Homogenizing Zn Deposition in Hierarchical Nanoporous Cu for a High-Current, High Areal-Capacity Zn Flow Battery

A Zn anode can offset the low energy density of a flow battery for a balanced approach toward electricity storage. Yet, when targeting inexpensive, long-duration storage, the battery demands a thick Zn deposit in a porous framework, whose heterogeneity triggers frequent dendrite formation and jeopar...

Full description

Saved in:
Bibliographic Details
Published in:Small (Weinheim an der Bergstrasse, Germany) Vol. 19; no. 40; p. e2303005
Main Authors: Li, Yang, Li, Liangyu, Zhao, Yunhe, Deng, Canbin, Yi, Zhibin, Xiao, Diwen, Mubarak, Nauman, Xu, Mengyang, Li, Jie, Luo, Guangfu, Chen, Qing, Kim, Jang-Kyo
Format: Journal Article
Language:English
Published: Germany Wiley Subscription Services, Inc 01-10-2023
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract A Zn anode can offset the low energy density of a flow battery for a balanced approach toward electricity storage. Yet, when targeting inexpensive, long-duration storage, the battery demands a thick Zn deposit in a porous framework, whose heterogeneity triggers frequent dendrite formation and jeopardizes the stability of the battery. Here, Cu foam is transferred into a hierarchical nanoporous electrode to homogenize the deposition. It begins with alloying the foam with Zn to form Cu Zn , whose depth is controlled to retain the large pores for a hydraulic permeability ≈10  m . Dealloying follows to create nanoscale pores and abundant fine pits below 10 nm, where Zn can nucleate preferentially due to the Gibbs-Thomson effect, as supported by a density functional theory simulation. Morphological evolution monitored by in situ microscopy confirms uniform Zn deposition. The electrode delivers 200 h of stable cycles in a Zn-I flow battery at 60 mAh cm and 60 mA cm , performance that meets practical demands.
AbstractList A Zn anode can offset the low energy density of a flow battery for a balanced approach toward electricity storage. Yet, when targeting inexpensive, long‐duration storage, the battery demands a thick Zn deposit in a porous framework, whose heterogeneity triggers frequent dendrite formation and jeopardizes the stability of the battery. Here, Cu foam is transferred into a hierarchical nanoporous electrode to homogenize the deposition. It begins with alloying the foam with Zn to form Cu5Zn8, whose depth is controlled to retain the large pores for a hydraulic permeability ≈10−11 m2. Dealloying follows to create nanoscale pores and abundant fine pits below 10 nm, where Zn can nucleate preferentially due to the Gibbs–Thomson effect, as supported by a density functional theory simulation. Morphological evolution monitored by in situ microscopy confirms uniform Zn deposition. The electrode delivers 200 h of stable cycles in a Zn–I2 flow battery at 60 mAh cm−2 and 60 mA cm−2, performance that meets practical demands.
A Zn anode can offset the low energy density of a flow battery for a balanced approach toward electricity storage. Yet, when targeting inexpensive, long-duration storage, the battery demands a thick Zn deposit in a porous framework, whose heterogeneity triggers frequent dendrite formation and jeopardizes the stability of the battery. Here, Cu foam is transferred into a hierarchical nanoporous electrode to homogenize the deposition. It begins with alloying the foam with Zn to form Cu Zn , whose depth is controlled to retain the large pores for a hydraulic permeability ≈10  m . Dealloying follows to create nanoscale pores and abundant fine pits below 10 nm, where Zn can nucleate preferentially due to the Gibbs-Thomson effect, as supported by a density functional theory simulation. Morphological evolution monitored by in situ microscopy confirms uniform Zn deposition. The electrode delivers 200 h of stable cycles in a Zn-I flow battery at 60 mAh cm and 60 mA cm , performance that meets practical demands.
Abstract A Zn anode can offset the low energy density of a flow battery for a balanced approach toward electricity storage. Yet, when targeting inexpensive, long‐duration storage, the battery demands a thick Zn deposit in a porous framework, whose heterogeneity triggers frequent dendrite formation and jeopardizes the stability of the battery. Here, Cu foam is transferred into a hierarchical nanoporous electrode to homogenize the deposition. It begins with alloying the foam with Zn to form Cu 5 Zn 8 , whose depth is controlled to retain the large pores for a hydraulic permeability ≈10 −11  m 2 . Dealloying follows to create nanoscale pores and abundant fine pits below 10 nm, where Zn can nucleate preferentially due to the Gibbs–Thomson effect, as supported by a density functional theory simulation. Morphological evolution monitored by in situ microscopy confirms uniform Zn deposition. The electrode delivers 200 h of stable cycles in a Zn–I 2 flow battery at 60 mAh cm −2 and 60 mA cm −2 , performance that meets practical demands.
Author Kim, Jang-Kyo
Xiao, Diwen
Yi, Zhibin
Li, Liangyu
Li, Jie
Zhao, Yunhe
Li, Yang
Chen, Qing
Mubarak, Nauman
Deng, Canbin
Luo, Guangfu
Xu, Mengyang
Author_xml – sequence: 1
  givenname: Yang
  orcidid: 0000-0002-4514-0950
  surname: Li
  fullname: Li, Yang
  organization: Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, P. R. China
– sequence: 2
  givenname: Liangyu
  surname: Li
  fullname: Li, Liangyu
  organization: Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, P. R. China
– sequence: 3
  givenname: Yunhe
  surname: Zhao
  fullname: Zhao, Yunhe
  organization: Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, P. R. China
– sequence: 4
  givenname: Canbin
  surname: Deng
  fullname: Deng, Canbin
  organization: Interdisciplinary Programs Office, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, P. R. China
– sequence: 5
  givenname: Zhibin
  surname: Yi
  fullname: Yi, Zhibin
  organization: Department of Materials Science and Engineering, Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
– sequence: 6
  givenname: Diwen
  surname: Xiao
  fullname: Xiao, Diwen
  organization: Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, P. R. China
– sequence: 7
  givenname: Nauman
  surname: Mubarak
  fullname: Mubarak, Nauman
  organization: Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, P. R. China
– sequence: 8
  givenname: Mengyang
  surname: Xu
  fullname: Xu, Mengyang
  organization: Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, P. R. China
– sequence: 9
  givenname: Jie
  surname: Li
  fullname: Li, Jie
  organization: Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, P. R. China
– sequence: 10
  givenname: Guangfu
  orcidid: 0000-0002-0738-0507
  surname: Luo
  fullname: Luo, Guangfu
  organization: Department of Materials Science and Engineering, Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
– sequence: 11
  givenname: Qing
  orcidid: 0000-0003-3106-9281
  surname: Chen
  fullname: Chen, Qing
  organization: Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, P. R. China
– sequence: 12
  givenname: Jang-Kyo
  orcidid: 0000-0002-5390-8763
  surname: Kim
  fullname: Kim, Jang-Kyo
  organization: Department of Mechanical Engineering, Khalifa University, Abu Dhabi, 127788, UAE
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37269202$$D View this record in MEDLINE/PubMed
BookMark eNpdkb1v2zAQxYkiRRO7XTsWBLpkiBzyKJLy6CgfLhCkS7t0ERj65NCQSJWUEDh_faTE9dDp7oDfe7i7NyMnPngk5CtnC84YXKa2aRbAQDDBmPxAzrjiIlMFLE-OPWenZJbSjjHBIdefyKnQoJaj6ox069CGLXr34vyW_vH0GruQXO-Cp87TtcNoon1y1jT0wfjQhRiGRMuB1iFSMwLbp6wcYkTfX7xNdBXRNFlpOmNdv588b5vwTK9M32PcfyYfa9Mk_HKoc_L79uZXuc7uf979KFf3mRUg-kxYuwEpsZZFrkAJqVBLZqAwQitrUVjQuZAolku2kbwuHm2ucgmqsMxaq8WcnL_7djH8HTD1VeuSxaYxHscLKigAxGjJJ_T7f-guDNGP242UBtA6VxO1eKdsDClFrKsuutbEfcVZNWVRTVlUxyxGwbeD7fDY4uaI_3u-eAUdcIVZ
CitedBy_id crossref_primary_10_1002_smtd_202301233
crossref_primary_10_1002_aenm_202400276
Cites_doi 10.1002/anie.201708664
10.1038/s41560-020-00772-8
10.1126/sciadv.aba4098
10.1039/D2TA02086F
10.1002/aenm.201901945
10.1016/j.apenergy.2018.01.061
10.1149/2.0721910jes
10.1007/s11669-020-00831-3
10.1016/j.ensm.2018.06.008
10.1038/s41570-022-00394-6
10.1039/D2TA00324D
10.1016/j.coelec.2019.11.002
10.1021/acsami.7b05648
10.1039/D0TA10580E
10.1126/science.1212741
10.1021/cr500720t
10.1039/C9EE03702K
10.1126/science.aab3033
10.1002/adfm.202102913
10.1039/C8CS00072G
10.1103/PhysRevLett.77.3865
10.1021/acs.chemmater.2c02697
10.1039/C4EE02158D
10.1103/PhysRevB.50.17953
10.1126/sciadv.abq4456
10.1002/jcc.20495
10.1002/adfm.201910564
10.1021/acsami.1c06131
10.1002/adma.202002132
10.1016/j.commatsci.2017.08.012
10.1039/C6EE03554J
10.1557/mrs.2017.302
10.1016/j.chempr.2019.05.010
10.1002/adma.201902025
10.1021/acsenergylett.2c00560
10.1038/ncomms7303
10.1039/D1CY00712B
10.1021/acsami.7b04777
10.1149/2.0721706jes
10.1177/0021998305046438
10.1016/j.scriptamat.2004.12.026
10.1016/j.nanoen.2021.106763
10.1021/acs.jpcc.1c08258
10.1039/C8EE02825G
10.1002/aic.690210103
10.1016/j.rser.2022.112213
10.1016/j.rser.2020.109838
10.1016/j.jpowsour.2013.04.121
10.1039/C8NR02450B
10.1016/j.jpowsour.2016.12.005
10.1103/PhysRevB.54.11169
10.1016/j.mtener.2017.12.012
10.1149/2.0061601jes
10.1021/am5025935
10.1039/D0EE00723D
10.1038/natrevmats.2016.80
10.1002/smll.201901848
10.1016/j.jpowsour.2014.04.067
10.1002/ente.201700481
10.1016/j.ensm.2016.12.005
10.1093/nsr/nww098
10.1002/adma.201906803
10.1016/j.apenergy.2016.12.129
10.1039/C5RA16264E
10.1557/mrs.2017.303
ContentType Journal Article
Copyright 2023 Wiley-VCH GmbH.
2023 Wiley‐VCH GmbH
Copyright_xml – notice: 2023 Wiley-VCH GmbH.
– notice: 2023 Wiley‐VCH GmbH
DBID NPM
AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1002/smll.202303005
DatabaseName PubMed
CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database
PubMed
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage e2303005
ExternalDocumentID 10_1002_smll_202303005
37269202
Genre Journal Article
GrantInformation_xml – fundername: Research Grant Council, Hong Kong
  grantid: C1002-21G
– fundername: Advanced Engineering Materials Facilities
– fundername: Research Grant Council of the Hong Kong SAR
– fundername: Theme-Based Research Project
  grantid: T23-601/17-R
– fundername: Materials Characterization and Preparation Facilities
– fundername: National Foundation of Natural Science
  grantid: 52022002
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAIHA
AANLZ
AAONW
AAXRX
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EMOBN
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
NPM
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
SV3
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
31~
AASGY
AAYOK
AAYXX
ACBWZ
ASPBG
AVWKF
AZFZN
BDRZF
CITATION
EJD
FEDTE
GODZA
HVGLF
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
ID FETCH-LOGICAL-c323t-3ccd255ef584626356e750a28a376cce3c27435e3990d51f8bc4645268c0ccc73
ISSN 1613-6810
IngestDate Sat Oct 05 06:08:35 EDT 2024
Thu Oct 10 18:20:14 EDT 2024
Fri Aug 23 03:49:04 EDT 2024
Tue Aug 27 13:45:53 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 40
Keywords morphology evolution
hierarchical structures
Zn flow batteries
nanoporous electrodes
Language English
License 2023 Wiley-VCH GmbH.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c323t-3ccd255ef584626356e750a28a376cce3c27435e3990d51f8bc4645268c0ccc73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-4514-0950
0000-0002-5390-8763
0000-0002-0738-0507
0000-0003-3106-9281
PMID 37269202
PQID 2872277467
PQPubID 1046358
ParticipantIDs proquest_miscellaneous_2822375017
proquest_journals_2872277467
crossref_primary_10_1002_smll_202303005
pubmed_primary_37269202
PublicationCentury 2000
PublicationDate 2023-10-01
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationTitleAlternate Small
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_61_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_65_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_1_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
Yang S. D. (e_1_2_9_55_1) 2020
e_1_2_9_29_1
References_xml – ident: e_1_2_9_18_1
  doi: 10.1002/anie.201708664
– ident: e_1_2_9_39_1
  doi: 10.1038/s41560-020-00772-8
– ident: e_1_2_9_4_1
  doi: 10.1126/sciadv.aba4098
– ident: e_1_2_9_46_1
  doi: 10.1039/D2TA02086F
– ident: e_1_2_9_47_1
  doi: 10.1002/aenm.201901945
– ident: e_1_2_9_30_1
  doi: 10.1016/j.apenergy.2018.01.061
– ident: e_1_2_9_40_1
  doi: 10.1149/2.0721910jes
– ident: e_1_2_9_49_1
  doi: 10.1007/s11669-020-00831-3
– ident: e_1_2_9_11_1
  doi: 10.1016/j.ensm.2018.06.008
– ident: e_1_2_9_1_1
  doi: 10.1038/s41570-022-00394-6
– ident: e_1_2_9_34_1
  doi: 10.1039/D2TA00324D
– ident: e_1_2_9_35_1
  doi: 10.1016/j.coelec.2019.11.002
– ident: e_1_2_9_50_1
  doi: 10.1021/acsami.7b05648
– ident: e_1_2_9_13_1
  doi: 10.1039/D0TA10580E
– ident: e_1_2_9_2_1
  doi: 10.1126/science.1212741
– ident: e_1_2_9_8_1
  doi: 10.1021/cr500720t
– ident: e_1_2_9_22_1
  doi: 10.1039/C9EE03702K
– ident: e_1_2_9_6_1
  doi: 10.1126/science.aab3033
– ident: e_1_2_9_25_1
  doi: 10.1002/adfm.202102913
– ident: e_1_2_9_32_1
  doi: 10.1039/C8CS00072G
– ident: e_1_2_9_63_1
  doi: 10.1103/PhysRevLett.77.3865
– ident: e_1_2_9_52_1
  doi: 10.1021/acs.chemmater.2c02697
– ident: e_1_2_9_9_1
  doi: 10.1039/C4EE02158D
– ident: e_1_2_9_65_1
  doi: 10.1103/PhysRevB.50.17953
– ident: e_1_2_9_38_1
  doi: 10.1126/sciadv.abq4456
– ident: e_1_2_9_66_1
  doi: 10.1002/jcc.20495
– ident: e_1_2_9_12_1
  doi: 10.1002/adfm.201910564
– ident: e_1_2_9_57_1
  doi: 10.1021/acsami.1c06131
– ident: e_1_2_9_14_1
  doi: 10.1002/adma.202002132
– ident: e_1_2_9_53_1
  doi: 10.1016/j.commatsci.2017.08.012
– ident: e_1_2_9_16_1
  doi: 10.1039/C6EE03554J
– ident: e_1_2_9_54_1
  doi: 10.1557/mrs.2017.302
– ident: e_1_2_9_7_1
  doi: 10.1016/j.chempr.2019.05.010
– ident: e_1_2_9_15_1
  doi: 10.1002/adma.201902025
– ident: e_1_2_9_24_1
  doi: 10.1021/acsenergylett.2c00560
– ident: e_1_2_9_17_1
  doi: 10.1038/ncomms7303
– ident: e_1_2_9_56_1
  doi: 10.1039/D1CY00712B
– ident: e_1_2_9_42_1
  doi: 10.1021/acsami.7b04777
– ident: e_1_2_9_36_1
  doi: 10.1149/2.0721706jes
– ident: e_1_2_9_41_1
  doi: 10.1177/0021998305046438
– ident: e_1_2_9_59_1
  doi: 10.1016/j.scriptamat.2004.12.026
– ident: e_1_2_9_60_1
  doi: 10.1016/j.nanoen.2021.106763
– ident: e_1_2_9_51_1
  doi: 10.1021/acs.jpcc.1c08258
– ident: e_1_2_9_20_1
  doi: 10.1039/C8EE02825G
– ident: e_1_2_9_31_1
  doi: 10.1002/aic.690210103
– ident: e_1_2_9_5_1
  doi: 10.1016/j.rser.2022.112213
– ident: e_1_2_9_28_1
  doi: 10.1016/j.rser.2020.109838
– ident: e_1_2_9_45_1
  doi: 10.1016/j.jpowsour.2013.04.121
– ident: e_1_2_9_61_1
  doi: 10.1039/C8NR02450B
– ident: e_1_2_9_44_1
  doi: 10.1016/j.jpowsour.2016.12.005
– ident: e_1_2_9_64_1
  doi: 10.1103/PhysRevB.54.11169
– ident: e_1_2_9_21_1
  doi: 10.1016/j.mtener.2017.12.012
– ident: e_1_2_9_29_1
  doi: 10.1149/2.0061601jes
– ident: e_1_2_9_43_1
  doi: 10.1021/am5025935
– ident: e_1_2_9_37_1
  doi: 10.1039/D0EE00723D
– ident: e_1_2_9_10_1
  doi: 10.1038/natrevmats.2016.80
– ident: e_1_2_9_19_1
  doi: 10.1002/smll.201901848
– ident: e_1_2_9_23_1
  doi: 10.1016/j.jpowsour.2014.04.067
– ident: e_1_2_9_27_1
  doi: 10.1002/ente.201700481
– ident: e_1_2_9_3_1
  doi: 10.1016/j.ensm.2016.12.005
– ident: e_1_2_9_26_1
  doi: 10.1093/nsr/nww098
– ident: e_1_2_9_33_1
  doi: 10.1002/adma.201906803
– ident: e_1_2_9_62_1
  doi: 10.1016/j.apenergy.2016.12.129
– ident: e_1_2_9_48_1
  doi: 10.1039/C5RA16264E
– start-page: 167
  year: 2020
  ident: e_1_2_9_55_1
  publication-title: J. Electrochem. Soc.
  contributor:
    fullname: Yang S. D.
– ident: e_1_2_9_58_1
  doi: 10.1557/mrs.2017.303
SSID ssj0031247
Score 2.5090444
Snippet A Zn anode can offset the low energy density of a flow battery for a balanced approach toward electricity storage. Yet, when targeting inexpensive,...
Abstract A Zn anode can offset the low energy density of a flow battery for a balanced approach toward electricity storage. Yet, when targeting inexpensive,...
SourceID proquest
crossref
pubmed
SourceType Aggregation Database
Index Database
StartPage e2303005
SubjectTerms Copper
Density functional theory
Deposition
Electric energy storage
Electrodes
Heterogeneity
Metal foams
Nanotechnology
Rechargeable batteries
Title Homogenizing Zn Deposition in Hierarchical Nanoporous Cu for a High-Current, High Areal-Capacity Zn Flow Battery
URI https://www.ncbi.nlm.nih.gov/pubmed/37269202
https://www.proquest.com/docview/2872277467
https://search.proquest.com/docview/2822375017
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLa6cYED4jdlGzISEocSkdhZkh6nrqWHaiCtE9suUeI4W6TWQWujaZz2J-xv5C_hPdv5USHQOHCpWqd1Ir-v731-fv5MyPskzVFCBLxf6ruOH3iek0ap64jIzzxPBl4qderiODw6jQ7H_rjXq480bNv-q6WhDWyNO2f_wdpNp9AA78Hm8ApWh9d72X1aLku4WPzAHMC5AodS12VhamNa4IZjff7JAj1rCfQbi2BHlSmn1HUfTQGEFW_S4QnaBwfAMBftVYizAkk83GWyKK8HRqtzY534eIlL38Biv8lCXcoCD-QYZFqX8eoCsywrc7DjZwwQ6qaTlziziexZ0dQMmY3cgOeLm6qT8NbJ3rMKum9YuTS_HSUqtcriNrHB2hK5-7rPjtsGUuKgspqJat02-9y1rx92MG10on6LIUaTdrVc4MoUzNBQ0L-NlnWFwNGXeHIym8Xz8el8izxg4OewopTzrzUR4ECd9Nk-9cPVmqEu-7TZ-yYn-sNERxOe-RPy2M5U6IGB2FPSk-oZedTRr3xO1l2w0XNFW7DRQtEu2GgLNjqqKICNJhRB9fP2zsLso_5MNciw1cIL-0V4UQuvF-RkMp6Ppo49xsMRnPG1w4XIYOIqc-S6qH0USKCpCYsSCG5CSC4Y0Nh9CVTZzfa9PEqFXm4PIuEKIUL-kmyrUsnXhLpRmIX-MHdT6MtNkiTnWYb7kHyZuoJ5ffKhHsj4u1FriY0uN4txyONmyPtktx7n2P57VzGLQsZCPICnT941l8Hf4iJaoiQMUYxl1xye34PvvDL2aW7FQxYM4RZv_t75DnnY4n2XbK-vKrlHtlZZ9VYD6BfQiqQN
link.rule.ids 315,782,786,27935,27936
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Homogenizing+Zn+Deposition+in+Hierarchical+Nanoporous+Cu+for+a+High%E2%80%90Current%2C+High+Areal%E2%80%90Capacity+Zn+Flow+Battery&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Yang%2C+Li&rft.au=Li%2C+Liangyu&rft.au=Zhao%2C+Yunhe&rft.au=Deng%2C+Canbin&rft.date=2023-10-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=19&rft.issue=40&rft_id=info:doi/10.1002%2Fsmll.202303005&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon