Synergy between time-restricted feeding and time-restricted running is necessary to shift the muscle clock in male wistar rats

Circadian disruption is an important factor driving the current-day high prevalence of obesity and type-2 diabetes. While the impact of incorrect timing of caloric intake on circadian disruption is widely acknowlegded, the contribution of incorrect timing of physical activity remains relatively unde...

Full description

Saved in:
Bibliographic Details
Published in:Neurobiology of sleep and circadian rhythms Vol. 17; p. 100106
Main Authors: Shiba, Ayano, de Goede, Paul, Tandari, Roberta, Foppen, Ewout, Korpel, Nikita L., Coopmans, Tom V., Hellings, Tom P., Jansen, Merel W., Ruitenberg, Annelou, Ritsema, Wayne I.G.R., Yi, Chun-Xia, Mul, Joram D., Stenvers, Dirk Jan, Kalsbeek, Andries
Format: Journal Article
Language:English
Published: United States Elsevier Inc 01-11-2024
Elsevier
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Circadian disruption is an important factor driving the current-day high prevalence of obesity and type-2 diabetes. While the impact of incorrect timing of caloric intake on circadian disruption is widely acknowlegded, the contribution of incorrect timing of physical activity remains relatively understudied. Here, we modeled the incorrect timing of physical activity in nightshift workers in male Wistar rats, by restricting running wheel access to the innate inactive (light) phase (LR). Controls included no wheel access (NR); access only during the innate active (dark) period (DR); or unrestricted (ad libitum) access (ALR). LR did not shift the phase of the muscle or liver clock, but dampened the muscle clock amplitude. As our previous study demonstrated that light-phase restricted feeding did shift the liver clock, but made the muscle clock arrhythmic, we next combined the time restriction of wheel and food access to either the light phase (LRLF) or dark phase (DRDF). LRLF produced a ∼12 h shift in the majority of clock gene rhythms in both skeletal muscle and liver. On the other hand, DRDF was most effective in reducing body weight and the accumulation of fat mass. Therefore, in order to shift the muscle clock in male Wistar rats, synergy between the timing of feeding and physical activity is necessary. These findings may contribute to further improve the design of lifestyle strategies that try to limit metabolic misalignment caused by circadian disruption. [Display omitted] •Voluntary wheel running (VWR) in the active phase boosts the muscle clock amplitude.•VWR in the active phase blunts weight gain most effectively.•VWR in the inactive phase dampens the skeletal muscle clock gene expression rhythm.•Inactive-phase restricted VWR and feeding shifts the liver and muscle clock by ∼12 h.•Active-phase restricted VWR and feeding prevents weight gain and adiposity the best.
AbstractList Circadian disruption is an important factor driving the current-day high prevalence of obesity and type-2 diabetes. While the impact of incorrect timing of caloric intake on circadian disruption is widely acknowlegded, the contribution of incorrect timing of physical activity remains relatively understudied. Here, we modeled the incorrect timing of physical activity in nightshift workers in male Wistar rats, by restricting running wheel access to the innate inactive (light) phase (LR). Controls included no wheel access (NR); access only during the innate active (dark) period (DR); or unrestricted ( ) access (ALR). LR did not shift the phase of the muscle or liver clock, but dampened the muscle clock amplitude. As our previous study demonstrated that light-phase restricted feeding did shift the liver clock, but made the muscle clock arrhythmic, we next combined the time restriction of wheel and food access to either the light phase (LRLF) or dark phase (DRDF). LRLF produced a ∼12 h shift in the majority of clock gene rhythms in both skeletal muscle and liver. On the other hand, DRDF was most effective in reducing body weight and the accumulation of fat mass. Therefore, in order to shift the muscle clock in male Wistar rats, synergy between the timing of feeding and physical activity is necessary. These findings may contribute to further improve the design of lifestyle strategies that try to limit metabolic misalignment caused by circadian disruption.
Circadian disruption is an important factor driving the current-day high prevalence of obesity and type-2 diabetes. While the impact of incorrect timing of caloric intake on circadian disruption is widely acknowlegded, the contribution of incorrect timing of physical activity remains relatively understudied. Here, we modeled the incorrect timing of physical activity in nightshift workers in male Wistar rats, by restricting running wheel access to the innate inactive (light) phase (LR). Controls included no wheel access (NR); access only during the innate active (dark) period (DR); or unrestricted (ad libitum) access (ALR). LR did not shift the phase of the muscle or liver clock, but dampened the muscle clock amplitude. As our previous study demonstrated that light-phase restricted feeding did shift the liver clock, but made the muscle clock arrhythmic, we next combined the time restriction of wheel and food access to either the light phase (LRLF) or dark phase (DRDF). LRLF produced a ∼12 h shift in the majority of clock gene rhythms in both skeletal muscle and liver. On the other hand, DRDF was most effective in reducing body weight and the accumulation of fat mass. Therefore, in order to shift the muscle clock in male Wistar rats, synergy between the timing of feeding and physical activity is necessary. These findings may contribute to further improve the design of lifestyle strategies that try to limit metabolic misalignment caused by circadian disruption.
Circadian disruption is an important factor driving the current-day high prevalence of obesity and type-2 diabetes. While the impact of incorrect timing of caloric intake on circadian disruption is widely acknowlegded, the contribution of incorrect timing of physical activity remains relatively understudied. Here, we modeled the incorrect timing of physical activity in nightshift workers in male Wistar rats, by restricting running wheel access to the innate inactive (light) phase (LR). Controls included no wheel access (NR); access only during the innate active (dark) period (DR); or unrestricted ( ad libitum ) access (ALR). LR did not shift the phase of the muscle or liver clock, but dampened the muscle clock amplitude. As our previous study demonstrated that light-phase restricted feeding did shift the liver clock, but made the muscle clock arrhythmic, we next combined the time restriction of wheel and food access to either the light phase (LRLF) or dark phase (DRDF). LRLF produced a ∼12 h shift in the majority of clock gene rhythms in both skeletal muscle and liver. On the other hand, DRDF was most effective in reducing body weight and the accumulation of fat mass. Therefore, in order to shift the muscle clock in male Wistar rats, synergy between the timing of feeding and physical activity is necessary. These findings may contribute to further improve the design of lifestyle strategies that try to limit metabolic misalignment caused by circadian disruption. Image 1 • Voluntary wheel running (VWR) in the active phase boosts the muscle clock amplitude. • VWR in the active phase blunts weight gain most effectively. • VWR in the inactive phase dampens the skeletal muscle clock gene expression rhythm. • Inactive-phase restricted VWR and feeding shifts the liver and muscle clock by ∼12 h. • Active-phase restricted VWR and feeding prevents weight gain and adiposity the best.
Circadian disruption is an important factor driving the current-day high prevalence of obesity and type-2 diabetes. While the impact of incorrect timing of caloric intake on circadian disruption is widely acknowlegded, the contribution of incorrect timing of physical activity remains relatively understudied. Here, we modeled the incorrect timing of physical activity in nightshift workers in male Wistar rats, by restricting running wheel access to the innate inactive (light) phase (LR). Controls included no wheel access (NR); access only during the innate active (dark) period (DR); or unrestricted (ad libitum) access (ALR). LR did not shift the phase of the muscle or liver clock, but dampened the muscle clock amplitude. As our previous study demonstrated that light-phase restricted feeding did shift the liver clock, but made the muscle clock arrhythmic, we next combined the time restriction of wheel and food access to either the light phase (LRLF) or dark phase (DRDF). LRLF produced a ∼12 h shift in the majority of clock gene rhythms in both skeletal muscle and liver. On the other hand, DRDF was most effective in reducing body weight and the accumulation of fat mass. Therefore, in order to shift the muscle clock in male Wistar rats, synergy between the timing of feeding and physical activity is necessary. These findings may contribute to further improve the design of lifestyle strategies that try to limit metabolic misalignment caused by circadian disruption.Circadian disruption is an important factor driving the current-day high prevalence of obesity and type-2 diabetes. While the impact of incorrect timing of caloric intake on circadian disruption is widely acknowlegded, the contribution of incorrect timing of physical activity remains relatively understudied. Here, we modeled the incorrect timing of physical activity in nightshift workers in male Wistar rats, by restricting running wheel access to the innate inactive (light) phase (LR). Controls included no wheel access (NR); access only during the innate active (dark) period (DR); or unrestricted (ad libitum) access (ALR). LR did not shift the phase of the muscle or liver clock, but dampened the muscle clock amplitude. As our previous study demonstrated that light-phase restricted feeding did shift the liver clock, but made the muscle clock arrhythmic, we next combined the time restriction of wheel and food access to either the light phase (LRLF) or dark phase (DRDF). LRLF produced a ∼12 h shift in the majority of clock gene rhythms in both skeletal muscle and liver. On the other hand, DRDF was most effective in reducing body weight and the accumulation of fat mass. Therefore, in order to shift the muscle clock in male Wistar rats, synergy between the timing of feeding and physical activity is necessary. These findings may contribute to further improve the design of lifestyle strategies that try to limit metabolic misalignment caused by circadian disruption.
Circadian disruption is an important factor driving the current-day high prevalence of obesity and type-2 diabetes. While the impact of incorrect timing of caloric intake on circadian disruption is widely acknowlegded, the contribution of incorrect timing of physical activity remains relatively understudied. Here, we modeled the incorrect timing of physical activity in nightshift workers in male Wistar rats, by restricting running wheel access to the innate inactive (light) phase (LR). Controls included no wheel access (NR); access only during the innate active (dark) period (DR); or unrestricted (ad libitum) access (ALR). LR did not shift the phase of the muscle or liver clock, but dampened the muscle clock amplitude. As our previous study demonstrated that light-phase restricted feeding did shift the liver clock, but made the muscle clock arrhythmic, we next combined the time restriction of wheel and food access to either the light phase (LRLF) or dark phase (DRDF). LRLF produced a ∼12 h shift in the majority of clock gene rhythms in both skeletal muscle and liver. On the other hand, DRDF was most effective in reducing body weight and the accumulation of fat mass. Therefore, in order to shift the muscle clock in male Wistar rats, synergy between the timing of feeding and physical activity is necessary. These findings may contribute to further improve the design of lifestyle strategies that try to limit metabolic misalignment caused by circadian disruption. [Display omitted] •Voluntary wheel running (VWR) in the active phase boosts the muscle clock amplitude.•VWR in the active phase blunts weight gain most effectively.•VWR in the inactive phase dampens the skeletal muscle clock gene expression rhythm.•Inactive-phase restricted VWR and feeding shifts the liver and muscle clock by ∼12 h.•Active-phase restricted VWR and feeding prevents weight gain and adiposity the best.
ArticleNumber 100106
Author Ritsema, Wayne I.G.R.
Coopmans, Tom V.
Stenvers, Dirk Jan
Foppen, Ewout
de Goede, Paul
Korpel, Nikita L.
Kalsbeek, Andries
Hellings, Tom P.
Mul, Joram D.
Jansen, Merel W.
Yi, Chun-Xia
Shiba, Ayano
Tandari, Roberta
Ruitenberg, Annelou
Author_xml – sequence: 1
  givenname: Ayano
  orcidid: 0009-0008-3404-9159
  surname: Shiba
  fullname: Shiba, Ayano
  email: a.shiba@nin.knaw.nl
  organization: Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Meibergdreef 47, 1105BA, Amsterdam, the Netherlands
– sequence: 2
  givenname: Paul
  surname: de Goede
  fullname: de Goede, Paul
  email: pauldegoede@gmail.com
  organization: Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Meibergdreef 47, 1105BA, Amsterdam, the Netherlands
– sequence: 3
  givenname: Roberta
  surname: Tandari
  fullname: Tandari, Roberta
  email: r.tandari@amsterdamumc.nl
  organization: Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Meibergdreef 47, 1105BA, Amsterdam, the Netherlands
– sequence: 4
  givenname: Ewout
  surname: Foppen
  fullname: Foppen, Ewout
  email: e.foppen@nin.knaw.nl
  organization: Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Meibergdreef 47, 1105BA, Amsterdam, the Netherlands
– sequence: 5
  givenname: Nikita L.
  surname: Korpel
  fullname: Korpel, Nikita L.
  email: nikitalotte@casema.nl
  organization: Amsterdam UMC, University of Amsterdam, Laboratory of Endocrinology, Department of Laboratory Medicine, Meibergdreef 9, Amsterdam, the Netherlands
– sequence: 6
  givenname: Tom V.
  surname: Coopmans
  fullname: Coopmans, Tom V.
  email: t.v.coopmans@vu.nl
  organization: Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Meibergdreef 47, 1105BA, Amsterdam, the Netherlands
– sequence: 7
  givenname: Tom P.
  surname: Hellings
  fullname: Hellings, Tom P.
  email: t.p.hellings@lumc.nl
  organization: Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Meibergdreef 47, 1105BA, Amsterdam, the Netherlands
– sequence: 8
  givenname: Merel W.
  surname: Jansen
  fullname: Jansen, Merel W.
  email: merel.j97@gmail.com
  organization: Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Meibergdreef 47, 1105BA, Amsterdam, the Netherlands
– sequence: 9
  givenname: Annelou
  surname: Ruitenberg
  fullname: Ruitenberg, Annelou
  email: annelouruitenberg@ziggo.nl
  organization: Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Meibergdreef 47, 1105BA, Amsterdam, the Netherlands
– sequence: 10
  givenname: Wayne I.G.R.
  surname: Ritsema
  fullname: Ritsema, Wayne I.G.R.
  email: wayne.ritsema@gmail.com
  organization: Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Meibergdreef 47, 1105BA, Amsterdam, the Netherlands
– sequence: 11
  givenname: Chun-Xia
  surname: Yi
  fullname: Yi, Chun-Xia
  email: c.yi@amsterdamumc.nl
  organization: Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Meibergdreef 47, 1105BA, Amsterdam, the Netherlands
– sequence: 12
  givenname: Joram D.
  surname: Mul
  fullname: Mul, Joram D.
  email: j.d.mul@uva.nl
  organization: Brain Plasticity Group, Swammerdam Institute for Life Sciences, Faculty of Science, Science Park 904, 1098XH, Amsterdam, the Netherlands
– sequence: 13
  givenname: Dirk Jan
  surname: Stenvers
  fullname: Stenvers, Dirk Jan
  email: d.j.stenvers@amsterdamumc.nl
  organization: Amsterdam UMC, University of Amsterdam, Laboratory of Endocrinology, Department of Laboratory Medicine, Meibergdreef 9, Amsterdam, the Netherlands
– sequence: 14
  givenname: Andries
  orcidid: 0000-0001-9606-8453
  surname: Kalsbeek
  fullname: Kalsbeek, Andries
  email: a.kalsbeek@nin.knaw.nl
  organization: Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Meibergdreef 47, 1105BA, Amsterdam, the Netherlands
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39387098$$D View this record in MEDLINE/PubMed
BookMark eNp9UsFu1DAQtVARLaVfgIR85LKLx06c-IAQqgpUqsQBOFu2M9n1kjjFdlrthW_H25SqFRInj9-8eTOaeS_JUZgCEvIa2BoYyHe7dbDJxTVnvCoIAyafkRNe1bBSqqqOHsXH5CylHSscVclK8BfkWCjRNky1J-T3t33AuNlTi_kWMdDsR1xFTDl6l7GjPWLnw4aa0P2Ti3MIh5xPNKDDlEzc0zzRtPV9pnmLdJyTG5C6YXI_qQ90NOV361M2kUaT0yvyvDdDwrP795T8-HTx_fzL6urr58vzj1crJzjIVW87XtemBzRgoW0cVwVnANB2rJKmRWnROukaq1jd9X0rLAqhGJq6k9iKU3K56HaT2enr6Mcyqp6M13fAFDfaxOzLrFqZqjdgGjAtq5REBawGawTvWyk5O2h9WLSuZzti5zDkaIYnok8zwW_1ZrrRAJXkohFF4e29Qpx-zWWfevTJ4TCYgNOctAComWrKyQpVLFQXp5Qi9g99gOmDE_RO3zlBH5ygFyeUqjePR3yo-Xv3Qni_ELAs_cZj1Ml5DK7cOqLLZSv-vw3-AMleyZU
Cites_doi 10.1073/pnas.2218510120
10.1002/oby.22830
10.3389/fphys.2019.01328
10.1530/JME-17-0165
10.1007/s10654-013-9801-3
10.1016/j.celrep.2023.112588
10.1016/j.nbscr.2017.09.002
10.1152/japplphysiol.00683.2020
10.1002/oby.22832
10.1371/journal.pone.0125646
10.3389/fpsyg.2014.00177
10.1016/j.physbeh.2006.04.022
10.1111/ejn.13377
10.1016/j.bbadis.2012.08.010
10.1016/0031-9384(84)90248-8
10.1002/oby.22799
10.1101/gad.183500
10.1113/JP279779
10.1249/MSS.0b013e318255cf4c
10.3389/fphys.2011.00112
10.1038/ijo.2012.137
10.1186/s12859-020-03830-w
10.1093/emboj/20.15.3967
10.1371/journal.pone.0237096
10.2337/diabetes.53.7.1643
10.1371/journal.pcbi.1004094
10.1038/nrendo.2012.49
10.1126/sciadv.abi7828
10.1016/S0076-6879(05)93008-5
10.1007/s11892-014-0507-z
10.1113/JP271436
10.1177/0748730417728663
10.3389/fendo.2019.00554
10.3109/07420528.2014.935785
10.1177/0748730410379711
10.3390/ijerph17114138
10.1113/jphysiol.2012.233676
10.3389/fphys.2020.567881
10.1371/journal.pone.0197258
10.1097/JES.0b013e3182a58a70
10.1038/s41386-018-0103-z
10.1038/srep27607
10.1113/JP280428
10.1113/JP280820
10.1038/s41586-023-06877-w
10.3390/ijms19103171
10.1016/j.cmet.2022.08.018
10.1152/japplphysiol.00737.2018
10.1016/j.molmet.2022.101504
ContentType Journal Article
Copyright 2024 The Authors
2024 The Authors.
2024 The Authors 2024
Copyright_xml – notice: 2024 The Authors
– notice: 2024 The Authors.
– notice: 2024 The Authors 2024
DBID 6I.
AAFTH
NPM
AAYXX
CITATION
7X8
5PM
DOA
DOI 10.1016/j.nbscr.2024.100106
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
PubMed
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
DatabaseTitleList PubMed


MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: http://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EISSN 2451-9944
ExternalDocumentID oai_doaj_org_article_9a4fa1a71a80496e91051ba32f866208
10_1016_j_nbscr_2024_100106
39387098
S245199442400004X
Genre Journal Article
GroupedDBID 0R~
0SF
6I.
AACTN
AAEDW
AAFTH
AALRI
AAXUO
ABMAC
ACGFS
ADBBV
ADVLN
AEXQZ
AFJKZ
AFTJW
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
HYE
M41
M~E
NCXOZ
O9-
OK1
ROL
RPM
SSZ
NPM
AAYXX
CITATION
7X8
5PM
ID FETCH-LOGICAL-c3216-fbd255af1ea1b187c2932101118d046a8e6bebc6c7b905dff83be3390ea5d6e83
IEDL.DBID RPM
ISSN 2451-9944
IngestDate Tue Oct 22 15:15:58 EDT 2024
Thu Oct 10 05:32:03 EDT 2024
Sat Oct 26 01:56:42 EDT 2024
Wed Oct 16 15:31:09 EDT 2024
Sat Nov 02 12:21:41 EDT 2024
Sat Sep 28 16:18:22 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Wheel running
Energy metabolism
Muscle
Time restriction
Circadian misalignment
Liver
Language English
License This is an open access article under the CC BY license.
2024 The Authors.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3216-fbd255af1ea1b187c2932101118d046a8e6bebc6c7b905dff83be3390ea5d6e83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors contributed equally.
ORCID 0009-0008-3404-9159
0000-0001-9606-8453
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11462373/
PMID 39387098
PQID 3115097000
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_9a4fa1a71a80496e91051ba32f866208
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11462373
proquest_miscellaneous_3115097000
crossref_primary_10_1016_j_nbscr_2024_100106
pubmed_primary_39387098
elsevier_sciencedirect_doi_10_1016_j_nbscr_2024_100106
PublicationCentury 2000
PublicationDate 2024-Nov
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-Nov
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Neurobiology of sleep and circadian rhythms
PublicationTitleAlternate Neurobiol Sleep Circadian Rhythms
PublicationYear 2024
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Bay, Pedersen (bib1) 2020; 11
Casanova-Vallve, Duglan, Vaughan, Pariollaud, Handzlik, Fan, Yu, Liddle, Downes, Delezie, Mello, Chan, Westermark, Metallo, Evans, Lamia (bib3) 2022; 61
Febbraio, Hiscock, Sacchetti, Fischer, Pedersen (bib16) 2004; 53
Siepka, Takahashi (bib44) 2005; 393
Eastman, Mistlberger, Rechtschaffen (bib15) 1984; 32
De Goede, Hellings, Coopmans, Ritsema, Kalsbeek (bib9) 2020; 28
Hughes, Abruzzi, Allada, Anafi, Arpat, Asher, Baldi, de Bekker, Bell-Pedersen, Blau, Brown, Ceriani, Chen, Chiu, Cox, Crowell, DeBruyne, Dijk, DiTacchio (bib19) 2017; 32
(bib29) 2024; 629
Kemler, Wolff, Esser (bib25) 2020; 598
van Eenige, Verhave, Koemans, Tiebosch, Rensen, Kooijman (bib47) 2020; 15
Small, Altıntaş, Laker, Ehrlich, Pattamaprapanont, Villarroel, Pillon, Zierath, Barrès (bib45) 2020; 598
de Goede, Sen, Oosterman, Foppen, Jansen, la Fleur, Challet, Kalsbeek (bib10) 2018; 4
Cermakian, Monaco, Pando, Dierich, Sassone-Corsi (bib4) 2001; 20
Manoogian, Zadourian, Lo, Gutierrez, Shoghi, Rosander, Pazargadi, Ormiston, Wang, Sui, Hou, Fleischer, Golshan, Taub, Panda (bib26) 2022; 34
Schönke, Ying, Kovynev, In Het Panhuis, Binnendijk, van der Poel, Pronk, Streefland, Hoekstra, Kooijman, Rensen (bib40) 2023; 37
Dallmann, Mrosovsky (bib6) 2006; 88
Fuller, Thyfault (bib17) 2021; 130
Greco, Koronowski, Smith, Shi, Kunderfranco, Carriero, Chen, Samad, Welz, Zinna, Mortimer, Chun, Shimaji, Sato, Petrus, Kumar, Vaca-Dempere, Deryagin, Van (bib18) 2021; 7
Sasaki, Hattori, Ikeda, Kamagata, Iwami, Yasuda, Tahara, Shibata (bib38) 2016; 6
Reznick, Preston, Wilks, Beale, Turner, Cooney (bib37) 2013; 1832
In het Panhuis, Kooijman, Brouwers, Verhoeven, Pronk, Streefland, Giera, Schrauwen, Rensen, Schönke (bib23) 2020; 28
Hutchison, Maienschein-Cline, Chiang, Tabei, Gudjonson, Bahroos, Allada, Dinner (bib21) 2015; 11
Vieira, Muñoz, Junqueira, de Oliveira, Gaspar, Nakandakari, Costa, Torsoni, da Silva, Cintra, de Moura, Ropelle, Zaghloul, Mekary, Pauli (bib48) 2022; 600
Mul, Soto, Cahill, Ryan, Takahashi, So, Zheng, Croote, Hirshman, la Fleur, Nestler, Goodyear (bib31) 2018; 43
Sasaki, Ohtsu, Ikeda, Tsubosaka, Shibata (bib39) 2014; 31
Moškon (bib28) 2020; 21
Oosterman, Koekkoek, Foppen, Unmehopa, Eggels, Verheij, Fliers, La Fleur, Kalsbeek (bib32) 2020; 28
Pedersen, Febbraio (bib34) 2012; 8
Yasumoto, Nakao, Oishi (bib50) 2015; 10
Domaszewski, Konieczny, Pakosz, Bączkowicz, Sadowska-Krępa (bib14) 2020; 17
de Goede, Sen, Su, Foppen, Poirel, Challet, Kalsbeek (bib11) 2018; 19
Hughes, Hogenesch, Kornacker (bib20) 2010; 25
Schroder, Esser (bib41) 2013; 41
Wolff, Esser (bib49) 2012; 44
Dalbram, Basse, Zierath, Treebak (bib5) 2019; 126
Bray, Ratcliffe, Grenett, Brewer, Gamble, Young (bib2) 2013; 37
Opperhuizen, Wang, Foppen, Jansen, Boudzovitch-Surovtseva, de Vries, Fliers, Kalsbeek (bib33) 2016; 44
Damiola, Le Minh, Preitner, Kornmann, Fleury-Olela, Schibler (bib7) 2000; 14
Pendergrast, Lundell, Ehrlich, Ashcroft, Schönke, Basse, Krook, Treebak, Dollet, Zierath (bib36) 2023; 120
Depner, Stothard, Wright (bib13) 2014; 14
Mul (bib30) 2018; 60
Jensen, Rustad, Kolnes, Lai (bib24) 2011; 2
Pendergast, Branecky, Huang, Niswender, Yamazaki (bib35) 2014; 5
de Goede, Foppen, Ritsema, Korpel, Yi, Kalsbeek (bib8) 2019; 10
de Mutsert, den Heijer, Rabelink, Smit, Romijn, Jukema, de Roos, Cobbaert, Kloppenburg, le Cessie, Middeldorp, Rosendaal (bib12) 2013; 28
Schroeder, Truong, Loh, Jordan, Roos, Colwell (bib43) 2012; 590
Schroder, Harfmann, Zhang, Srikuea, England, Hodge, Wen, Riley, Yu, Christie, Smith, Seward, Wolf Horrell, Mula, Peterson, Butterfield, Esser (bib42) 2015; 593
Mavroudis, DuBois, Almon, Jusko (bib27) 2018; 13
Smith, Koronowski, Mortimer, Sato, Greco, Petrus, Verlande, Chen, Samad, Deyneka, Mathur, Blazev, Molendijk, Kumar, Deryagin, Vaca-Dempere, Sica, Liu, Orlando (bib46) 2023; 42
Hyatt, Brown, Deacon, McCall (bib22) 2019; 10
de Mutsert (10.1016/j.nbscr.2024.100106_bib12) 2013; 28
Jensen (10.1016/j.nbscr.2024.100106_bib24) 2011; 2
Mavroudis (10.1016/j.nbscr.2024.100106_bib27) 2018; 13
Hutchison (10.1016/j.nbscr.2024.100106_bib21) 2015; 11
Mul (10.1016/j.nbscr.2024.100106_bib30) 2018; 60
Greco (10.1016/j.nbscr.2024.100106_bib18) 2021; 7
Hughes (10.1016/j.nbscr.2024.100106_bib20) 2010; 25
Cermakian (10.1016/j.nbscr.2024.100106_bib4) 2001; 20
(10.1016/j.nbscr.2024.100106_bib29) 2024; 629
Bray (10.1016/j.nbscr.2024.100106_bib2) 2013; 37
Dallmann (10.1016/j.nbscr.2024.100106_bib6) 2006; 88
Casanova-Vallve (10.1016/j.nbscr.2024.100106_bib3) 2022; 61
Yasumoto (10.1016/j.nbscr.2024.100106_bib50) 2015; 10
Damiola (10.1016/j.nbscr.2024.100106_bib7) 2000; 14
In het Panhuis (10.1016/j.nbscr.2024.100106_bib23) 2020; 28
Moškon (10.1016/j.nbscr.2024.100106_bib28) 2020; 21
Schroder (10.1016/j.nbscr.2024.100106_bib41) 2013; 41
de Goede (10.1016/j.nbscr.2024.100106_bib8) 2019; 10
Pendergrast (10.1016/j.nbscr.2024.100106_bib36) 2023; 120
Wolff (10.1016/j.nbscr.2024.100106_bib49) 2012; 44
Schroeder (10.1016/j.nbscr.2024.100106_bib43) 2012; 590
Domaszewski (10.1016/j.nbscr.2024.100106_bib14) 2020; 17
Siepka (10.1016/j.nbscr.2024.100106_bib44) 2005; 393
Sasaki (10.1016/j.nbscr.2024.100106_bib38) 2016; 6
Fuller (10.1016/j.nbscr.2024.100106_bib17) 2021; 130
Pendergast (10.1016/j.nbscr.2024.100106_bib35) 2014; 5
de Goede (10.1016/j.nbscr.2024.100106_bib10) 2018; 4
Hughes (10.1016/j.nbscr.2024.100106_bib19) 2017; 32
Kemler (10.1016/j.nbscr.2024.100106_bib25) 2020; 598
Reznick (10.1016/j.nbscr.2024.100106_bib37) 2013; 1832
Oosterman (10.1016/j.nbscr.2024.100106_bib32) 2020; 28
Febbraio (10.1016/j.nbscr.2024.100106_bib16) 2004; 53
van Eenige (10.1016/j.nbscr.2024.100106_bib47) 2020; 15
Mul (10.1016/j.nbscr.2024.100106_bib31) 2018; 43
Eastman (10.1016/j.nbscr.2024.100106_bib15) 1984; 32
Pedersen (10.1016/j.nbscr.2024.100106_bib34) 2012; 8
Small (10.1016/j.nbscr.2024.100106_bib45) 2020; 598
Opperhuizen (10.1016/j.nbscr.2024.100106_bib33) 2016; 44
Depner (10.1016/j.nbscr.2024.100106_bib13) 2014; 14
Manoogian (10.1016/j.nbscr.2024.100106_bib26) 2022; 34
Schroder (10.1016/j.nbscr.2024.100106_bib42) 2015; 593
Schönke (10.1016/j.nbscr.2024.100106_bib40) 2023; 37
De Goede (10.1016/j.nbscr.2024.100106_bib9) 2020; 28
Vieira (10.1016/j.nbscr.2024.100106_bib48) 2022; 600
Dalbram (10.1016/j.nbscr.2024.100106_bib5) 2019; 126
Sasaki (10.1016/j.nbscr.2024.100106_bib39) 2014; 31
Bay (10.1016/j.nbscr.2024.100106_bib1) 2020; 11
Smith (10.1016/j.nbscr.2024.100106_bib46) 2023; 42
Hyatt (10.1016/j.nbscr.2024.100106_bib22) 2019; 10
de Goede (10.1016/j.nbscr.2024.100106_bib11) 2018; 19
References_xml – volume: 590
  start-page: 6213
  year: 2012
  end-page: 6226
  ident: bib43
  article-title: Voluntary scheduled exercise alters diurnal rhythms of behaviour, physiology and gene expression in wild‐type and vasoactive intestinal peptide‐deficient mice
  publication-title: J. Physiol.
  contributor:
    fullname: Colwell
– volume: 5
  start-page: 177
  year: 2014
  ident: bib35
  article-title: Wheel-running activity modulates circadian organization and the daily rhythm of eating behavior
  publication-title: Front. Psychol.
  contributor:
    fullname: Yamazaki
– volume: 28
  start-page: 513
  year: 2013
  end-page: 523
  ident: bib12
  article-title: The Netherlands Epidemiology of Obesity (NEO) study: study design and data collection
  publication-title: Eur. J. Epidemiol.
  contributor:
    fullname: Rosendaal
– volume: 44
  start-page: 2795
  year: 2016
  end-page: 2806
  ident: bib33
  article-title: Feeding during the resting phase causes profound changes in physiology and desynchronization between liver and muscle rhythms of rats
  publication-title: Eur. J. Neurosci.
  contributor:
    fullname: Kalsbeek
– volume: 14
  start-page: 2950
  year: 2000
  end-page: 2961
  ident: bib7
  article-title: Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus
  publication-title: Gene Dev.
  contributor:
    fullname: Schibler
– volume: 11
  year: 2015
  ident: bib21
  article-title: Improved statistical methods enable greater sensitivity in rhythm detection for genome-wide data
  publication-title: PLoS Comput. Biol.
  contributor:
    fullname: Dinner
– volume: 11
  year: 2020
  ident: bib1
  article-title: Muscle-organ crosstalk: focus on immunometabolism
  publication-title: Front. Physiol.
  contributor:
    fullname: Pedersen
– volume: 28
  year: 2020
  ident: bib32
  article-title: Synergistic effect of feeding time and diet on hepatic steatosis and gene expression in male wistar rats
  publication-title: Obesity
  contributor:
    fullname: Kalsbeek
– volume: 34
  start-page: 1442
  year: 2022
  end-page: 1456.e7
  ident: bib26
  article-title: Feasibility of time-restricted eating and impacts on cardiometabolic health in 24-hour shift workers: the healthy heroes randomized clinical trial
  publication-title: Cell Metabol.
  contributor:
    fullname: Panda
– volume: 629
  start-page: 174
  year: 2024
  end-page: 183
  ident: bib29
  article-title: Temporal dynamics of the multi-omic response to endurance exercise training
  publication-title: Nature
– volume: 10
  start-page: 554
  year: 2019
  ident: bib8
  article-title: Time-restricted feeding improves glucose tolerance in rats, but only when in line with the circadian timing system
  publication-title: Front. Endocrinol.
  contributor:
    fullname: Kalsbeek
– volume: 42
  year: 2023
  ident: bib46
  article-title: Liver and muscle circadian clocks cooperate to support glucose tolerance in mice
  publication-title: Cell Rep.
  contributor:
    fullname: Orlando
– volume: 598
  start-page: 3631
  year: 2020
  end-page: 3644
  ident: bib25
  article-title: Time-of-day dependent effects of contractile activity on the phase of the skeletal muscle clock
  publication-title: J. Physiol.
  contributor:
    fullname: Esser
– volume: 593
  start-page: 5387
  year: 2015
  end-page: 5404
  ident: bib42
  article-title: Intrinsic muscle clock is necessary for musculoskeletal health
  publication-title: J. Physiol.
  contributor:
    fullname: Esser
– volume: 41
  start-page: 224
  year: 2013
  end-page: 229
  ident: bib41
  article-title: Circadian rhythms, skeletal muscle molecular clocks, and exercise
  publication-title: Exerc. Sport Sci. Rev.
  contributor:
    fullname: Esser
– volume: 44
  start-page: 1663
  year: 2012
  end-page: 1670
  ident: bib49
  article-title: Scheduled exercise phase shifts the circadian clock in skeletal muscle
  publication-title: Med. Sci. Sports Exerc.
  contributor:
    fullname: Esser
– volume: 20
  start-page: 3967
  year: 2001
  end-page: 3974
  ident: bib4
  article-title: Altered behavioral rhythms and clock gene expression in mice with a targeted mutation in the Period 1 gene
  publication-title: EMBO J.
  contributor:
    fullname: Sassone-Corsi
– volume: 120
  year: 2023
  ident: bib36
  article-title: Time of day determines postexercise metabolism in mouse adipose tissue
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  contributor:
    fullname: Zierath
– volume: 598
  start-page: 5739
  year: 2020
  end-page: 5752
  ident: bib45
  article-title: Contraction influences Per2 gene expression in skeletal muscle through a calcium-dependent pathway
  publication-title: J. Physiol.
  contributor:
    fullname: Barrès
– volume: 31
  start-page: 959
  year: 2014
  end-page: 975
  ident: bib39
  article-title: Combination of meal and exercise timing with a high-fat diet influences energy expenditure and obesity in mice
  publication-title: Chronobiol. Int.
  contributor:
    fullname: Shibata
– volume: 37
  year: 2023
  ident: bib40
  article-title: Time to run: late rather than early exercise training in mice remodels the gut microbiome and reduces atherosclerosis development
  publication-title: FASEB (Fed. Am. Soc. Exp. Biol.) J.: Official Publication of the Federation of American Societies for Experimental Biology
  contributor:
    fullname: Rensen
– volume: 88
  start-page: 459
  year: 2006
  end-page: 465
  ident: bib6
  article-title: Scheduled wheel access during daytime: a method for studying conflicting zeitgebers
  publication-title: Physiol. Behav.
  contributor:
    fullname: Mrosovsky
– volume: 126
  start-page: 993
  year: 2019
  end-page: 1005
  ident: bib5
  article-title: Voluntary wheel running in the late dark phase ameliorates diet-induced obesity in mice without altering insulin action
  publication-title: J. Appl. Physiol.
  contributor:
    fullname: Treebak
– volume: 37
  start-page: 843
  year: 2013
  end-page: 852
  ident: bib2
  article-title: Quantitative analysis of light-phase restricted feeding reveals metabolic dyssynchrony in mice
  publication-title: Int. J. Obes.
  contributor:
    fullname: Young
– volume: 130
  start-page: 182
  year: 2021
  end-page: 192
  ident: bib17
  article-title: Barriers in translating preclinical rodent exercise metabolism findings to human health
  publication-title: J. Appl. Physiol.
  contributor:
    fullname: Thyfault
– volume: 60
  start-page: R77
  year: 2018
  end-page: R95
  ident: bib30
  article-title: Voluntary exercise and depression-like behavior in rodents: are we running in the right direction?
  publication-title: J. Mol. Endocrinol.
  contributor:
    fullname: Mul
– volume: 2
  start-page: 112
  year: 2011
  ident: bib24
  article-title: The role of skeletal muscle glycogen breakdown for regulation of insulin sensitivity by exercise
  publication-title: Front. Physiol.
  contributor:
    fullname: Lai
– volume: 61
  year: 2022
  ident: bib3
  article-title: Daily running enhances molecular and physiological circadian rhythms in skeletal muscle
  publication-title: Mol. Metabol.
  contributor:
    fullname: Lamia
– volume: 25
  start-page: 372
  year: 2010
  end-page: 380
  ident: bib20
  article-title: JTK_CYCLE: an efficient non-parametric algorithm for detecting rhythmic components in genome-scale datasets
  publication-title: J. Biol. Rhythm.
  contributor:
    fullname: Kornacker
– volume: 15
  year: 2020
  ident: bib47
  article-title: RandoMice, a novel, user-friendly randomization tool in animal research
  publication-title: PLoS One
  contributor:
    fullname: Kooijman
– volume: 32
  start-page: 380
  year: 2017
  end-page: 393
  ident: bib19
  article-title: Guidelines for genome-scale analysis of biological rhythms
  publication-title: J. Biol. Rhythm.
  contributor:
    fullname: DiTacchio
– volume: 10
  start-page: 1328
  year: 2019
  ident: bib22
  article-title: Muscle-specific sensitivity to voluntary physical activity and detraining
  publication-title: Front. Physiol.
  contributor:
    fullname: McCall
– volume: 8
  start-page: 457
  year: 2012
  end-page: 465
  ident: bib34
  article-title: Muscles, exercise and obesity: skeletal muscle as a secretory organ
  publication-title: Nat. Rev. Endocrinol.
  contributor:
    fullname: Febbraio
– volume: 1832
  start-page: 228
  year: 2013
  end-page: 238
  ident: bib37
  article-title: Altered feeding differentially regulates circadian rhythms and energy metabolism in liver and muscle of rats
  publication-title: Biochim. Biophys. Acta
  contributor:
    fullname: Cooney
– volume: 10
  year: 2015
  ident: bib50
  article-title: Correction: free access to a running-wheel advances the phase of behavioral and physiological circadian rhythms and peripheral molecular clocks in mice
  publication-title: PLoS One
  contributor:
    fullname: Oishi
– volume: 600
  start-page: 797
  year: 2022
  end-page: 813
  ident: bib48
  article-title: Time-restricted feeding combined with aerobic exercise training can prevent weight gain and improve metabolic disorders in mice fed a high-fat diet
  publication-title: J. Physiol.
  contributor:
    fullname: Pauli
– volume: 7
  year: 2021
  ident: bib18
  article-title: Integration of feeding behavior by the liver circadian clock reveals network dependency of metabolic rhythms
  publication-title: Sci. Adv.
  contributor:
    fullname: Van
– volume: 4
  start-page: 24
  year: 2018
  end-page: 33
  ident: bib10
  article-title: Differential effects of diet composition and timing of feeding behavior on rat brown adipose tissue and skeletal muscle peripheral clocks
  publication-title: Neurobiology of Sleep and Circadian Rhythms
  contributor:
    fullname: Kalsbeek
– volume: 53
  start-page: 1643
  year: 2004
  end-page: 1648
  ident: bib16
  article-title: Interleukin-6 is a novel factor mediating glucose homeostasis during skeletal muscle contraction
  publication-title: Diabetes
  contributor:
    fullname: Pedersen
– volume: 14
  start-page: 507
  year: 2014
  ident: bib13
  article-title: Metabolic consequences of sleep and circadian disorders
  publication-title: Curr. Diabetes Rep.
  contributor:
    fullname: Wright
– volume: 43
  start-page: 1934
  year: 2018
  end-page: 1942
  ident: bib31
  article-title: Voluntary wheel running promotes resilience to chronic social defeat stress in mice: a role for nucleus accumbens ΔFosB
  publication-title: Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology
  contributor:
    fullname: Goodyear
– volume: 32
  start-page: 357
  year: 1984
  end-page: 368
  ident: bib15
  article-title: Suprachiasmatic nuclei lesions eliminate circadian temperature and sleep rhythms in the rat
  publication-title: Physiol. Behav.
  contributor:
    fullname: Rechtschaffen
– volume: 28
  year: 2020
  ident: bib9
  article-title: After‐effects of time‐restricted feeding on whole‐body metabolism and gene expression in four different peripheral tissues
  publication-title: Obesity
  contributor:
    fullname: Kalsbeek
– volume: 19
  start-page: 3171
  year: 2018
  ident: bib11
  article-title: An ultradian feeding schedule in rats affects metabolic gene expression in liver, Brown adipose tissue and skeletal muscle with only mild effects on circadian clocks
  publication-title: Int. J. Mol. Sci.
  contributor:
    fullname: Kalsbeek
– volume: 393
  start-page: 230
  year: 2005
  end-page: 239
  ident: bib44
  article-title: Methods to record circadian rhythm wheel running activity in mice
  publication-title: Methods Enzymol.
  contributor:
    fullname: Takahashi
– volume: 13
  year: 2018
  ident: bib27
  article-title: Daily variation of gene expression in diverse rat tissues
  publication-title: PLoS One
  contributor:
    fullname: Jusko
– volume: 6
  year: 2016
  ident: bib38
  article-title: Forced rather than voluntary exercise entrains peripheral clocks via a corticosterone/noradrenaline increase in PER2::LUC mice
  publication-title: Sci. Rep.
  contributor:
    fullname: Shibata
– volume: 21
  start-page: 485
  year: 2020
  ident: bib28
  article-title: CosinorPy: a python package for cosinor-based rhythmometry
  publication-title: BMC Bioinf.
  contributor:
    fullname: Moškon
– volume: 28
  start-page: S93
  year: 2020
  end-page: S103
  ident: bib23
  article-title: Mild exercise does not prevent atherosclerosis in APOE∗3-Leiden.CETP mice or improve lipoprotein profile of men with obesity
  publication-title: Obesity
  contributor:
    fullname: Schönke
– volume: 17
  start-page: 4138
  year: 2020
  ident: bib14
  article-title: Effect of a six-week intermittent fasting intervention program on the composition of the human body in women over 60 Years of age
  publication-title: Int. J. Environ. Res. Publ. Health
  contributor:
    fullname: Sadowska-Krępa
– volume: 120
  issue: 8
  year: 2023
  ident: 10.1016/j.nbscr.2024.100106_bib36
  article-title: Time of day determines postexercise metabolism in mouse adipose tissue
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.2218510120
  contributor:
    fullname: Pendergrast
– volume: 28
  issue: S1
  year: 2020
  ident: 10.1016/j.nbscr.2024.100106_bib9
  article-title: After‐effects of time‐restricted feeding on whole‐body metabolism and gene expression in four different peripheral tissues
  publication-title: Obesity
  doi: 10.1002/oby.22830
  contributor:
    fullname: De Goede
– volume: 10
  start-page: 1328
  year: 2019
  ident: 10.1016/j.nbscr.2024.100106_bib22
  article-title: Muscle-specific sensitivity to voluntary physical activity and detraining
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2019.01328
  contributor:
    fullname: Hyatt
– volume: 60
  start-page: R77
  issue: 3
  year: 2018
  ident: 10.1016/j.nbscr.2024.100106_bib30
  article-title: Voluntary exercise and depression-like behavior in rodents: are we running in the right direction?
  publication-title: J. Mol. Endocrinol.
  doi: 10.1530/JME-17-0165
  contributor:
    fullname: Mul
– volume: 28
  start-page: 513
  issue: 6
  year: 2013
  ident: 10.1016/j.nbscr.2024.100106_bib12
  article-title: The Netherlands Epidemiology of Obesity (NEO) study: study design and data collection
  publication-title: Eur. J. Epidemiol.
  doi: 10.1007/s10654-013-9801-3
  contributor:
    fullname: de Mutsert
– volume: 42
  issue: 6
  year: 2023
  ident: 10.1016/j.nbscr.2024.100106_bib46
  article-title: Liver and muscle circadian clocks cooperate to support glucose tolerance in mice
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2023.112588
  contributor:
    fullname: Smith
– volume: 4
  start-page: 24
  year: 2018
  ident: 10.1016/j.nbscr.2024.100106_bib10
  article-title: Differential effects of diet composition and timing of feeding behavior on rat brown adipose tissue and skeletal muscle peripheral clocks
  publication-title: Neurobiology of Sleep and Circadian Rhythms
  doi: 10.1016/j.nbscr.2017.09.002
  contributor:
    fullname: de Goede
– volume: 130
  start-page: 182
  issue: 1
  year: 2021
  ident: 10.1016/j.nbscr.2024.100106_bib17
  article-title: Barriers in translating preclinical rodent exercise metabolism findings to human health
  publication-title: J. Appl. Physiol.
  doi: 10.1152/japplphysiol.00683.2020
  contributor:
    fullname: Fuller
– volume: 28
  issue: S1
  year: 2020
  ident: 10.1016/j.nbscr.2024.100106_bib32
  article-title: Synergistic effect of feeding time and diet on hepatic steatosis and gene expression in male wistar rats
  publication-title: Obesity
  doi: 10.1002/oby.22832
  contributor:
    fullname: Oosterman
– volume: 10
  issue: 4
  year: 2015
  ident: 10.1016/j.nbscr.2024.100106_bib50
  article-title: Correction: free access to a running-wheel advances the phase of behavioral and physiological circadian rhythms and peripheral molecular clocks in mice
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0125646
  contributor:
    fullname: Yasumoto
– volume: 5
  start-page: 177
  year: 2014
  ident: 10.1016/j.nbscr.2024.100106_bib35
  article-title: Wheel-running activity modulates circadian organization and the daily rhythm of eating behavior
  publication-title: Front. Psychol.
  doi: 10.3389/fpsyg.2014.00177
  contributor:
    fullname: Pendergast
– volume: 88
  start-page: 459
  issue: 4–5
  year: 2006
  ident: 10.1016/j.nbscr.2024.100106_bib6
  article-title: Scheduled wheel access during daytime: a method for studying conflicting zeitgebers
  publication-title: Physiol. Behav.
  doi: 10.1016/j.physbeh.2006.04.022
  contributor:
    fullname: Dallmann
– volume: 44
  start-page: 2795
  issue: 10
  year: 2016
  ident: 10.1016/j.nbscr.2024.100106_bib33
  article-title: Feeding during the resting phase causes profound changes in physiology and desynchronization between liver and muscle rhythms of rats
  publication-title: Eur. J. Neurosci.
  doi: 10.1111/ejn.13377
  contributor:
    fullname: Opperhuizen
– volume: 1832
  start-page: 228
  issue: 1
  year: 2013
  ident: 10.1016/j.nbscr.2024.100106_bib37
  article-title: Altered feeding differentially regulates circadian rhythms and energy metabolism in liver and muscle of rats
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbadis.2012.08.010
  contributor:
    fullname: Reznick
– volume: 32
  start-page: 357
  issue: 3
  year: 1984
  ident: 10.1016/j.nbscr.2024.100106_bib15
  article-title: Suprachiasmatic nuclei lesions eliminate circadian temperature and sleep rhythms in the rat
  publication-title: Physiol. Behav.
  doi: 10.1016/0031-9384(84)90248-8
  contributor:
    fullname: Eastman
– volume: 28
  start-page: S93
  issue: S1
  year: 2020
  ident: 10.1016/j.nbscr.2024.100106_bib23
  article-title: Mild exercise does not prevent atherosclerosis in APOE∗3-Leiden.CETP mice or improve lipoprotein profile of men with obesity
  publication-title: Obesity
  doi: 10.1002/oby.22799
  contributor:
    fullname: In het Panhuis
– volume: 14
  start-page: 2950
  issue: 23
  year: 2000
  ident: 10.1016/j.nbscr.2024.100106_bib7
  article-title: Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus
  publication-title: Gene Dev.
  doi: 10.1101/gad.183500
  contributor:
    fullname: Damiola
– volume: 598
  start-page: 3631
  issue: 17
  year: 2020
  ident: 10.1016/j.nbscr.2024.100106_bib25
  article-title: Time-of-day dependent effects of contractile activity on the phase of the skeletal muscle clock
  publication-title: J. Physiol.
  doi: 10.1113/JP279779
  contributor:
    fullname: Kemler
– volume: 44
  start-page: 1663
  issue: 9
  year: 2012
  ident: 10.1016/j.nbscr.2024.100106_bib49
  article-title: Scheduled exercise phase shifts the circadian clock in skeletal muscle
  publication-title: Med. Sci. Sports Exerc.
  doi: 10.1249/MSS.0b013e318255cf4c
  contributor:
    fullname: Wolff
– volume: 2
  start-page: 112
  year: 2011
  ident: 10.1016/j.nbscr.2024.100106_bib24
  article-title: The role of skeletal muscle glycogen breakdown for regulation of insulin sensitivity by exercise
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2011.00112
  contributor:
    fullname: Jensen
– volume: 37
  start-page: 843
  issue: 6
  year: 2013
  ident: 10.1016/j.nbscr.2024.100106_bib2
  article-title: Quantitative analysis of light-phase restricted feeding reveals metabolic dyssynchrony in mice
  publication-title: Int. J. Obes.
  doi: 10.1038/ijo.2012.137
  contributor:
    fullname: Bray
– volume: 21
  start-page: 485
  issue: 1
  year: 2020
  ident: 10.1016/j.nbscr.2024.100106_bib28
  article-title: CosinorPy: a python package for cosinor-based rhythmometry
  publication-title: BMC Bioinf.
  doi: 10.1186/s12859-020-03830-w
  contributor:
    fullname: Moškon
– volume: 20
  start-page: 3967
  issue: 15
  year: 2001
  ident: 10.1016/j.nbscr.2024.100106_bib4
  article-title: Altered behavioral rhythms and clock gene expression in mice with a targeted mutation in the Period 1 gene
  publication-title: EMBO J.
  doi: 10.1093/emboj/20.15.3967
  contributor:
    fullname: Cermakian
– volume: 15
  issue: 8
  year: 2020
  ident: 10.1016/j.nbscr.2024.100106_bib47
  article-title: RandoMice, a novel, user-friendly randomization tool in animal research
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0237096
  contributor:
    fullname: van Eenige
– volume: 53
  start-page: 1643
  issue: 7
  year: 2004
  ident: 10.1016/j.nbscr.2024.100106_bib16
  article-title: Interleukin-6 is a novel factor mediating glucose homeostasis during skeletal muscle contraction
  publication-title: Diabetes
  doi: 10.2337/diabetes.53.7.1643
  contributor:
    fullname: Febbraio
– volume: 11
  issue: 3
  year: 2015
  ident: 10.1016/j.nbscr.2024.100106_bib21
  article-title: Improved statistical methods enable greater sensitivity in rhythm detection for genome-wide data
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1004094
  contributor:
    fullname: Hutchison
– volume: 8
  start-page: 457
  issue: 8
  year: 2012
  ident: 10.1016/j.nbscr.2024.100106_bib34
  article-title: Muscles, exercise and obesity: skeletal muscle as a secretory organ
  publication-title: Nat. Rev. Endocrinol.
  doi: 10.1038/nrendo.2012.49
  contributor:
    fullname: Pedersen
– volume: 7
  issue: 39
  year: 2021
  ident: 10.1016/j.nbscr.2024.100106_bib18
  article-title: Integration of feeding behavior by the liver circadian clock reveals network dependency of metabolic rhythms
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abi7828
  contributor:
    fullname: Greco
– volume: 393
  start-page: 230
  year: 2005
  ident: 10.1016/j.nbscr.2024.100106_bib44
  article-title: Methods to record circadian rhythm wheel running activity in mice
  publication-title: Methods Enzymol.
  doi: 10.1016/S0076-6879(05)93008-5
  contributor:
    fullname: Siepka
– volume: 14
  start-page: 507
  issue: 7
  year: 2014
  ident: 10.1016/j.nbscr.2024.100106_bib13
  article-title: Metabolic consequences of sleep and circadian disorders
  publication-title: Curr. Diabetes Rep.
  doi: 10.1007/s11892-014-0507-z
  contributor:
    fullname: Depner
– volume: 37
  issue: 1
  year: 2023
  ident: 10.1016/j.nbscr.2024.100106_bib40
  article-title: Time to run: late rather than early exercise training in mice remodels the gut microbiome and reduces atherosclerosis development
  publication-title: FASEB (Fed. Am. Soc. Exp. Biol.) J.: Official Publication of the Federation of American Societies for Experimental Biology
  contributor:
    fullname: Schönke
– volume: 593
  start-page: 5387
  issue: 24
  year: 2015
  ident: 10.1016/j.nbscr.2024.100106_bib42
  article-title: Intrinsic muscle clock is necessary for musculoskeletal health
  publication-title: J. Physiol.
  doi: 10.1113/JP271436
  contributor:
    fullname: Schroder
– volume: 32
  start-page: 380
  issue: 5
  year: 2017
  ident: 10.1016/j.nbscr.2024.100106_bib19
  article-title: Guidelines for genome-scale analysis of biological rhythms
  publication-title: J. Biol. Rhythm.
  doi: 10.1177/0748730417728663
  contributor:
    fullname: Hughes
– volume: 10
  start-page: 554
  year: 2019
  ident: 10.1016/j.nbscr.2024.100106_bib8
  article-title: Time-restricted feeding improves glucose tolerance in rats, but only when in line with the circadian timing system
  publication-title: Front. Endocrinol.
  doi: 10.3389/fendo.2019.00554
  contributor:
    fullname: de Goede
– volume: 31
  start-page: 959
  issue: 9
  year: 2014
  ident: 10.1016/j.nbscr.2024.100106_bib39
  article-title: Combination of meal and exercise timing with a high-fat diet influences energy expenditure and obesity in mice
  publication-title: Chronobiol. Int.
  doi: 10.3109/07420528.2014.935785
  contributor:
    fullname: Sasaki
– volume: 25
  start-page: 372
  issue: 5
  year: 2010
  ident: 10.1016/j.nbscr.2024.100106_bib20
  article-title: JTK_CYCLE: an efficient non-parametric algorithm for detecting rhythmic components in genome-scale datasets
  publication-title: J. Biol. Rhythm.
  doi: 10.1177/0748730410379711
  contributor:
    fullname: Hughes
– volume: 17
  start-page: 4138
  issue: 11
  year: 2020
  ident: 10.1016/j.nbscr.2024.100106_bib14
  article-title: Effect of a six-week intermittent fasting intervention program on the composition of the human body in women over 60 Years of age
  publication-title: Int. J. Environ. Res. Publ. Health
  doi: 10.3390/ijerph17114138
  contributor:
    fullname: Domaszewski
– volume: 590
  start-page: 6213
  issue: 23
  year: 2012
  ident: 10.1016/j.nbscr.2024.100106_bib43
  article-title: Voluntary scheduled exercise alters diurnal rhythms of behaviour, physiology and gene expression in wild‐type and vasoactive intestinal peptide‐deficient mice
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.2012.233676
  contributor:
    fullname: Schroeder
– volume: 11
  year: 2020
  ident: 10.1016/j.nbscr.2024.100106_bib1
  article-title: Muscle-organ crosstalk: focus on immunometabolism
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2020.567881
  contributor:
    fullname: Bay
– volume: 13
  issue: 5
  year: 2018
  ident: 10.1016/j.nbscr.2024.100106_bib27
  article-title: Daily variation of gene expression in diverse rat tissues
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0197258
  contributor:
    fullname: Mavroudis
– volume: 41
  start-page: 224
  issue: 4
  year: 2013
  ident: 10.1016/j.nbscr.2024.100106_bib41
  article-title: Circadian rhythms, skeletal muscle molecular clocks, and exercise
  publication-title: Exerc. Sport Sci. Rev.
  doi: 10.1097/JES.0b013e3182a58a70
  contributor:
    fullname: Schroder
– volume: 43
  start-page: 1934
  issue: 9
  year: 2018
  ident: 10.1016/j.nbscr.2024.100106_bib31
  article-title: Voluntary wheel running promotes resilience to chronic social defeat stress in mice: a role for nucleus accumbens ΔFosB
  publication-title: Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology
  doi: 10.1038/s41386-018-0103-z
  contributor:
    fullname: Mul
– volume: 6
  issue: 1
  year: 2016
  ident: 10.1016/j.nbscr.2024.100106_bib38
  article-title: Forced rather than voluntary exercise entrains peripheral clocks via a corticosterone/noradrenaline increase in PER2::LUC mice
  publication-title: Sci. Rep.
  doi: 10.1038/srep27607
  contributor:
    fullname: Sasaki
– volume: 598
  start-page: 5739
  issue: 24
  year: 2020
  ident: 10.1016/j.nbscr.2024.100106_bib45
  article-title: Contraction influences Per2 gene expression in skeletal muscle through a calcium-dependent pathway
  publication-title: J. Physiol.
  doi: 10.1113/JP280428
  contributor:
    fullname: Small
– volume: 600
  start-page: 797
  issue: 4
  year: 2022
  ident: 10.1016/j.nbscr.2024.100106_bib48
  article-title: Time-restricted feeding combined with aerobic exercise training can prevent weight gain and improve metabolic disorders in mice fed a high-fat diet
  publication-title: J. Physiol.
  doi: 10.1113/JP280820
  contributor:
    fullname: Vieira
– volume: 629
  start-page: 174
  issue: 8010
  year: 2024
  ident: 10.1016/j.nbscr.2024.100106_bib29
  article-title: Temporal dynamics of the multi-omic response to endurance exercise training
  publication-title: Nature
  doi: 10.1038/s41586-023-06877-w
– volume: 19
  start-page: 3171
  issue: 10
  year: 2018
  ident: 10.1016/j.nbscr.2024.100106_bib11
  article-title: An ultradian feeding schedule in rats affects metabolic gene expression in liver, Brown adipose tissue and skeletal muscle with only mild effects on circadian clocks
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms19103171
  contributor:
    fullname: de Goede
– volume: 34
  start-page: 1442
  issue: 10
  year: 2022
  ident: 10.1016/j.nbscr.2024.100106_bib26
  article-title: Feasibility of time-restricted eating and impacts on cardiometabolic health in 24-hour shift workers: the healthy heroes randomized clinical trial
  publication-title: Cell Metabol.
  doi: 10.1016/j.cmet.2022.08.018
  contributor:
    fullname: Manoogian
– volume: 126
  start-page: 993
  issue: 4
  year: 2019
  ident: 10.1016/j.nbscr.2024.100106_bib5
  article-title: Voluntary wheel running in the late dark phase ameliorates diet-induced obesity in mice without altering insulin action
  publication-title: J. Appl. Physiol.
  doi: 10.1152/japplphysiol.00737.2018
  contributor:
    fullname: Dalbram
– volume: 61
  year: 2022
  ident: 10.1016/j.nbscr.2024.100106_bib3
  article-title: Daily running enhances molecular and physiological circadian rhythms in skeletal muscle
  publication-title: Mol. Metabol.
  doi: 10.1016/j.molmet.2022.101504
  contributor:
    fullname: Casanova-Vallve
SSID ssj0001946432
Score 2.323822
Snippet Circadian disruption is an important factor driving the current-day high prevalence of obesity and type-2 diabetes. While the impact of incorrect timing of...
SourceID doaj
pubmedcentral
proquest
crossref
pubmed
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 100106
SubjectTerms Circadian misalignment
Energy metabolism
Liver
Muscle
Research Paper
Time restriction
Wheel running
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nj9MwELWgJy4IxFcXWA0SRyKaOE2cI7Bb7YlLQeJm2clYDajuqmmEeuG3M2MnVUul3QvXOLFjz9hvJpl5I8R769CkucOkds08yVXtEuWwSlLHWY5KIpacO3yzLL_-UFfXTJNzKPXFMWGRHjgu3MfK5M6kpkyNImO2QIK3eWqNzJwqimxI852pI2cqfF2pcoLabKQZCgFdnjcieYRZHoiHuMbRERQFxv4TRDq3OP8NnDxCosUT8XgwIeFTfPWn4gH6Z-LPch-y-GAIvAIuGp9w4Q066MiqBBdhCoxvztq2fShcBG0HHjlvwGz3sNtAt2rdDshEhHXf0VhQE_T9gtbDmnAFfrPtuQXSoe65-L64_vblJhlqKyS1zNIicbYhZ8K4lERlU1XWBPu0jnTyqYZcZqOwsGjroi5tNZs3zilpUcpqhmbeFKjkCzHxG4-vBJDHRJ4u9YI2z22WKcePc9qJ5Liacio-jMusbyOFhh5jy37qIBXNUtFRKlPxmUVxuJX5r8MF0go9aIW-TyumohgFqQdTIpoI1FV79-jvRrFr2mj898R43PSdZlqiWVWSck3Fy6gGh3eUlaRzr6Jh1YmCnEzitMW3q0DmzVnhmSzlxf-Y9mvxiOcScyXfiMlu2-Nb8bBr-suwP_4CPHsWoQ
  priority: 102
  providerName: Directory of Open Access Journals
Title Synergy between time-restricted feeding and time-restricted running is necessary to shift the muscle clock in male wistar rats
URI https://dx.doi.org/10.1016/j.nbscr.2024.100106
https://www.ncbi.nlm.nih.gov/pubmed/39387098
https://www.proquest.com/docview/3115097000
https://pubmed.ncbi.nlm.nih.gov/PMC11462373
https://doaj.org/article/9a4fa1a71a80496e91051ba32f866208
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbYnrggqvJYoNUgcSTdTZx1nGOf6gWEVJC4WbZj0wDrrZKNql762zvjJNVuK3HgGsePZMaeb5JvZhj7ZLzTae5dYn21SHJpfSK9K5PUU5Sj5M4VFDt8cVl8_SlPzyhNjhhjYSJp35r6MPxdHob6KnIrr5d2NvLEZt--nFAkbcYLPpuwCYLDDR89flkpczSz2ZhiKJK5Am1C9AazPCYdovpGG2YoZuvfskZP0eZj0uSGFTp_yV4M8BGO-mXusmcu7LG7y9sYwQcD6QqoYHxCRTfwkENECb43UaBD9aSt6WLRIqhbCI5iBnRzC-sVtFe1XwPCQ1h2Lc4FFs3eH6gDLNGmwA3hzgZQf9pX7Mf52feTi2Soq5BYnqUi8aZCR0L7FMVkUllYNPno-eGpJyt0l7V0wjhjhS1MOV9U3ktuHOfl3OlFJZzkr9lOWAX3lgF6S-jl4ijO5LnJMumpO4WccOLUFFP2eXzN6rpPn6FGXtlvFaWiSCqql8qUHZMoHm6l3Nfxwqr5pQYNUKXOvU51kWqJ7o1wCHgWqdE881KIbC6nTIyCVAOM6OEBDlX_e_aPo9gVbjL6c6KDW3WtopRE87JA5ZqyN70aPKyRlxzPvBKnlVsKsvUQ2y2o1zGR96jH7_6_63v2nJ6gj478wHbWTef22aStuoP4eeEg7o17Sa8Xyg
link.rule.ids 230,315,729,782,786,866,887,2108,27935,27936,53803,53805
linkProvider National Library of Medicine
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYKPbQXWtQHS2lxpR4bNomzjnMsFLRVAVWCSr1ZtmNDaNeLko0qLv3tnXEStAsSB65xbMeZsef7knkQ8kk7q5LM2ci4chJlwrhIOFtEicMoR8GszTF2eHqWn_4SXw8xTQ4fYmGC077R1Z7_M9vz1WXwrbyemfHgJzb-cXKAkbQpy9l4jTyFDRuzJZYevq0UGRjadEgyFNy5PG5D4INpFtIOYYWjJUMU8vWv2KP7ePOu2-SSHTp68dgVvCQbPfKkX7r2TfLE-lfk39lNCP6jvb8WxVrzEdbrgPMRwCh1nXWjypf32uo21DuiVUO9xXADVd_QxZw2l5VbUECWdNY2MBc1YDF_08rTGZgj-hcha01B9ZrX5OfR4fnBNOpLMkSGpQmPnC6BgyiXgIR1InIDaAFIIxyYogSmrYTl2mrDTa6LeFI6J5i2jBWxVZOSW8HekHU_93aLUCBaQJBhFKuzTKepcNgdo1UYuuPkI_J5kI-87jJvyMEl7UoGcUoUp-zEOSL7KMPbWzFtdrgwry9k_-ploTKnEpUnSgAz4haw0iTRiqVOcJ7GYkT4oAGyRyAdsoChqodn_zjoi4T9iT9dlLfztpGYzSguctDKEXnb6c_tM7KCwXFZwLRiRbNWFrHaAgoVcoAPCrT9-K675Nn0_ORYHn87_f6OPMfVdEGWO2R9Ubf2PVlryvZD2Fr_AdodLIw
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELb6kBAXoOK1UKiROJJuEufh9FbarloBVaWCxM2yHbsNsN5VslHVS397Z5yk2qUSB3qNYzvOjD3fJDPfEPJRWSOjxJpA2zINEq5twK0pgshiliNnxuSYO3x8np_-5IdHSJOzN-TC-KB9rapd92e666pLH1s5n-rxECc2Pvt2gJm0McvZeF7a8TrZhE0bpkueuv--UiRgbOOBaMiHdDnciuATxomnHsIqR0vGyHP2r9ik-5jz79DJJVs0efqQVTwjT3oESve7e7bImnHPyc35tU8CpH3cFsWa8wHW7YBzEkAptZ2Vo9KV99rq1tc9olVDncG0A1lf08WMNpeVXVBAmHTaNjAX1WA5f9PK0SmYJXqF0LWmoILNC_JjcvT94DjoSzMEmsVRFlhVgi8ibQSSVhHPNaAGcB7h4OQleNySm0wZpTOdqyJMS2s5U4axIjQyLTPD2Uuy4WbOvCYUHC5wlGEUo5JExTG32B2zVhiG5eQj8mmQkZh3DBxiCE37JbxIBYpUdCIdkc8ox7tbkT7bX5jVF6J__aKQiZWRzCPJwUPKDGCmNFKSxZZnWRzyEckGLRA9EukQBgxV_Xv2D4POCNin-PNFOjNrG4GsRmGRg2aOyKtOh-6ekRUMjs0CpuUr2rWyiNUWUCrPBT4o0Zv_77pDHp0dTsTXk9Mvb8ljXEyXa7lNNhZ1a96R9aZs3_vddQssaC8M
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synergy+between+time-restricted+feeding+and+time-restricted+running+is+necessary+to+shift+the+muscle+clock+in+male+wistar+rats&rft.jtitle=Neurobiology+of+sleep+and+circadian+rhythms&rft.au=Shiba%2C+Ayano&rft.au=de+Goede%2C+Paul&rft.au=Tandari%2C+Roberta&rft.au=Foppen%2C+Ewout&rft.date=2024-11-01&rft.pub=Elsevier+Inc&rft.issn=2451-9944&rft.eissn=2451-9944&rft.volume=17&rft_id=info:doi/10.1016%2Fj.nbscr.2024.100106&rft.externalDocID=S245199442400004X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2451-9944&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2451-9944&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2451-9944&client=summon