Embedded Fiber Bragg Grating (FBG) Sensors Fabricated by Ultrasonic Additive Manufacturing for High-Frequency Dynamic Strain Measurements

This paper demonstrates high-frequency dynamic strain measurements using Fiber Bragg Grating (FBG) sensors embedded in metal parts. Using an ultrasonic additive manufacturing (UAM) process, FBGs inscribed in polyimide coated optical fibers were embedded in aluminum parts. An electromagnetic shaker w...

Full description

Saved in:
Bibliographic Details
Published in:IEEE sensors journal Vol. 24; no. 3; p. 1
Main Authors: Zhao, Jieru, Dong, Wen, Hinds, Thomas, Li, Yuqi, Splain, Zach, Zhong, Shuda, Wang, Qirui, Bajaj, Nikhil, To, Albert, Ahmed, Moinuddin, Petrie, Christian M., Chen, Kevin P.
Format: Journal Article
Language:English
Published: New York IEEE 01-02-2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This paper demonstrates high-frequency dynamic strain measurements using Fiber Bragg Grating (FBG) sensors embedded in metal parts. Using an ultrasonic additive manufacturing (UAM) process, FBGs inscribed in polyimide coated optical fibers were embedded in aluminum parts. An electromagnetic shaker was used to exert dynamic events on the embedded FBG sensors with frequencies from 1-10 kHz. The high-speed interrogation of FBG sensors was accomplished using a tunable vertical-cavity surface-emitting laser (VCSEL) and a high-speed interrogation system sampling at 120 kHz. The strain response measured by the FBG sensors was compared with real-time measurements using a laser velocimeter. Finite Element Analysis was performed to simulate responses to both static strain and high-frequency dynamic strain. Results show that strains as small as 2.5 μ can be resolved at frequencies up to 10 kHz.
AbstractList This article demonstrates high-frequency dynamic strain measurements using fiber Bragg grating (FBG) sensors embedded in metal parts. Using an ultrasonic additive manufacturing (UAM) process, FBGs inscribed in polyimide coated optical fibers were embedded in aluminum parts. An electromagnetic shaker was used to exert dynamic events on the embedded FBG sensors with frequencies from 1 to 10 kHz. The high-speed interrogation of FBG sensors was accomplished using a tunable vertical-cavity surface-emitting laser (VCSEL) and a high-speed interrogation system sampling at 120 kHz. The strain response measured by the FBG sensors was compared with real-time measurements using a laser velocimeter. A finite-element analysis (FEA) was performed to simulate responses to both static strain and high-frequency dynamic strain. In conclusion, results show that strains as small as 2.5$με$ can be resolved at frequencies up to 10 kHz.
This article demonstrates high-frequency dynamic strain measurements using fiber Bragg grating (FBG) sensors embedded in metal parts. Using an ultrasonic additive manufacturing (UAM) process, FBGs inscribed in polyimide coated optical fibers were embedded in aluminum parts. An electromagnetic shaker was used to exert dynamic events on the embedded FBG sensors with frequencies from 1 to 10 kHz. The high-speed interrogation of FBG sensors was accomplished using a tunable vertical-cavity surface-emitting laser (VCSEL) and a high-speed interrogation system sampling at 120 kHz. The strain response measured by the FBG sensors was compared with real-time measurements using a laser velocimeter. A finite-element analysis (FEA) was performed to simulate responses to both static strain and high-frequency dynamic strain. Results show that strains as small as [Formula Omitted] can be resolved at frequencies up to 10 kHz.
This paper demonstrates high-frequency dynamic strain measurements using Fiber Bragg Grating (FBG) sensors embedded in metal parts. Using an ultrasonic additive manufacturing (UAM) process, FBGs inscribed in polyimide coated optical fibers were embedded in aluminum parts. An electromagnetic shaker was used to exert dynamic events on the embedded FBG sensors with frequencies from 1-10 kHz. The high-speed interrogation of FBG sensors was accomplished using a tunable vertical-cavity surface-emitting laser (VCSEL) and a high-speed interrogation system sampling at 120 kHz. The strain response measured by the FBG sensors was compared with real-time measurements using a laser velocimeter. Finite Element Analysis was performed to simulate responses to both static strain and high-frequency dynamic strain. Results show that strains as small as 2.5 μ can be resolved at frequencies up to 10 kHz.
Author Bajaj, Nikhil
Ahmed, Moinuddin
Dong, Wen
To, Albert
Wang, Qirui
Zhao, Jieru
Petrie, Christian M.
Zhong, Shuda
Splain, Zach
Hinds, Thomas
Chen, Kevin P.
Li, Yuqi
Author_xml – sequence: 1
  givenname: Jieru
  orcidid: 0000-0003-3816-9146
  surname: Zhao
  fullname: Zhao, Jieru
  organization: Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, PA, USA
– sequence: 2
  givenname: Wen
  surname: Dong
  fullname: Dong, Wen
  organization: Department of Mechanical Engineering & Materials Science, University of Pittsburgh, Pittsburgh, PA, USA
– sequence: 3
  givenname: Thomas
  surname: Hinds
  fullname: Hinds, Thomas
  organization: Department of Mechanical Engineering & Materials Science, University of Pittsburgh, Pittsburgh, PA, USA
– sequence: 4
  givenname: Yuqi
  orcidid: 0000-0002-9164-3663
  surname: Li
  fullname: Li, Yuqi
  organization: Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, PA, USA
– sequence: 5
  givenname: Zach
  surname: Splain
  fullname: Splain, Zach
  organization: Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, PA, USA
– sequence: 6
  givenname: Shuda
  surname: Zhong
  fullname: Zhong, Shuda
  organization: Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, PA, USA
– sequence: 7
  givenname: Qirui
  orcidid: 0000-0001-9530-6907
  surname: Wang
  fullname: Wang, Qirui
  organization: Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, PA, USA
– sequence: 8
  givenname: Nikhil
  orcidid: 0000-0003-3588-5702
  surname: Bajaj
  fullname: Bajaj, Nikhil
  organization: Department of Mechanical Engineering & Materials Science, University of Pittsburgh, Pittsburgh, PA, USA
– sequence: 9
  givenname: Albert
  surname: To
  fullname: To, Albert
  organization: Department of Mechanical Engineering & Materials Science, University of Pittsburgh, Pittsburgh, PA, USA
– sequence: 10
  givenname: Moinuddin
  surname: Ahmed
  fullname: Ahmed, Moinuddin
  organization: Argonne National Laboratory, Lemont, IL, USA
– sequence: 11
  givenname: Christian M.
  orcidid: 0000-0003-1167-3545
  surname: Petrie
  fullname: Petrie, Christian M.
  organization: Oak Ridge National Laboratory, Oak Ridge, TN, USA
– sequence: 12
  givenname: Kevin P.
  orcidid: 0000-0003-1595-4475
  surname: Chen
  fullname: Chen, Kevin P.
