Accurate neuron segmentation method for one-photon calcium imaging videos combining convolutional neural networks and clustering
One-photon fluorescent calcium imaging helps understand brain functions by recording large-scale neural activities in freely moving animals. Automatic, fast, and accurate active neuron segmentation algorithms are essential to extract and interpret information from these videos. One-photon imaging vi...
Saved in:
Published in: | Communications biology Vol. 7; no. 1; pp. 970 - 16 |
---|---|
Main Authors: | , |
Format: | Journal Article |
Language: | English |
Published: |
London
Nature Publishing Group UK
09-08-2024
Nature Publishing Group Nature Portfolio |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | One-photon fluorescent calcium imaging helps understand brain functions by recording large-scale neural activities in freely moving animals. Automatic, fast, and accurate active neuron segmentation algorithms are essential to extract and interpret information from these videos. One-photon imaging videos’ low resolution, high noise, and high background fluctuation pose significant challenges. Here, we develop a software pipeline to address the challenges of processing one-photon calcium imaging videos. We extend our previous two-photon active neuron segmentation algorithm, Shallow U-Net Neuron Segmentation (SUNS), to better suppress background fluctuations in one-photon videos. We also develop additional neuron extraction (ANE) to locate small or dim neurons missed by SUNS. To train our segmentation method, we create ground truth neurons by developing a manual labeling pipeline assisted with semi-automatic refinement. Our method is more accurate and faster than state-of-the-art techniques when processing simulated videos and multiple experimental datasets acquired over various brain regions with different imaging conditions.
SUNS2-ANE segments active neurons from one-photon calcium imaging videos accurately and fast. It improves background suppression and extracts additional weak neurons. A separate semi-automatic labeling pipeline generates ground truth for training. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2399-3642 2399-3642 |
DOI: | 10.1038/s42003-024-06668-7 |