493 10.1007/978-1-4757-1904-8 10.1109/CVPR.1999.784637 10.5244/C.17.32 10.1007/s00530-004-0148-1 10.1109/CVPR.2006.104 10.1109/CVPR.1996.517056 10.1109/CVPR.2001.990976 10.1109/AFGR.2000.840661 10.1109/CVPR.2001.990509 10.1023/A:1008078328650 10.1007/978-3-540-75703-0_15 10.1006/cviu.1998.0744 10.1023/A:1008935410038 10.1109/TPAMI.2007.250600 10.1109/ICCV.1999.790292 10.1109/34.868683 10.1109/CVPR.2006.313 10.1016/j.cviu.2006.07.010 10.5244/C.19.45 10.1109/34.895978 10.1126/science.290.5500.2323 10.1162/089976603321780317 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D F28 FR3 |
DOI | 10.1109/TCSVT.2008.927108 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library Online CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ANTE: Abstracts in New Technology & Engineering Engineering Research Database |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional Engineering Research Database ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Technology Research Database Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library Online url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-2205 |
EndPage | 1084 |
ExternalDocumentID | 2545208301 10_1109_TCSVT_2008_927108 4543859 |
Genre | orig-research |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AASAJ ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AI. AIBXA AKJIK ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RIG RNS RXW TAE TN5 VH1 XFK AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D F28 FR3 |
ID | FETCH-LOGICAL-c323t-e097fdd0d963ba715e4bc219d23ba166bd333c97796f40059ed6c81655e38c6a3 |
IEDL.DBID | RIE |
ISSN | 1051-8215 |
IngestDate | Fri Aug 16 01:10:40 EDT 2024 Thu Oct 10 16:28:21 EDT 2024 Fri Aug 23 00:10:03 EDT 2024 Wed Jun 26 19:26:55 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | Articulated 3D human motion tracking particle filter simulated physical force/moment vector quantization principal component analysis |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c323t-e097fdd0d963ba715e4bc219d23ba166bd333c97796f40059ed6c81655e38c6a3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 912285886 |
PQPubID | 85433 |
PageCount | 10 |
ParticipantIDs | ieee_primary_4543859 crossref_primary_10_1109_TCSVT_2008_927108 proquest_journals_912285886 proquest_miscellaneous_34498579 |
PublicationCentury | 2000 |
PublicationDate | 2008-Aug. 2008-08-00 20080801 |
PublicationDateYYYYMMDD | 2008-08-01 |
PublicationDate_xml | – month: 08 year: 2008 text: 2008-Aug. |
PublicationDecade | 2000 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on circuits and systems for video technology |
PublicationTitleAbbrev | TCSVT |
PublicationYear | 2008 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 han (ref19) 2005 ref12 ref15 ref36 ref14 ref30 ref33 ref11 ref10 ref2 ref1 ref17 ref38 ref18 sigal (ref39) 2006 tenenbaum (ref34) 2000; 290 maccormick (ref37) 2000; 2 ref24 ref26 sidenbladh (ref27) 2000 ref25 roweis (ref32) 2000; 290 ref22 ref21 dempster (ref35) 1977; 39 ref28 ref29 ref8 ref7 ref9 ref4 lee (ref16) 2002 ref3 ref6 wu (ref20) 2003; 2 ref5 sidenbladh (ref23) 2002; 1 jolliffe (ref31) 1986 |
References_xml | – volume: 39 start-page: 1 year: 1977 ident: ref35 article-title: maximum likelihood from incomplete data via the em algorithm publication-title: J Royal Stat Soc contributor: fullname: dempster – ident: ref8 doi: 10.1109/CVPR.1998.698581 – ident: ref14 doi: 10.1109/CVPR.2000.854758 – ident: ref15 doi: 10.1007/11919629_7 – ident: ref38 doi: 10.1109/34.121791 – volume: 290 start-page: 2319 year: 2000 ident: ref34 article-title: a global geometric framework for nonlinear dimensionality reduction publication-title: Science doi: 10.1126/science.290.5500.2319 contributor: fullname: tenenbaum – ident: ref7 doi: 10.1109/CVPR.1998.698580 – start-page: 26 year: 2005 ident: ref19 article-title: articulated body tracking using dynamic belief propagation publication-title: Proc IEEE Int Workshop HumanComput Interaction contributor: fullname: han – volume: 2 start-page: 1094 year: 2003 ident: ref20 article-title: tracking articulated body by dynamic markov network publication-title: Proc Int Conf Comput Vis contributor: fullname: wu – ident: ref11 doi: 10.1006/cviu.2000.0892 – ident: ref5 doi: 10.1006/cviu.2000.0897 – ident: ref24 doi: 10.1162/neco.1997.9.7.1493 – year: 1986 ident: ref31 publication-title: Principal Component Analysis doi: 10.1007/978-1-4757-1904-8 contributor: fullname: jolliffe – ident: ref28 doi: 10.1109/CVPR.1999.784637 – volume: 1 start-page: 784 year: 2002 ident: ref23 article-title: implicit probabilistic models of human motion for synthesis and tracking publication-title: Proc Eur Conf Comput Vis contributor: fullname: sidenbladh – ident: ref29 doi: 10.5244/C.17.32 – ident: ref1 doi: 10.1007/s00530-004-0148-1 – start-page: 702 year: 2000 ident: ref27 article-title: stochastic tracking of 3-d human figures using 2-d image motion publication-title: Proc Eur Conf Comput Vis contributor: fullname: sidenbladh – ident: ref22 doi: 10.1109/CVPR.2006.104 – ident: ref6 doi: 10.1109/CVPR.1996.517056 – year: 2006 ident: ref39 publication-title: HumanEva Synchronized video and motion capture dataset for evaluation of articulated human motion contributor: fullname: sigal – ident: ref17 doi: 10.1109/CVPR.2001.990976 – ident: ref21 doi: 10.1109/AFGR.2000.840661 – ident: ref26 doi: 10.1109/CVPR.2001.990509 – volume: 2 start-page: 3 year: 2000 ident: ref37 article-title: partitioned sampling, articulated objects, and interface-quality hand tracking publication-title: Proc Eur Conf Comput Vis contributor: fullname: maccormick – ident: ref13 doi: 10.1023/A:1008078328650 – ident: ref25 doi: 10.1007/978-3-540-75703-0_15 – ident: ref4 doi: 10.1006/cviu.1998.0744 – ident: ref36 doi: 10.1023/A:1008935410038 – ident: ref3 doi: 10.1109/TPAMI.2007.250600 – ident: ref10 doi: 10.1109/ICCV.1999.790292 – ident: ref2 doi: 10.1109/34.868683 – ident: ref18 doi: 10.1109/CVPR.2006.313 – ident: ref9 doi: 10.1016/j.cviu.2006.07.010 – ident: ref30 doi: 10.5244/C.19.45 – start-page: 159 year: 2002 ident: ref16 article-title: particle filter with analytical inference for human body tracking publication-title: Proc Workshop on Motion and Video Computing contributor: fullname: lee – ident: ref12 doi: 10.1109/34.895978 – volume: 290 start-page: 2323 year: 2000 ident: ref32 article-title: nonlinear dimensionality reduction by locally linear embedding publication-title: Science doi: 10.1126/science.290.5500.2323 contributor: fullname: roweis – ident: ref33 doi: 10.1162/089976603321780317 |
SSID | ssj0014847 |
Score | 2.0446773 |
Snippet | In this paper, we present a hybrid framework for articulated 3-D human motion tracking from multiple synchronized cameras with potential uses in surveillance... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Publisher |
StartPage | 1075 |
SubjectTerms | Articulated 3-D human motion tracking Biological system modeling Cameras Efficiency Humans Optimization methods particle filter Particle tracking Robustness Sampling methods simulated physical force/moment Stochastic processes Studies Surveillance Target tracking vector quantization principal component analysis (VQPCA) |
Title | A Hybrid Framework for 3-D Human Motion Tracking |
URI | https://ieeexplore.ieee.org/document/4543859 https://www.proquest.com/docview/912285886 https://search.proquest.com/docview/34498579 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV05T8MwFH6inWDgKohQDg9MiFCfiT1WPdQFlhbEFjmxM6aINgP_HttJIxAsbIkSRdEXP78v37sA7iwleapSHEvHFmKusTMpRwRilitJsNZeevPSxTJ9fpPTmW-T89DVwlhrQ_KZffSHIZZv1kXtpbIRF5xJoXrQS5VsarW6iAGXYZiYowskls6PtRFMgtVoNVm-rpq0SUWdR5U_fFAYqvJrJw7uZX70vxc7hsOWRqJx891PYM9Wp3DwrbngAPAYLT59PRaa7xKwkGOoiMVTFKR79BQm-CDnrgovmJ_By3y2mizidj5CXDDKtrHFKi2NwcYZUa5TIizPC7cDGepOSZLkhjFWOIKnkpL7KlNrkkKSRAjLZJFodg79al3ZC0CEaGfcpZFUU65DWzQhDVGlpyDU6gjud4hl700bjCz8PmCVBXibcZYNvBEMPETdjS06EQx3GGetoWwyRSiVQsokgtvuqlvhPmyhK7uuNxnjXEmRqsu_HzuE_SaHwyflXUF_-1Hba-htTH0TVsgX4re1MA |
link.rule.ids | 315,782,786,798,27933,27934,54767 |
linkProvider | IEEE |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV27TsMwFL2iZQAGXgVRCtQDEyIQvxJ7rPpQEW2XFsQWObEzpoi2A3-P7aQRCBa2RImi6MTX9-TcF8CtITiNZRwGwrKFgKnQmpQlAgFNpcChUk56c9LFPJ69icHQtcm5r2thjDE--cw8uEMfy9fLbOOkskfGGRVcNmCXsziKy2qtOmbAhB8nZgkDDoT1ZFUME4fycdGfvy7KxElJrE8VP7yQH6vyay_2DmZ09L9XO4bDikiiXvnlT2DHFKdw8K29YAvCHhp_uoosNNqmYCHLURENBsiL92jqZ_gg67AyJ5mfwctouOiPg2pCQpBRQteBCWWcax1qa0apijE3LM3sHqSJPcVRlGpKaWYpnoxy5upMjY4ygSPODRVZpOg5NItlYS4AYayseedaEEWY8o3RuNBY5o6EEKPacLdFLHkvG2Ek_gcilImHtxxoWcLbhpaDqL6xQqcNnS3GSWUqq0RiQgQXImpDt75q17gLXKjCLDerhDImBY_l5d-P7cLeeDGdJJOn2XMH9suMDpeidwXN9cfGXENjpTc3frV8AZzHuIE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Hybrid+Framework+for+3-D+Human+Motion+Tracking&rft.jtitle=IEEE+transactions+on+circuits+and+systems+for+video+technology&rft.au=Bingbing+Ni&rft.au=Kassim%2C+A.A.&rft.au=Winkler%2C+S.&rft.date=2008-08-01&rft.pub=IEEE&rft.issn=1051-8215&rft.eissn=1558-2205&rft.volume=18&rft.issue=8&rft.spage=1075&rft.epage=1084&rft_id=info:doi/10.1109%2FTCSVT.2008.927108&rft.externalDocID=4543859 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-8215&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-8215&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-8215&client=summon |