  organization: Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, PA, USA
BackLink https://www.osti.gov/biblio/2283850$$D View this record in Osti.gov
BookMark eNpNkctuFDEQRS0UJPLgA5BYWLCBRQ922-7uWeYxPQlKYDFEYmf5UZ44ytjBdkeaT-CvcWuyYFW1OKd0VfcEHYUYAKEPlCwoJctv3zerH4uWtGzBGGcd4W_QMRViaGjPh6N5Z6ThrP_9Dp3k_EgIXfaiP0Z_VzsN1oLFo9eQ8EVS2y1eJ1V82OIv48X6K95AyDFlPCqdvFGlwnqP759KUjkGb_C5tb74F8B3KkxOmTKl2XYx4Wu_fWjGBH8mCGaPr_ZB7aqxqa4P-A5UnhLsIJR8ht469ZTh_es8Rffj6tfldXP7c31zeX7bGNbS0mjdE0dE17XUGmeY5bYDbSnh1Aqtly2z1LkB6CActKLjwilKLR_A9INiip2iT4e7MRcvs_EFzIOJIYApsm0HNghSoc8H6DnFGj0X-RinFGou2S7rm4f64a5S9ECZFHNO4ORz8juV9pISOdci51rkXIt8raU6Hw-OB4D_eNaTngv2D7yPi-w
CODEN ISJEAZ
CitedBy_id crossref_primary_10_1364_OL_519450
crossref_primary_10_3390_s24123919
Cites_doi 10.1088/0957-0233/24/9/094017
10.1155/2016/5204581
10.3390/s19224917
10.1088/1361-665x/ab2a27
10.1177/1475921703002002004
10.1016/j.jnucmat.2021.153012
10.1109/JSEN.2005.844539
10.1016/j.matdes.2013.02.067
10.1109/icsens.2014.6985019
10.1364/OFS.2022.Th4.55
10.1088/0964-1726/16/3/025
10.1111/j.1365-246X.1975.tb05890.x
10.1109/tim.2021.3089231
10.1016/j.conbuildmat.2016.09.086
10.1016/j.sna.2009.10.020
10.1109/JLT.2014.2366835
10.1109/JLT.2006.886064
10.1016/j.compstruct.2010.01.007
10.1016/j.jmatprotec.2011.05.003
10.1109/access.2019.2905349
10.1557/jmr.2014.139
10.1109/LPT.2010.2052797
10.1007/s11837-017-2709-8
10.1016/j.compstruct.2014.02.014
10.1155/2020/1064870
10.1109/2944.902146
10.1007/s11661-020-06131-2
10.1016/j.yofte.2019.102015
10.1016/j.addma.2022.102681
10.1117/12.2228753
10.1016/j.msea.2019.138457
10.1109/tim.2023.3268466
10.1016/j.mfglet.2021.08.001
10.1016/j.ymssp.2016.07.006
10.1109/TIM.2017.2676218
10.1016/j.mfglet.2020.07.006
10.1016/S0266-3538(01)00037-9
10.1088/0964-1726/18/9/095043
10.18494/sam.2016.1189
10.1016/j.sna.2018.11.024
10.1117/12.2041821
10.1088/1361-665x/ab0b4e
10.1108/rpj-03-2019-0056
10.1117/12.424806
10.1016/j.engstruct.2005.04.023
10.1007/1-4020-3661-2_20
10.1016/j.matdes.2016.02.099
10.1088/1361-665x/abc23a
10.1088/0964-1726/23/10/105011
10.1016/j.sna.2020.112075
10.1007/s00170-020-06439-8
10.1117/12.2219690
10.1109/jlt.2020.3010722
10.1109/cecit58139.2022.00049
10.1109/jsen.2019.2927901
10.1016/j.jmapro.2018.03.027
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
CorporateAuthor Univ. of Pittsburgh, PA (United States)
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
CorporateAuthor_xml – name: Univ. of Pittsburgh, PA (United States)
– name: Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
OTOTI
DOI 10.1109/JSEN.2023.3343604
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library Online
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
OSTI.GOV
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Solid State and Superconductivity Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
EISSN 1558-1748
EndPage 1
ExternalDocumentID 2283850
10_1109_JSEN_2023_3343604
10370745
Genre orig-research
GrantInformation_xml – fundername: U.S. Department of Energy
  grantid: DE-NE0008686; DE-NE0008994
  funderid: 10.13039/100000015
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AASAJ
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AJQPL
AKJIK
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RIG
RNS
TWZ
AAYXX
CITATION
7SP
7U5
8FD
L7M
OTOTI
ID FETCH-LOGICAL-c321t-bb70f056621dcfc3d4d6ebd1041d5bb923d1ff8e185fe25645fa11d48ec78a3a3
IEDL.DBID RIE
ISSN 1530-437X
IngestDate Mon Feb 19 05:01:09 EST 2024
Fri Nov 15 22:45:01 EST 2024
Fri Aug 23 00:24:28 EDT 2024
Wed Jun 26 19:24:17 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c321t-bb70f056621dcfc3d4d6ebd1041d5bb923d1ff8e185fe25645fa11d48ec78a3a3
Notes USDOE
AC05-00OR22725; NE0008994; NE0008686
ORCID 0000-0002-9164-3663
0000-0001-9530-6907
0000-0003-1167-3545
0000-0003-1595-4475
0000-0003-3816-9146
0000-0003-3588-5702
0000-0002-7214-5335
0000-0003-1136-2544
0000-0003-3653-2984
0000000311673545
0000000315954475
0000000291643663
0000000338169146
0000000272145335
0000000335885702
0000000311362544
0000000336532984
PQID 2920286046
PQPubID 75733
PageCount 1
ParticipantIDs ieee_primary_10370745
proquest_journals_2920286046
crossref_primary_10_1109_JSEN_2023_3343604
osti_scitechconnect_2283850
PublicationCentury 2000
PublicationDate 2024-02-01
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationTitle IEEE sensors journal
PublicationTitleAbbrev JSEN
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
Garcia-Souto (ref56); 9157
ref51
ref50
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref9
ref4
Beukema (ref1); 3
ref3
ref6
ref5
ref40
Black (ref36) 2008; 8
ref35
ref34
ref37
ref31
ref30
ref32
ref2
ref39
ref38
ref24
ref23
ref26
ref25
ref20
Zhou (ref7) 2003; 5
ref22
ref21
ref28
ref27
ref29
(ref46) 2022
Brandt (ref33)
ref60
ref62
ref61
References_xml – ident: ref54
  doi: 10.1088/0957-0233/24/9/094017
– ident: ref55
  doi: 10.1155/2016/5204581
– ident: ref62
  doi: 10.3390/s19224917
– ident: ref40
  doi: 10.1088/1361-665x/ab2a27
– ident: ref11
  doi: 10.1177/1475921703002002004
– ident: ref12
  doi: 10.1016/j.jnucmat.2021.153012
– ident: ref5
  doi: 10.1109/JSEN.2005.844539
– ident: ref16
  doi: 10.1016/j.matdes.2013.02.067
– ident: ref47
  doi: 10.1109/icsens.2014.6985019
– ident: ref49
  doi: 10.1364/OFS.2022.Th4.55
– ident: ref3
  doi: 10.1088/0964-1726/16/3/025
– ident: ref61
  doi: 10.1111/j.1365-246X.1975.tb05890.x
– ident: ref28
  doi: 10.1109/tim.2021.3089231
– ident: ref6
  doi: 10.1016/j.conbuildmat.2016.09.086
– ident: ref9
  doi: 10.1016/j.sna.2009.10.020
– ident: ref24
  doi: 10.1109/JLT.2014.2366835
– ident: ref52
  doi: 10.1109/JLT.2006.886064
– ident: ref4
  doi: 10.1016/j.compstruct.2010.01.007
– ident: ref27
  doi: 10.1016/j.jmatprotec.2011.05.003
– ident: ref21
  doi: 10.1109/access.2019.2905349
– ident: ref41
  doi: 10.1557/jmr.2014.139
– ident: ref53
  doi: 10.1109/LPT.2010.2052797
– ident: ref59
  doi: 10.1007/s11837-017-2709-8
– ident: ref15
  doi: 10.1016/j.compstruct.2014.02.014
– ident: ref35
  doi: 10.1155/2020/1064870
– ident: ref50
  doi: 10.1109/2944.902146
– ident: ref32
  doi: 10.1007/s11661-020-06131-2
– start-page: 26
  volume-title: Proc. 11th Int. Conf. Mech. Eng. Design Synchrotron Radiat. Equip. Instrum.
  ident: ref33
  article-title: A review of ultrasonic additive manufacturing for particle accelerator applications
  contributor:
    fullname: Brandt
– ident: ref2
  doi: 10.1016/j.yofte.2019.102015
– ident: ref30
  doi: 10.1016/j.addma.2022.102681
– ident: ref18
  doi: 10.1117/12.2228753
– ident: ref42
  doi: 10.1016/j.msea.2019.138457
– volume: 9157
  volume-title: Proc. SPIE
  ident: ref56
  article-title: Evaluation of a 1540 nm VCSEL for fibre Bragg gratings interrogation in dynamic measurement applications
  contributor:
    fullname: Garcia-Souto
– ident: ref25
  doi: 10.1109/tim.2023.3268466
– volume: 5
  start-page: 116
  issue: 1
  year: 2003
  ident: ref7
  article-title: Techniques of advanced FBG sensors: Fabrication, demodulation, encapsulation and their application in the structural health monitoring of bridges
  publication-title: Pacific Sci. Rev.
  contributor:
    fullname: Zhou
– ident: ref29
  doi: 10.1016/j.mfglet.2021.08.001
– ident: ref13
  doi: 10.1016/j.ymssp.2016.07.006
– ident: ref37
  doi: 10.1109/TIM.2017.2676218
– ident: ref43
  doi: 10.1016/j.mfglet.2020.07.006
– ident: ref23
  doi: 10.1016/S0266-3538(01)00037-9
– ident: ref10
  doi: 10.1088/0964-1726/18/9/095043
– volume: 3
  start-page: 1
  volume-title: Proc. 6th Eur. Workshop Struct. Health Monit.
  ident: ref1
  article-title: Embedding technologies of FBG sensors in composites: Technologies, applications and practical use
  contributor:
    fullname: Beukema
– ident: ref19
  doi: 10.18494/sam.2016.1189
– ident: ref20
  doi: 10.1016/j.sna.2018.11.024
– ident: ref60
  doi: 10.1117/12.2041821
– ident: ref39
  doi: 10.1088/1361-665x/ab0b4e
– ident: ref26
  doi: 10.1108/rpj-03-2019-0056
– ident: ref51
  doi: 10.1117/12.424806
– ident: ref38
  doi: 10.1016/j.engstruct.2005.04.023
– ident: ref8
  doi: 10.1007/1-4020-3661-2_20
– ident: ref17
  doi: 10.1016/j.matdes.2016.02.099
– ident: ref48
  doi: 10.1088/1361-665x/abc23a
– ident: ref14
  doi: 10.1088/0964-1726/23/10/105011
– volume-title: Optical Sensing Interrogator, si90
  year: 2022
  ident: ref46
– ident: ref45
  doi: 10.1016/j.sna.2020.112075
– ident: ref31
  doi: 10.1007/s00170-020-06439-8
– ident: ref44
  doi: 10.1117/12.2219690
– ident: ref22
  doi: 10.1109/jlt.2020.3010722
– ident: ref58
  doi: 10.1109/cecit58139.2022.00049
– volume: 8
  start-page: 18
  year: 2008
  ident: ref36
  article-title: On the gage factor for optical fiber grating strain gages
  publication-title: Sampe
  contributor:
    fullname: Black
– ident: ref57
  doi: 10.1109/jsen.2019.2927901
– ident: ref34
  doi: 10.1016/j.jmapro.2018.03.027
SSID ssj0019757
Score 2.4547026
Snippet This paper demonstrates high-frequency dynamic strain measurements using Fiber Bragg Grating (FBG) sensors embedded in metal parts. Using an ultrasonic...
This article demonstrates high-frequency dynamic strain measurements using fiber Bragg grating (FBG) sensors embedded in metal parts. Using an ultrasonic...
SourceID osti
proquest
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Publisher
StartPage 1
SubjectTerms Bragg gratings
Coated fibers
Dynamic Strain Measurement
Embedded sensor
Fiber Bragg Grating (FBG)
Fiber gratings
Finite element method
High speed
Interrogation
Manufacturing
MATERIALS SCIENCE
Optical device fabrication
Optical fiber measurement applications
Optical fiber sensors
Optical fibers
Sensors
Strain measurement
Temperature measurement
Temperature sensors
Tunable lasers
Ultrasonic Additive Manufacturing (UAM)
Vertical cavity surface emission lasers
Vertical cavity surface emitting lasers
Title Embedded Fiber Bragg Grating (FBG) Sensors Fabricated by Ultrasonic Additive Manufacturing for High-Frequency Dynamic Strain Measurements
URI https://ieeexplore.ieee.org/document/10370745
https://www.proquest.com/docview/2920286046
https://www.osti.gov/biblio/2283850
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB2xvQCHAqWIpQX5wAGQvM2Hk9jHlm5aIbWXpVJvkT-3B8iiZPewP6H_mhknWyohDpySg2VZemPPjD3zHsBHadGn6gTTEiMyjgdewpVUBQ_CeYU5kQ9Ri-ByUV3fyvM50eTwh14Y730sPvMz-o1v-W5lN3RVdkI9bejyiglMKiWHZq2HJwNVRVpP3MEJF3l1Oz5hpok6-baYX89IJ3yW5yIvR1G2nROKqir4WeGe-utEjm6mfvGfC3wJ-2M8yU4HA3gFT3x7AM8fsQwewNNR6Pxu-xru5z-Nx7PGsZpKRdhZp5dLdkFm0C7Zp_rs4jNbYGa76npWaxM1hHCw2bKbH-tO90Sky06dixVH7Eq3G-qMiK2ODMNfRmUjvO6G-uwtOx_07tkiKlGwqz8Xkv0h3NTz718v-ajGwG2epWtuTJUEDJfKLHU22NwJV3rjMJ1LXWEMBoouDUF6DACCz4ikJug0dUJ6W0md6_wN7LWr1r8FpkxZoBFYK30lnLMm6MwLWahgbBqMmMKXHTzNr4F0o4nJSqIawrIhLJsRyykcEhCPBg4YTOGIEG0wkiA6XEt1Q3bdEN2PLJIpHO-AbsZd2zek3JVJnLN8949Jj-AZDhFD2fYx7K27jX8Pk95tPkRr_A1Q7t21
link.rule.ids 230,315,782,786,798,887,27934,27935,54769
linkProvider IEEE
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB3RcigcKJRWXVrABw6AlG0-nMQ5tnTTBbp72VbqzYq_toc2i5Ldw_4E_jUzTrathDhwSg6WZemNPTP2zHsAn4RGn1qFmJYoHgd44IVBIYo0cNzYAnMi67wWwXiWT2_E-YhocoKHXhhrrS8-s0P69W_5ZqFXdFV2Qj1t6PLSLXie8jwrunath0eDIvfEnriHw4An-U3_iBmFxcmP2Wg6JKXwYZLwJOtl2TZuyOuq4GeBu-qvM9k7mnL3P5f4Gl71ESU77UzgDTyz9R68fMIzuAc7vdT57fot_B7dK4unjWElFYuws6aaz9kFGUI9Z5_Ls4svbIa57aJpWVkpryKEg9WaXd8tm6olKl12aoyvOWKTql5Rb4RvdmQYADMqHAnKpqvQXrPzTvGezbwWBZs8Xkm2-3Bdjq6-jYNejyHQSRwtA6Xy0GHAlMWR0U4nhpvMKoMJXWRSpTBUNJFzwmII4GxMNDWuiiLDhdW5qJIqOYDtelHbQ2CFylI0A62FzbkxWrkqtlykhVM6cooP4OsGHvmro92QPl0JC0lYSsJS9lgOYJ-AeDKww2AAR4SoxFiCCHE1VQ7ppSTCH5GGAzjeAC37fdtK0u6KBc6ZvfvHpB9hZ3w1uZSX36c_j-AFDuddEfcxbC-blX0PW61ZffCW-QcjLuEI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Embedded+Fiber+Bragg+Grating+%28FBG%29+Sensors+Fabricated+by+Ultrasonic+Additive+Manufacturing+for+High-Frequency+Dynamic+Strain+Measurements&rft.jtitle=IEEE+sensors+journal&rft.au=Zhao%2C+Jieru&rft.au=Dong%2C+Wen&rft.au=Hinds%2C+Thomas&rft.au=Li%2C+Yuqi&rft.date=2024-02-01&rft.pub=IEEE&rft.issn=1530-437X&rft.eissn=1558-1748&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FJSEN.2023.3343604&rft.externalDocID=10370745
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon