Homogenizing Zn Deposition in Hierarchical Nanoporous Cu for a High-Current, High Areal-Capacity Zn Flow Battery
A Zn anode can offset the low energy density of a flow battery for a balanced approach toward electricity storage. Yet, when targeting inexpensive, long-duration storage, the battery demands a thick Zn deposit in a porous framework, whose heterogeneity triggers frequent dendrite formation and jeopar...
Saved in:
Published in: | Small (Weinheim an der Bergstrasse, Germany) Vol. 19; no. 40; p. e2303005 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Germany
Wiley Subscription Services, Inc
01-10-2023
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | A Zn anode can offset the low energy density of a flow battery for a balanced approach toward electricity storage. Yet, when targeting inexpensive, long-duration storage, the battery demands a thick Zn deposit in a porous framework, whose heterogeneity triggers frequent dendrite formation and jeopardizes the stability of the battery. Here, Cu foam is transferred into a hierarchical nanoporous electrode to homogenize the deposition. It begins with alloying the foam with Zn to form Cu
Zn
, whose depth is controlled to retain the large pores for a hydraulic permeability ≈10
m
. Dealloying follows to create nanoscale pores and abundant fine pits below 10 nm, where Zn can nucleate preferentially due to the Gibbs-Thomson effect, as supported by a density functional theory simulation. Morphological evolution monitored by in situ microscopy confirms uniform Zn deposition. The electrode delivers 200 h of stable cycles in a Zn-I
flow battery at 60 mAh cm
and 60 mA cm
, performance that meets practical demands. |
---|---|
AbstractList | A Zn anode can offset the low energy density of a flow battery for a balanced approach toward electricity storage. Yet, when targeting inexpensive, long‐duration storage, the battery demands a thick Zn deposit in a porous framework, whose heterogeneity triggers frequent dendrite formation and jeopardizes the stability of the battery. Here, Cu foam is transferred into a hierarchical nanoporous electrode to homogenize the deposition. It begins with alloying the foam with Zn to form Cu5Zn8, whose depth is controlled to retain the large pores for a hydraulic permeability ≈10−11 m2. Dealloying follows to create nanoscale pores and abundant fine pits below 10 nm, where Zn can nucleate preferentially due to the Gibbs–Thomson effect, as supported by a density functional theory simulation. Morphological evolution monitored by in situ microscopy confirms uniform Zn deposition. The electrode delivers 200 h of stable cycles in a Zn–I2 flow battery at 60 mAh cm−2 and 60 mA cm−2, performance that meets practical demands. A Zn anode can offset the low energy density of a flow battery for a balanced approach toward electricity storage. Yet, when targeting inexpensive, long-duration storage, the battery demands a thick Zn deposit in a porous framework, whose heterogeneity triggers frequent dendrite formation and jeopardizes the stability of the battery. Here, Cu foam is transferred into a hierarchical nanoporous electrode to homogenize the deposition. It begins with alloying the foam with Zn to form Cu Zn , whose depth is controlled to retain the large pores for a hydraulic permeability ≈10 m . Dealloying follows to create nanoscale pores and abundant fine pits below 10 nm, where Zn can nucleate preferentially due to the Gibbs-Thomson effect, as supported by a density functional theory simulation. Morphological evolution monitored by in situ microscopy confirms uniform Zn deposition. The electrode delivers 200 h of stable cycles in a Zn-I flow battery at 60 mAh cm and 60 mA cm , performance that meets practical demands. Abstract A Zn anode can offset the low energy density of a flow battery for a balanced approach toward electricity storage. Yet, when targeting inexpensive, long‐duration storage, the battery demands a thick Zn deposit in a porous framework, whose heterogeneity triggers frequent dendrite formation and jeopardizes the stability of the battery. Here, Cu foam is transferred into a hierarchical nanoporous electrode to homogenize the deposition. It begins with alloying the foam with Zn to form Cu 5 Zn 8 , whose depth is controlled to retain the large pores for a hydraulic permeability ≈10 −11 m 2 . Dealloying follows to create nanoscale pores and abundant fine pits below 10 nm, where Zn can nucleate preferentially due to the Gibbs–Thomson effect, as supported by a density functional theory simulation. Morphological evolution monitored by in situ microscopy confirms uniform Zn deposition. The electrode delivers 200 h of stable cycles in a Zn–I 2 flow battery at 60 mAh cm −2 and 60 mA cm −2 , performance that meets practical demands. |
Author | Kim, Jang-Kyo Xiao, Diwen Yi, Zhibin Li, Liangyu Li, Jie Zhao, Yunhe Li, Yang Chen, Qing Mubarak, Nauman Deng, Canbin Luo, Guangfu Xu, Mengyang |
Author_xml | – sequence: 1 givenname: Yang orcidid: 0000-0002-4514-0950 surname: Li fullname: Li, Yang organization: Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, P. R. China – sequence: 2 givenname: Liangyu surname: Li fullname: Li, Liangyu organization: Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, P. R. China – sequence: 3 givenname: Yunhe surname: Zhao fullname: Zhao, Yunhe organization: Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, P. R. China – sequence: 4 givenname: Canbin surname: Deng fullname: Deng, Canbin organization: Interdisciplinary Programs Office, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, P. R. China – sequence: 5 givenname: Zhibin surname: Yi fullname: Yi, Zhibin organization: Department of Materials Science and Engineering, Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China – sequence: 6 givenname: Diwen surname: Xiao fullname: Xiao, Diwen organization: Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, P. R. China – sequence: 7 givenname: Nauman surname: Mubarak fullname: Mubarak, Nauman organization: Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, P. R. China – sequence: 8 givenname: Mengyang surname: Xu fullname: Xu, Mengyang organization: Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, P. R. China – sequence: 9 givenname: Jie surname: Li fullname: Li, Jie organization: Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, P. R. China – sequence: 10 givenname: Guangfu orcidid: 0000-0002-0738-0507 surname: Luo fullname: Luo, Guangfu organization: Department of Materials Science and Engineering, Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China – sequence: 11 givenname: Qing orcidid: 0000-0003-3106-9281 surname: Chen fullname: Chen, Qing organization: Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, P. R. China – sequence: 12 givenname: Jang-Kyo orcidid: 0000-0002-5390-8763 surname: Kim fullname: Kim, Jang-Kyo organization: Department of Mechanical Engineering, Khalifa University, Abu Dhabi, 127788, UAE |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37269202$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkb1v2zAQxYkiRRO7XTsWBLpkiBzyKJLy6CgfLhCkS7t0ERj65NCQSJWUEDh_faTE9dDp7oDfe7i7NyMnPngk5CtnC84YXKa2aRbAQDDBmPxAzrjiIlMFLE-OPWenZJbSjjHBIdefyKnQoJaj6ox069CGLXr34vyW_vH0GruQXO-Cp87TtcNoon1y1jT0wfjQhRiGRMuB1iFSMwLbp6wcYkTfX7xNdBXRNFlpOmNdv588b5vwTK9M32PcfyYfa9Mk_HKoc_L79uZXuc7uf979KFf3mRUg-kxYuwEpsZZFrkAJqVBLZqAwQitrUVjQuZAolku2kbwuHm2ucgmqsMxaq8WcnL_7djH8HTD1VeuSxaYxHscLKigAxGjJJ_T7f-guDNGP242UBtA6VxO1eKdsDClFrKsuutbEfcVZNWVRTVlUxyxGwbeD7fDY4uaI_3u-eAUdcIVZ |
CitedBy_id | crossref_primary_10_1002_smtd_202301233 crossref_primary_10_1002_aenm_202400276 |
Cites_doi | 10.1002/anie.201708664 10.1038/s41560-020-00772-8 10.1126/sciadv.aba4098 10.1039/D2TA02086F 10.1002/aenm.201901945 10.1016/j.apenergy.2018.01.061 10.1149/2.0721910jes 10.1007/s11669-020-00831-3 10.1016/j.ensm.2018.06.008 10.1038/s41570-022-00394-6 10.1039/D2TA00324D 10.1016/j.coelec.2019.11.002 10.1021/acsami.7b05648 10.1039/D0TA10580E 10.1126/science.1212741 10.1021/cr500720t 10.1039/C9EE03702K 10.1126/science.aab3033 10.1002/adfm.202102913 10.1039/C8CS00072G 10.1103/PhysRevLett.77.3865 10.1021/acs.chemmater.2c02697 10.1039/C4EE02158D 10.1103/PhysRevB.50.17953 10.1126/sciadv.abq4456 10.1002/jcc.20495 10.1002/adfm.201910564 10.1021/acsami.1c06131 10.1002/adma.202002132 10.1016/j.commatsci.2017.08.012 10.1039/C6EE03554J 10.1557/mrs.2017.302 10.1016/j.chempr.2019.05.010 10.1002/adma.201902025 10.1021/acsenergylett.2c00560 10.1038/ncomms7303 10.1039/D1CY00712B 10.1021/acsami.7b04777 10.1149/2.0721706jes 10.1177/0021998305046438 10.1016/j.scriptamat.2004.12.026 10.1016/j.nanoen.2021.106763 10.1021/acs.jpcc.1c08258 10.1039/C8EE02825G 10.1002/aic.690210103 10.1016/j.rser.2022.112213 10.1016/j.rser.2020.109838 10.1016/j.jpowsour.2013.04.121 10.1039/C8NR02450B 10.1016/j.jpowsour.2016.12.005 10.1103/PhysRevB.54.11169 10.1016/j.mtener.2017.12.012 10.1149/2.0061601jes 10.1021/am5025935 10.1039/D0EE00723D 10.1038/natrevmats.2016.80 10.1002/smll.201901848 10.1016/j.jpowsour.2014.04.067 10.1002/ente.201700481 10.1016/j.ensm.2016.12.005 10.1093/nsr/nww098 10.1002/adma.201906803 10.1016/j.apenergy.2016.12.129 10.1039/C5RA16264E 10.1557/mrs.2017.303 |
ContentType | Journal Article |
Copyright | 2023 Wiley-VCH GmbH. 2023 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2023 Wiley-VCH GmbH. – notice: 2023 Wiley‐VCH GmbH |
DBID | NPM AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1002/smll.202303005 |
DatabaseName | PubMed CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | PubMed CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database PubMed CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | e2303005 |
ExternalDocumentID | 10_1002_smll_202303005 37269202 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Research Grant Council, Hong Kong grantid: C1002-21G – fundername: Advanced Engineering Materials Facilities – fundername: Research Grant Council of the Hong Kong SAR – fundername: Theme-Based Research Project grantid: T23-601/17-R – fundername: Materials Characterization and Preparation Facilities – fundername: National Foundation of Natural Science grantid: 52022002 |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAIHA AANLZ AAONW AAXRX AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EMOBN F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ NPM O66 O9- OIG P2P P2W P4E QRW R.K RIWAO RNS ROL RWI RX1 RYL SUPJJ SV3 V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ WYJ XV2 Y6R ZZTAW ~S- 31~ AASGY AAYOK AAYXX ACBWZ ASPBG AVWKF AZFZN BDRZF CITATION EJD FEDTE GODZA HVGLF 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c323t-3ccd255ef584626356e750a28a376cce3c27435e3990d51f8bc4645268c0ccc73 |
ISSN | 1613-6810 |
IngestDate | Sat Oct 05 06:08:35 EDT 2024 Thu Oct 10 18:20:14 EDT 2024 Fri Aug 23 03:49:04 EDT 2024 Tue Aug 27 13:45:53 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 40 |
Keywords | morphology evolution hierarchical structures Zn flow batteries nanoporous electrodes |
Language | English |
License | 2023 Wiley-VCH GmbH. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c323t-3ccd255ef584626356e750a28a376cce3c27435e3990d51f8bc4645268c0ccc73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-4514-0950 0000-0002-5390-8763 0000-0002-0738-0507 0000-0003-3106-9281 |
PMID | 37269202 |
PQID | 2872277467 |
PQPubID | 1046358 |
ParticipantIDs | proquest_miscellaneous_2822375017 proquest_journals_2872277467 crossref_primary_10_1002_smll_202303005 pubmed_primary_37269202 |
PublicationCentury | 2000 |
PublicationDate | 2023-10-01 |
PublicationDateYYYYMMDD | 2023-10-01 |
PublicationDate_xml | – month: 10 year: 2023 text: 2023-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationTitleAlternate | Small |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_56_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_58_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_60_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_51_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_61_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_65_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 e_1_2_9_1_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 Yang S. D. (e_1_2_9_55_1) 2020 e_1_2_9_29_1 |
References_xml | – ident: e_1_2_9_18_1 doi: 10.1002/anie.201708664 – ident: e_1_2_9_39_1 doi: 10.1038/s41560-020-00772-8 – ident: e_1_2_9_4_1 doi: 10.1126/sciadv.aba4098 – ident: e_1_2_9_46_1 doi: 10.1039/D2TA02086F – ident: e_1_2_9_47_1 doi: 10.1002/aenm.201901945 – ident: e_1_2_9_30_1 doi: 10.1016/j.apenergy.2018.01.061 – ident: e_1_2_9_40_1 doi: 10.1149/2.0721910jes – ident: e_1_2_9_49_1 doi: 10.1007/s11669-020-00831-3 – ident: e_1_2_9_11_1 doi: 10.1016/j.ensm.2018.06.008 – ident: e_1_2_9_1_1 doi: 10.1038/s41570-022-00394-6 – ident: e_1_2_9_34_1 doi: 10.1039/D2TA00324D – ident: e_1_2_9_35_1 doi: 10.1016/j.coelec.2019.11.002 – ident: e_1_2_9_50_1 doi: 10.1021/acsami.7b05648 – ident: e_1_2_9_13_1 doi: 10.1039/D0TA10580E – ident: e_1_2_9_2_1 doi: 10.1126/science.1212741 – ident: e_1_2_9_8_1 doi: 10.1021/cr500720t – ident: e_1_2_9_22_1 doi: 10.1039/C9EE03702K – ident: e_1_2_9_6_1 doi: 10.1126/science.aab3033 – ident: e_1_2_9_25_1 doi: 10.1002/adfm.202102913 – ident: e_1_2_9_32_1 doi: 10.1039/C8CS00072G – ident: e_1_2_9_63_1 doi: 10.1103/PhysRevLett.77.3865 – ident: e_1_2_9_52_1 doi: 10.1021/acs.chemmater.2c02697 – ident: e_1_2_9_9_1 doi: 10.1039/C4EE02158D – ident: e_1_2_9_65_1 doi: 10.1103/PhysRevB.50.17953 – ident: e_1_2_9_38_1 doi: 10.1126/sciadv.abq4456 – ident: e_1_2_9_66_1 doi: 10.1002/jcc.20495 – ident: e_1_2_9_12_1 doi: 10.1002/adfm.201910564 – ident: e_1_2_9_57_1 doi: 10.1021/acsami.1c06131 – ident: e_1_2_9_14_1 doi: 10.1002/adma.202002132 – ident: e_1_2_9_53_1 doi: 10.1016/j.commatsci.2017.08.012 – ident: e_1_2_9_16_1 doi: 10.1039/C6EE03554J – ident: e_1_2_9_54_1 doi: 10.1557/mrs.2017.302 – ident: e_1_2_9_7_1 doi: 10.1016/j.chempr.2019.05.010 – ident: e_1_2_9_15_1 doi: 10.1002/adma.201902025 – ident: e_1_2_9_24_1 doi: 10.1021/acsenergylett.2c00560 – ident: e_1_2_9_17_1 doi: 10.1038/ncomms7303 – ident: e_1_2_9_56_1 doi: 10.1039/D1CY00712B – ident: e_1_2_9_42_1 doi: 10.1021/acsami.7b04777 – ident: e_1_2_9_36_1 doi: 10.1149/2.0721706jes – ident: e_1_2_9_41_1 doi: 10.1177/0021998305046438 – ident: e_1_2_9_59_1 doi: 10.1016/j.scriptamat.2004.12.026 – ident: e_1_2_9_60_1 doi: 10.1016/j.nanoen.2021.106763 – ident: e_1_2_9_51_1 doi: 10.1021/acs.jpcc.1c08258 – ident: e_1_2_9_20_1 doi: 10.1039/C8EE02825G – ident: e_1_2_9_31_1 doi: 10.1002/aic.690210103 – ident: e_1_2_9_5_1 doi: 10.1016/j.rser.2022.112213 – ident: e_1_2_9_28_1 doi: 10.1016/j.rser.2020.109838 – ident: e_1_2_9_45_1 doi: 10.1016/j.jpowsour.2013.04.121 – ident: e_1_2_9_61_1 doi: 10.1039/C8NR02450B – ident: e_1_2_9_44_1 doi: 10.1016/j.jpowsour.2016.12.005 – ident: e_1_2_9_64_1 doi: 10.1103/PhysRevB.54.11169 – ident: e_1_2_9_21_1 doi: 10.1016/j.mtener.2017.12.012 – ident: e_1_2_9_29_1 doi: 10.1149/2.0061601jes – ident: e_1_2_9_43_1 doi: 10.1021/am5025935 – ident: e_1_2_9_37_1 doi: 10.1039/D0EE00723D – ident: e_1_2_9_10_1 doi: 10.1038/natrevmats.2016.80 – ident: e_1_2_9_19_1 doi: 10.1002/smll.201901848 – ident: e_1_2_9_23_1 doi: 10.1016/j.jpowsour.2014.04.067 – ident: e_1_2_9_27_1 doi: 10.1002/ente.201700481 – ident: e_1_2_9_3_1 doi: 10.1016/j.ensm.2016.12.005 – ident: e_1_2_9_26_1 doi: 10.1093/nsr/nww098 – ident: e_1_2_9_33_1 doi: 10.1002/adma.201906803 – ident: e_1_2_9_62_1 doi: 10.1016/j.apenergy.2016.12.129 – ident: e_1_2_9_48_1 doi: 10.1039/C5RA16264E – start-page: 167 year: 2020 ident: e_1_2_9_55_1 publication-title: J. Electrochem. Soc. contributor: fullname: Yang S. D. – ident: e_1_2_9_58_1 doi: 10.1557/mrs.2017.303 |
SSID | ssj0031247 |
Score | 2.5090444 |
Snippet | A Zn anode can offset the low energy density of a flow battery for a balanced approach toward electricity storage. Yet, when targeting inexpensive,... Abstract A Zn anode can offset the low energy density of a flow battery for a balanced approach toward electricity storage. Yet, when targeting inexpensive,... |
SourceID | proquest crossref pubmed |
SourceType | Aggregation Database Index Database |
StartPage | e2303005 |
SubjectTerms | Copper Density functional theory Deposition Electric energy storage Electrodes Heterogeneity Metal foams Nanotechnology Rechargeable batteries |
Title | Homogenizing Zn Deposition in Hierarchical Nanoporous Cu for a High-Current, High Areal-Capacity Zn Flow Battery |
URI | https://www.ncbi.nlm.nih.gov/pubmed/37269202 https://www.proquest.com/docview/2872277467 https://search.proquest.com/docview/2822375017 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLa6cYED4jdlGzISEocSkdhZkh6nrqWHaiCtE9suUeI4W6TWQWujaZz2J-xv5C_hPdv5USHQOHCpWqd1Ir-v731-fv5MyPskzVFCBLxf6ruOH3iek0ap64jIzzxPBl4qderiODw6jQ7H_rjXq480bNv-q6WhDWyNO2f_wdpNp9AA78Hm8ApWh9d72X1aLku4WPzAHMC5AodS12VhamNa4IZjff7JAj1rCfQbi2BHlSmn1HUfTQGEFW_S4QnaBwfAMBftVYizAkk83GWyKK8HRqtzY534eIlL38Biv8lCXcoCD-QYZFqX8eoCsywrc7DjZwwQ6qaTlziziexZ0dQMmY3cgOeLm6qT8NbJ3rMKum9YuTS_HSUqtcriNrHB2hK5-7rPjtsGUuKgspqJat02-9y1rx92MG10on6LIUaTdrVc4MoUzNBQ0L-NlnWFwNGXeHIym8Xz8el8izxg4OewopTzrzUR4ECd9Nk-9cPVmqEu-7TZ-yYn-sNERxOe-RPy2M5U6IGB2FPSk-oZedTRr3xO1l2w0XNFW7DRQtEu2GgLNjqqKICNJhRB9fP2zsLso_5MNciw1cIL-0V4UQuvF-RkMp6Ppo49xsMRnPG1w4XIYOIqc-S6qH0USKCpCYsSCG5CSC4Y0Nh9CVTZzfa9PEqFXm4PIuEKIUL-kmyrUsnXhLpRmIX-MHdT6MtNkiTnWYb7kHyZuoJ5ffKhHsj4u1FriY0uN4txyONmyPtktx7n2P57VzGLQsZCPICnT941l8Hf4iJaoiQMUYxl1xye34PvvDL2aW7FQxYM4RZv_t75DnnY4n2XbK-vKrlHtlZZ9VYD6BfQiqQN |
link.rule.ids | 315,782,786,27935,27936 |
linkProvider | Wiley-Blackwell |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Homogenizing+Zn+Deposition+in+Hierarchical+Nanoporous+Cu+for+a+High%E2%80%90Current%2C+High+Areal%E2%80%90Capacity+Zn+Flow+Battery&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Yang%2C+Li&rft.au=Li%2C+Liangyu&rft.au=Zhao%2C+Yunhe&rft.au=Deng%2C+Canbin&rft.date=2023-10-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=19&rft.issue=40&rft_id=info:doi/10.1002%2Fsmll.202303005&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |