Synergy between time-restricted feeding and time-restricted running is necessary to shift the muscle clock in male wistar rats
Circadian disruption is an important factor driving the current-day high prevalence of obesity and type-2 diabetes. While the impact of incorrect timing of caloric intake on circadian disruption is widely acknowlegded, the contribution of incorrect timing of physical activity remains relatively unde...
Saved in:
Published in: | Neurobiology of sleep and circadian rhythms Vol. 17; p. 100106 |
---|---|
Main Authors: | , , , , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
Elsevier Inc
01-11-2024
Elsevier |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Circadian disruption is an important factor driving the current-day high prevalence of obesity and type-2 diabetes. While the impact of incorrect timing of caloric intake on circadian disruption is widely acknowlegded, the contribution of incorrect timing of physical activity remains relatively understudied. Here, we modeled the incorrect timing of physical activity in nightshift workers in male Wistar rats, by restricting running wheel access to the innate inactive (light) phase (LR). Controls included no wheel access (NR); access only during the innate active (dark) period (DR); or unrestricted (ad libitum) access (ALR). LR did not shift the phase of the muscle or liver clock, but dampened the muscle clock amplitude. As our previous study demonstrated that light-phase restricted feeding did shift the liver clock, but made the muscle clock arrhythmic, we next combined the time restriction of wheel and food access to either the light phase (LRLF) or dark phase (DRDF). LRLF produced a ∼12 h shift in the majority of clock gene rhythms in both skeletal muscle and liver. On the other hand, DRDF was most effective in reducing body weight and the accumulation of fat mass. Therefore, in order to shift the muscle clock in male Wistar rats, synergy between the timing of feeding and physical activity is necessary. These findings may contribute to further improve the design of lifestyle strategies that try to limit metabolic misalignment caused by circadian disruption.
[Display omitted]
•Voluntary wheel running (VWR) in the active phase boosts the muscle clock amplitude.•VWR in the active phase blunts weight gain most effectively.•VWR in the inactive phase dampens the skeletal muscle clock gene expression rhythm.•Inactive-phase restricted VWR and feeding shifts the liver and muscle clock by ∼12 h.•Active-phase restricted VWR and feeding prevents weight gain and adiposity the best. |
---|---|
AbstractList | Circadian disruption is an important factor driving the current-day high prevalence of obesity and type-2 diabetes. While the impact of incorrect timing of caloric intake on circadian disruption is widely acknowlegded, the contribution of incorrect timing of physical activity remains relatively understudied. Here, we modeled the incorrect timing of physical activity in nightshift workers in male Wistar rats, by restricting running wheel access to the innate inactive (light) phase (LR). Controls included no wheel access (NR); access only during the innate active (dark) period (DR); or unrestricted (
) access (ALR). LR did not shift the phase of the muscle or liver clock, but dampened the muscle clock amplitude. As our previous study demonstrated that light-phase restricted feeding did shift the liver clock, but made the muscle clock arrhythmic, we next combined the time restriction of wheel and food access to either the light phase (LRLF) or dark phase (DRDF). LRLF produced a ∼12 h shift in the majority of clock gene rhythms in both skeletal muscle and liver. On the other hand, DRDF was most effective in reducing body weight and the accumulation of fat mass. Therefore, in order to shift the muscle clock in male Wistar rats, synergy between the timing of feeding and physical activity is necessary. These findings may contribute to further improve the design of lifestyle strategies that try to limit metabolic misalignment caused by circadian disruption. Circadian disruption is an important factor driving the current-day high prevalence of obesity and type-2 diabetes. While the impact of incorrect timing of caloric intake on circadian disruption is widely acknowlegded, the contribution of incorrect timing of physical activity remains relatively understudied. Here, we modeled the incorrect timing of physical activity in nightshift workers in male Wistar rats, by restricting running wheel access to the innate inactive (light) phase (LR). Controls included no wheel access (NR); access only during the innate active (dark) period (DR); or unrestricted (ad libitum) access (ALR). LR did not shift the phase of the muscle or liver clock, but dampened the muscle clock amplitude. As our previous study demonstrated that light-phase restricted feeding did shift the liver clock, but made the muscle clock arrhythmic, we next combined the time restriction of wheel and food access to either the light phase (LRLF) or dark phase (DRDF). LRLF produced a ∼12 h shift in the majority of clock gene rhythms in both skeletal muscle and liver. On the other hand, DRDF was most effective in reducing body weight and the accumulation of fat mass. Therefore, in order to shift the muscle clock in male Wistar rats, synergy between the timing of feeding and physical activity is necessary. These findings may contribute to further improve the design of lifestyle strategies that try to limit metabolic misalignment caused by circadian disruption. Circadian disruption is an important factor driving the current-day high prevalence of obesity and type-2 diabetes. While the impact of incorrect timing of caloric intake on circadian disruption is widely acknowlegded, the contribution of incorrect timing of physical activity remains relatively understudied. Here, we modeled the incorrect timing of physical activity in nightshift workers in male Wistar rats, by restricting running wheel access to the innate inactive (light) phase (LR). Controls included no wheel access (NR); access only during the innate active (dark) period (DR); or unrestricted ( ad libitum ) access (ALR). LR did not shift the phase of the muscle or liver clock, but dampened the muscle clock amplitude. As our previous study demonstrated that light-phase restricted feeding did shift the liver clock, but made the muscle clock arrhythmic, we next combined the time restriction of wheel and food access to either the light phase (LRLF) or dark phase (DRDF). LRLF produced a ∼12 h shift in the majority of clock gene rhythms in both skeletal muscle and liver. On the other hand, DRDF was most effective in reducing body weight and the accumulation of fat mass. Therefore, in order to shift the muscle clock in male Wistar rats, synergy between the timing of feeding and physical activity is necessary. These findings may contribute to further improve the design of lifestyle strategies that try to limit metabolic misalignment caused by circadian disruption. Image 1 • Voluntary wheel running (VWR) in the active phase boosts the muscle clock amplitude. • VWR in the active phase blunts weight gain most effectively. • VWR in the inactive phase dampens the skeletal muscle clock gene expression rhythm. • Inactive-phase restricted VWR and feeding shifts the liver and muscle clock by ∼12 h. • Active-phase restricted VWR and feeding prevents weight gain and adiposity the best. Circadian disruption is an important factor driving the current-day high prevalence of obesity and type-2 diabetes. While the impact of incorrect timing of caloric intake on circadian disruption is widely acknowlegded, the contribution of incorrect timing of physical activity remains relatively understudied. Here, we modeled the incorrect timing of physical activity in nightshift workers in male Wistar rats, by restricting running wheel access to the innate inactive (light) phase (LR). Controls included no wheel access (NR); access only during the innate active (dark) period (DR); or unrestricted (ad libitum) access (ALR). LR did not shift the phase of the muscle or liver clock, but dampened the muscle clock amplitude. As our previous study demonstrated that light-phase restricted feeding did shift the liver clock, but made the muscle clock arrhythmic, we next combined the time restriction of wheel and food access to either the light phase (LRLF) or dark phase (DRDF). LRLF produced a ∼12 h shift in the majority of clock gene rhythms in both skeletal muscle and liver. On the other hand, DRDF was most effective in reducing body weight and the accumulation of fat mass. Therefore, in order to shift the muscle clock in male Wistar rats, synergy between the timing of feeding and physical activity is necessary. These findings may contribute to further improve the design of lifestyle strategies that try to limit metabolic misalignment caused by circadian disruption.Circadian disruption is an important factor driving the current-day high prevalence of obesity and type-2 diabetes. While the impact of incorrect timing of caloric intake on circadian disruption is widely acknowlegded, the contribution of incorrect timing of physical activity remains relatively understudied. Here, we modeled the incorrect timing of physical activity in nightshift workers in male Wistar rats, by restricting running wheel access to the innate inactive (light) phase (LR). Controls included no wheel access (NR); access only during the innate active (dark) period (DR); or unrestricted (ad libitum) access (ALR). LR did not shift the phase of the muscle or liver clock, but dampened the muscle clock amplitude. As our previous study demonstrated that light-phase restricted feeding did shift the liver clock, but made the muscle clock arrhythmic, we next combined the time restriction of wheel and food access to either the light phase (LRLF) or dark phase (DRDF). LRLF produced a ∼12 h shift in the majority of clock gene rhythms in both skeletal muscle and liver. On the other hand, DRDF was most effective in reducing body weight and the accumulation of fat mass. Therefore, in order to shift the muscle clock in male Wistar rats, synergy between the timing of feeding and physical activity is necessary. These findings may contribute to further improve the design of lifestyle strategies that try to limit metabolic misalignment caused by circadian disruption. Circadian disruption is an important factor driving the current-day high prevalence of obesity and type-2 diabetes. While the impact of incorrect timing of caloric intake on circadian disruption is widely acknowlegded, the contribution of incorrect timing of physical activity remains relatively understudied. Here, we modeled the incorrect timing of physical activity in nightshift workers in male Wistar rats, by restricting running wheel access to the innate inactive (light) phase (LR). Controls included no wheel access (NR); access only during the innate active (dark) period (DR); or unrestricted (ad libitum) access (ALR). LR did not shift the phase of the muscle or liver clock, but dampened the muscle clock amplitude. As our previous study demonstrated that light-phase restricted feeding did shift the liver clock, but made the muscle clock arrhythmic, we next combined the time restriction of wheel and food access to either the light phase (LRLF) or dark phase (DRDF). LRLF produced a ∼12 h shift in the majority of clock gene rhythms in both skeletal muscle and liver. On the other hand, DRDF was most effective in reducing body weight and the accumulation of fat mass. Therefore, in order to shift the muscle clock in male Wistar rats, synergy between the timing of feeding and physical activity is necessary. These findings may contribute to further improve the design of lifestyle strategies that try to limit metabolic misalignment caused by circadian disruption. [Display omitted] •Voluntary wheel running (VWR) in the active phase boosts the muscle clock amplitude.•VWR in the active phase blunts weight gain most effectively.•VWR in the inactive phase dampens the skeletal muscle clock gene expression rhythm.•Inactive-phase restricted VWR and feeding shifts the liver and muscle clock by ∼12 h.•Active-phase restricted VWR and feeding prevents weight gain and adiposity the best. |
ArticleNumber | 100106 |
Author | Ritsema, Wayne I.G.R. Coopmans, Tom V. Stenvers, Dirk Jan Foppen, Ewout de Goede, Paul Korpel, Nikita L. Kalsbeek, Andries Hellings, Tom P. Mul, Joram D. Jansen, Merel W. Yi, Chun-Xia Shiba, Ayano Tandari, Roberta Ruitenberg, Annelou |
Author_xml | – sequence: 1 givenname: Ayano orcidid: 0009-0008-3404-9159 surname: Shiba fullname: Shiba, Ayano email: a.shiba@nin.knaw.nl organization: Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Meibergdreef 47, 1105BA, Amsterdam, the Netherlands – sequence: 2 givenname: Paul surname: de Goede fullname: de Goede, Paul email: pauldegoede@gmail.com organization: Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Meibergdreef 47, 1105BA, Amsterdam, the Netherlands – sequence: 3 givenname: Roberta surname: Tandari fullname: Tandari, Roberta email: r.tandari@amsterdamumc.nl organization: Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Meibergdreef 47, 1105BA, Amsterdam, the Netherlands – sequence: 4 givenname: Ewout surname: Foppen fullname: Foppen, Ewout email: e.foppen@nin.knaw.nl organization: Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Meibergdreef 47, 1105BA, Amsterdam, the Netherlands – sequence: 5 givenname: Nikita L. surname: Korpel fullname: Korpel, Nikita L. email: nikitalotte@casema.nl organization: Amsterdam UMC, University of Amsterdam, Laboratory of Endocrinology, Department of Laboratory Medicine, Meibergdreef 9, Amsterdam, the Netherlands – sequence: 6 givenname: Tom V. surname: Coopmans fullname: Coopmans, Tom V. email: t.v.coopmans@vu.nl organization: Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Meibergdreef 47, 1105BA, Amsterdam, the Netherlands – sequence: 7 givenname: Tom P. surname: Hellings fullname: Hellings, Tom P. email: t.p.hellings@lumc.nl organization: Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Meibergdreef 47, 1105BA, Amsterdam, the Netherlands – sequence: 8 givenname: Merel W. surname: Jansen fullname: Jansen, Merel W. email: merel.j97@gmail.com organization: Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Meibergdreef 47, 1105BA, Amsterdam, the Netherlands – sequence: 9 givenname: Annelou surname: Ruitenberg fullname: Ruitenberg, Annelou email: annelouruitenberg@ziggo.nl organization: Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Meibergdreef 47, 1105BA, Amsterdam, the Netherlands – sequence: 10 givenname: Wayne I.G.R. surname: Ritsema fullname: Ritsema, Wayne I.G.R. email: wayne.ritsema@gmail.com organization: Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Meibergdreef 47, 1105BA, Amsterdam, the Netherlands – sequence: 11 givenname: Chun-Xia surname: Yi fullname: Yi, Chun-Xia email: c.yi@amsterdamumc.nl organization: Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Meibergdreef 47, 1105BA, Amsterdam, the Netherlands – sequence: 12 givenname: Joram D. surname: Mul fullname: Mul, Joram D. email: j.d.mul@uva.nl organization: Brain Plasticity Group, Swammerdam Institute for Life Sciences, Faculty of Science, Science Park 904, 1098XH, Amsterdam, the Netherlands – sequence: 13 givenname: Dirk Jan surname: Stenvers fullname: Stenvers, Dirk Jan email: d.j.stenvers@amsterdamumc.nl organization: Amsterdam UMC, University of Amsterdam, Laboratory of Endocrinology, Department of Laboratory Medicine, Meibergdreef 9, Amsterdam, the Netherlands – sequence: 14 givenname: Andries orcidid: 0000-0001-9606-8453 surname: Kalsbeek fullname: Kalsbeek, Andries email: a.kalsbeek@nin.knaw.nl organization: Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Meibergdreef 47, 1105BA, Amsterdam, the Netherlands |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39387098$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UsFu1DAQtVARLaVfgIR85LKLx06c-IAQqgpUqsQBOFu2M9n1kjjFdlrthW_H25SqFRInj9-8eTOaeS_JUZgCEvIa2BoYyHe7dbDJxTVnvCoIAyafkRNe1bBSqqqOHsXH5CylHSscVclK8BfkWCjRNky1J-T3t33AuNlTi_kWMdDsR1xFTDl6l7GjPWLnw4aa0P2Ti3MIh5xPNKDDlEzc0zzRtPV9pnmLdJyTG5C6YXI_qQ90NOV361M2kUaT0yvyvDdDwrP795T8-HTx_fzL6urr58vzj1crJzjIVW87XtemBzRgoW0cVwVnANB2rJKmRWnROukaq1jd9X0rLAqhGJq6k9iKU3K56HaT2enr6Mcyqp6M13fAFDfaxOzLrFqZqjdgGjAtq5REBawGawTvWyk5O2h9WLSuZzti5zDkaIYnok8zwW_1ZrrRAJXkohFF4e29Qpx-zWWfevTJ4TCYgNOctAComWrKyQpVLFQXp5Qi9g99gOmDE_RO3zlBH5ygFyeUqjePR3yo-Xv3Qni_ELAs_cZj1Ml5DK7cOqLLZSv-vw3-AMleyZU |
Cites_doi | 10.1073/pnas.2218510120 10.1002/oby.22830 10.3389/fphys.2019.01328 10.1530/JME-17-0165 10.1007/s10654-013-9801-3 10.1016/j.celrep.2023.112588 10.1016/j.nbscr.2017.09.002 10.1152/japplphysiol.00683.2020 10.1002/oby.22832 10.1371/journal.pone.0125646 10.3389/fpsyg.2014.00177 10.1016/j.physbeh.2006.04.022 10.1111/ejn.13377 10.1016/j.bbadis.2012.08.010 10.1016/0031-9384(84)90248-8 10.1002/oby.22799 10.1101/gad.183500 10.1113/JP279779 10.1249/MSS.0b013e318255cf4c 10.3389/fphys.2011.00112 10.1038/ijo.2012.137 10.1186/s12859-020-03830-w 10.1093/emboj/20.15.3967 10.1371/journal.pone.0237096 10.2337/diabetes.53.7.1643 10.1371/journal.pcbi.1004094 10.1038/nrendo.2012.49 10.1126/sciadv.abi7828 10.1016/S0076-6879(05)93008-5 10.1007/s11892-014-0507-z 10.1113/JP271436 10.1177/0748730417728663 10.3389/fendo.2019.00554 10.3109/07420528.2014.935785 10.1177/0748730410379711 10.3390/ijerph17114138 10.1113/jphysiol.2012.233676 10.3389/fphys.2020.567881 10.1371/journal.pone.0197258 10.1097/JES.0b013e3182a58a70 10.1038/s41386-018-0103-z 10.1038/srep27607 10.1113/JP280428 10.1113/JP280820 10.1038/s41586-023-06877-w 10.3390/ijms19103171 10.1016/j.cmet.2022.08.018 10.1152/japplphysiol.00737.2018 10.1016/j.molmet.2022.101504 |
ContentType | Journal Article |
Copyright | 2024 The Authors 2024 The Authors. 2024 The Authors 2024 |
Copyright_xml | – notice: 2024 The Authors – notice: 2024 The Authors. – notice: 2024 The Authors 2024 |
DBID | 6I. AAFTH NPM AAYXX CITATION 7X8 5PM DOA |
DOI | 10.1016/j.nbscr.2024.100106 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access PubMed CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals |
DatabaseTitle | PubMed CrossRef MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: http://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2451-9944 |
ExternalDocumentID | oai_doaj_org_article_9a4fa1a71a80496e91051ba32f866208 10_1016_j_nbscr_2024_100106 39387098 S245199442400004X |
Genre | Journal Article |
GroupedDBID | 0R~ 0SF 6I. AACTN AAEDW AAFTH AALRI AAXUO ABMAC ACGFS ADBBV ADVLN AEXQZ AFJKZ AFTJW AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BCNDV EBS EJD FDB GROUPED_DOAJ HYE M41 M~E NCXOZ O9- OK1 ROL RPM SSZ NPM AAYXX CITATION 7X8 5PM |
ID | FETCH-LOGICAL-c3216-fbd255af1ea1b187c2932101118d046a8e6bebc6c7b905dff83be3390ea5d6e83 |
IEDL.DBID | RPM |
ISSN | 2451-9944 |
IngestDate | Tue Oct 22 15:15:58 EDT 2024 Thu Oct 10 05:32:03 EDT 2024 Sat Oct 26 01:56:42 EDT 2024 Wed Oct 16 15:31:09 EDT 2024 Sat Nov 02 12:21:41 EDT 2024 Sat Sep 28 16:18:22 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Wheel running Energy metabolism Muscle Time restriction Circadian misalignment Liver |
Language | English |
License | This is an open access article under the CC BY license. 2024 The Authors. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3216-fbd255af1ea1b187c2932101118d046a8e6bebc6c7b905dff83be3390ea5d6e83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors contributed equally. |
ORCID | 0009-0008-3404-9159 0000-0001-9606-8453 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11462373/ |
PMID | 39387098 |
PQID | 3115097000 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_9a4fa1a71a80496e91051ba32f866208 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11462373 proquest_miscellaneous_3115097000 crossref_primary_10_1016_j_nbscr_2024_100106 pubmed_primary_39387098 elsevier_sciencedirect_doi_10_1016_j_nbscr_2024_100106 |
PublicationCentury | 2000 |
PublicationDate | 2024-Nov |
PublicationDateYYYYMMDD | 2024-11-01 |
PublicationDate_xml | – month: 11 year: 2024 text: 2024-Nov |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Neurobiology of sleep and circadian rhythms |
PublicationTitleAlternate | Neurobiol Sleep Circadian Rhythms |
PublicationYear | 2024 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Bay, Pedersen (bib1) 2020; 11 Casanova-Vallve, Duglan, Vaughan, Pariollaud, Handzlik, Fan, Yu, Liddle, Downes, Delezie, Mello, Chan, Westermark, Metallo, Evans, Lamia (bib3) 2022; 61 Febbraio, Hiscock, Sacchetti, Fischer, Pedersen (bib16) 2004; 53 Siepka, Takahashi (bib44) 2005; 393 Eastman, Mistlberger, Rechtschaffen (bib15) 1984; 32 De Goede, Hellings, Coopmans, Ritsema, Kalsbeek (bib9) 2020; 28 Hughes, Abruzzi, Allada, Anafi, Arpat, Asher, Baldi, de Bekker, Bell-Pedersen, Blau, Brown, Ceriani, Chen, Chiu, Cox, Crowell, DeBruyne, Dijk, DiTacchio (bib19) 2017; 32 (bib29) 2024; 629 Kemler, Wolff, Esser (bib25) 2020; 598 van Eenige, Verhave, Koemans, Tiebosch, Rensen, Kooijman (bib47) 2020; 15 Small, Altıntaş, Laker, Ehrlich, Pattamaprapanont, Villarroel, Pillon, Zierath, Barrès (bib45) 2020; 598 de Goede, Sen, Oosterman, Foppen, Jansen, la Fleur, Challet, Kalsbeek (bib10) 2018; 4 Cermakian, Monaco, Pando, Dierich, Sassone-Corsi (bib4) 2001; 20 Manoogian, Zadourian, Lo, Gutierrez, Shoghi, Rosander, Pazargadi, Ormiston, Wang, Sui, Hou, Fleischer, Golshan, Taub, Panda (bib26) 2022; 34 Schönke, Ying, Kovynev, In Het Panhuis, Binnendijk, van der Poel, Pronk, Streefland, Hoekstra, Kooijman, Rensen (bib40) 2023; 37 Dallmann, Mrosovsky (bib6) 2006; 88 Fuller, Thyfault (bib17) 2021; 130 Greco, Koronowski, Smith, Shi, Kunderfranco, Carriero, Chen, Samad, Welz, Zinna, Mortimer, Chun, Shimaji, Sato, Petrus, Kumar, Vaca-Dempere, Deryagin, Van (bib18) 2021; 7 Sasaki, Hattori, Ikeda, Kamagata, Iwami, Yasuda, Tahara, Shibata (bib38) 2016; 6 Reznick, Preston, Wilks, Beale, Turner, Cooney (bib37) 2013; 1832 In het Panhuis, Kooijman, Brouwers, Verhoeven, Pronk, Streefland, Giera, Schrauwen, Rensen, Schönke (bib23) 2020; 28 Hutchison, Maienschein-Cline, Chiang, Tabei, Gudjonson, Bahroos, Allada, Dinner (bib21) 2015; 11 Vieira, Muñoz, Junqueira, de Oliveira, Gaspar, Nakandakari, Costa, Torsoni, da Silva, Cintra, de Moura, Ropelle, Zaghloul, Mekary, Pauli (bib48) 2022; 600 Mul, Soto, Cahill, Ryan, Takahashi, So, Zheng, Croote, Hirshman, la Fleur, Nestler, Goodyear (bib31) 2018; 43 Sasaki, Ohtsu, Ikeda, Tsubosaka, Shibata (bib39) 2014; 31 Moškon (bib28) 2020; 21 Oosterman, Koekkoek, Foppen, Unmehopa, Eggels, Verheij, Fliers, La Fleur, Kalsbeek (bib32) 2020; 28 Pedersen, Febbraio (bib34) 2012; 8 Yasumoto, Nakao, Oishi (bib50) 2015; 10 Domaszewski, Konieczny, Pakosz, Bączkowicz, Sadowska-Krępa (bib14) 2020; 17 de Goede, Sen, Su, Foppen, Poirel, Challet, Kalsbeek (bib11) 2018; 19 Hughes, Hogenesch, Kornacker (bib20) 2010; 25 Schroder, Esser (bib41) 2013; 41 Wolff, Esser (bib49) 2012; 44 Dalbram, Basse, Zierath, Treebak (bib5) 2019; 126 Bray, Ratcliffe, Grenett, Brewer, Gamble, Young (bib2) 2013; 37 Opperhuizen, Wang, Foppen, Jansen, Boudzovitch-Surovtseva, de Vries, Fliers, Kalsbeek (bib33) 2016; 44 Damiola, Le Minh, Preitner, Kornmann, Fleury-Olela, Schibler (bib7) 2000; 14 Pendergrast, Lundell, Ehrlich, Ashcroft, Schönke, Basse, Krook, Treebak, Dollet, Zierath (bib36) 2023; 120 Depner, Stothard, Wright (bib13) 2014; 14 Mul (bib30) 2018; 60 Jensen, Rustad, Kolnes, Lai (bib24) 2011; 2 Pendergast, Branecky, Huang, Niswender, Yamazaki (bib35) 2014; 5 de Goede, Foppen, Ritsema, Korpel, Yi, Kalsbeek (bib8) 2019; 10 de Mutsert, den Heijer, Rabelink, Smit, Romijn, Jukema, de Roos, Cobbaert, Kloppenburg, le Cessie, Middeldorp, Rosendaal (bib12) 2013; 28 Schroeder, Truong, Loh, Jordan, Roos, Colwell (bib43) 2012; 590 Schroder, Harfmann, Zhang, Srikuea, England, Hodge, Wen, Riley, Yu, Christie, Smith, Seward, Wolf Horrell, Mula, Peterson, Butterfield, Esser (bib42) 2015; 593 Mavroudis, DuBois, Almon, Jusko (bib27) 2018; 13 Smith, Koronowski, Mortimer, Sato, Greco, Petrus, Verlande, Chen, Samad, Deyneka, Mathur, Blazev, Molendijk, Kumar, Deryagin, Vaca-Dempere, Sica, Liu, Orlando (bib46) 2023; 42 Hyatt, Brown, Deacon, McCall (bib22) 2019; 10 de Mutsert (10.1016/j.nbscr.2024.100106_bib12) 2013; 28 Jensen (10.1016/j.nbscr.2024.100106_bib24) 2011; 2 Mavroudis (10.1016/j.nbscr.2024.100106_bib27) 2018; 13 Hutchison (10.1016/j.nbscr.2024.100106_bib21) 2015; 11 Mul (10.1016/j.nbscr.2024.100106_bib30) 2018; 60 Greco (10.1016/j.nbscr.2024.100106_bib18) 2021; 7 Hughes (10.1016/j.nbscr.2024.100106_bib20) 2010; 25 Cermakian (10.1016/j.nbscr.2024.100106_bib4) 2001; 20 (10.1016/j.nbscr.2024.100106_bib29) 2024; 629 Bray (10.1016/j.nbscr.2024.100106_bib2) 2013; 37 Dallmann (10.1016/j.nbscr.2024.100106_bib6) 2006; 88 Casanova-Vallve (10.1016/j.nbscr.2024.100106_bib3) 2022; 61 Yasumoto (10.1016/j.nbscr.2024.100106_bib50) 2015; 10 Damiola (10.1016/j.nbscr.2024.100106_bib7) 2000; 14 In het Panhuis (10.1016/j.nbscr.2024.100106_bib23) 2020; 28 Moškon (10.1016/j.nbscr.2024.100106_bib28) 2020; 21 Schroder (10.1016/j.nbscr.2024.100106_bib41) 2013; 41 de Goede (10.1016/j.nbscr.2024.100106_bib8) 2019; 10 Pendergrast (10.1016/j.nbscr.2024.100106_bib36) 2023; 120 Wolff (10.1016/j.nbscr.2024.100106_bib49) 2012; 44 Schroeder (10.1016/j.nbscr.2024.100106_bib43) 2012; 590 Domaszewski (10.1016/j.nbscr.2024.100106_bib14) 2020; 17 Siepka (10.1016/j.nbscr.2024.100106_bib44) 2005; 393 Sasaki (10.1016/j.nbscr.2024.100106_bib38) 2016; 6 Fuller (10.1016/j.nbscr.2024.100106_bib17) 2021; 130 Pendergast (10.1016/j.nbscr.2024.100106_bib35) 2014; 5 de Goede (10.1016/j.nbscr.2024.100106_bib10) 2018; 4 Hughes (10.1016/j.nbscr.2024.100106_bib19) 2017; 32 Kemler (10.1016/j.nbscr.2024.100106_bib25) 2020; 598 Reznick (10.1016/j.nbscr.2024.100106_bib37) 2013; 1832 Oosterman (10.1016/j.nbscr.2024.100106_bib32) 2020; 28 Febbraio (10.1016/j.nbscr.2024.100106_bib16) 2004; 53 van Eenige (10.1016/j.nbscr.2024.100106_bib47) 2020; 15 Mul (10.1016/j.nbscr.2024.100106_bib31) 2018; 43 Eastman (10.1016/j.nbscr.2024.100106_bib15) 1984; 32 Pedersen (10.1016/j.nbscr.2024.100106_bib34) 2012; 8 Small (10.1016/j.nbscr.2024.100106_bib45) 2020; 598 Opperhuizen (10.1016/j.nbscr.2024.100106_bib33) 2016; 44 Depner (10.1016/j.nbscr.2024.100106_bib13) 2014; 14 Manoogian (10.1016/j.nbscr.2024.100106_bib26) 2022; 34 Schroder (10.1016/j.nbscr.2024.100106_bib42) 2015; 593 Schönke (10.1016/j.nbscr.2024.100106_bib40) 2023; 37 De Goede (10.1016/j.nbscr.2024.100106_bib9) 2020; 28 Vieira (10.1016/j.nbscr.2024.100106_bib48) 2022; 600 Dalbram (10.1016/j.nbscr.2024.100106_bib5) 2019; 126 Sasaki (10.1016/j.nbscr.2024.100106_bib39) 2014; 31 Bay (10.1016/j.nbscr.2024.100106_bib1) 2020; 11 Smith (10.1016/j.nbscr.2024.100106_bib46) 2023; 42 Hyatt (10.1016/j.nbscr.2024.100106_bib22) 2019; 10 de Goede (10.1016/j.nbscr.2024.100106_bib11) 2018; 19 |
References_xml | – volume: 590 start-page: 6213 year: 2012 end-page: 6226 ident: bib43 article-title: Voluntary scheduled exercise alters diurnal rhythms of behaviour, physiology and gene expression in wild‐type and vasoactive intestinal peptide‐deficient mice publication-title: J. Physiol. contributor: fullname: Colwell – volume: 5 start-page: 177 year: 2014 ident: bib35 article-title: Wheel-running activity modulates circadian organization and the daily rhythm of eating behavior publication-title: Front. Psychol. contributor: fullname: Yamazaki – volume: 28 start-page: 513 year: 2013 end-page: 523 ident: bib12 article-title: The Netherlands Epidemiology of Obesity (NEO) study: study design and data collection publication-title: Eur. J. Epidemiol. contributor: fullname: Rosendaal – volume: 44 start-page: 2795 year: 2016 end-page: 2806 ident: bib33 article-title: Feeding during the resting phase causes profound changes in physiology and desynchronization between liver and muscle rhythms of rats publication-title: Eur. J. Neurosci. contributor: fullname: Kalsbeek – volume: 14 start-page: 2950 year: 2000 end-page: 2961 ident: bib7 article-title: Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus publication-title: Gene Dev. contributor: fullname: Schibler – volume: 11 year: 2015 ident: bib21 article-title: Improved statistical methods enable greater sensitivity in rhythm detection for genome-wide data publication-title: PLoS Comput. Biol. contributor: fullname: Dinner – volume: 11 year: 2020 ident: bib1 article-title: Muscle-organ crosstalk: focus on immunometabolism publication-title: Front. Physiol. contributor: fullname: Pedersen – volume: 28 year: 2020 ident: bib32 article-title: Synergistic effect of feeding time and diet on hepatic steatosis and gene expression in male wistar rats publication-title: Obesity contributor: fullname: Kalsbeek – volume: 34 start-page: 1442 year: 2022 end-page: 1456.e7 ident: bib26 article-title: Feasibility of time-restricted eating and impacts on cardiometabolic health in 24-hour shift workers: the healthy heroes randomized clinical trial publication-title: Cell Metabol. contributor: fullname: Panda – volume: 629 start-page: 174 year: 2024 end-page: 183 ident: bib29 article-title: Temporal dynamics of the multi-omic response to endurance exercise training publication-title: Nature – volume: 10 start-page: 554 year: 2019 ident: bib8 article-title: Time-restricted feeding improves glucose tolerance in rats, but only when in line with the circadian timing system publication-title: Front. Endocrinol. contributor: fullname: Kalsbeek – volume: 42 year: 2023 ident: bib46 article-title: Liver and muscle circadian clocks cooperate to support glucose tolerance in mice publication-title: Cell Rep. contributor: fullname: Orlando – volume: 598 start-page: 3631 year: 2020 end-page: 3644 ident: bib25 article-title: Time-of-day dependent effects of contractile activity on the phase of the skeletal muscle clock publication-title: J. Physiol. contributor: fullname: Esser – volume: 593 start-page: 5387 year: 2015 end-page: 5404 ident: bib42 article-title: Intrinsic muscle clock is necessary for musculoskeletal health publication-title: J. Physiol. contributor: fullname: Esser – volume: 41 start-page: 224 year: 2013 end-page: 229 ident: bib41 article-title: Circadian rhythms, skeletal muscle molecular clocks, and exercise publication-title: Exerc. Sport Sci. Rev. contributor: fullname: Esser – volume: 44 start-page: 1663 year: 2012 end-page: 1670 ident: bib49 article-title: Scheduled exercise phase shifts the circadian clock in skeletal muscle publication-title: Med. Sci. Sports Exerc. contributor: fullname: Esser – volume: 20 start-page: 3967 year: 2001 end-page: 3974 ident: bib4 article-title: Altered behavioral rhythms and clock gene expression in mice with a targeted mutation in the Period 1 gene publication-title: EMBO J. contributor: fullname: Sassone-Corsi – volume: 120 year: 2023 ident: bib36 article-title: Time of day determines postexercise metabolism in mouse adipose tissue publication-title: Proc. Natl. Acad. Sci. U.S.A. contributor: fullname: Zierath – volume: 598 start-page: 5739 year: 2020 end-page: 5752 ident: bib45 article-title: Contraction influences Per2 gene expression in skeletal muscle through a calcium-dependent pathway publication-title: J. Physiol. contributor: fullname: Barrès – volume: 31 start-page: 959 year: 2014 end-page: 975 ident: bib39 article-title: Combination of meal and exercise timing with a high-fat diet influences energy expenditure and obesity in mice publication-title: Chronobiol. Int. contributor: fullname: Shibata – volume: 37 year: 2023 ident: bib40 article-title: Time to run: late rather than early exercise training in mice remodels the gut microbiome and reduces atherosclerosis development publication-title: FASEB (Fed. Am. Soc. Exp. Biol.) J.: Official Publication of the Federation of American Societies for Experimental Biology contributor: fullname: Rensen – volume: 88 start-page: 459 year: 2006 end-page: 465 ident: bib6 article-title: Scheduled wheel access during daytime: a method for studying conflicting zeitgebers publication-title: Physiol. Behav. contributor: fullname: Mrosovsky – volume: 126 start-page: 993 year: 2019 end-page: 1005 ident: bib5 article-title: Voluntary wheel running in the late dark phase ameliorates diet-induced obesity in mice without altering insulin action publication-title: J. Appl. Physiol. contributor: fullname: Treebak – volume: 37 start-page: 843 year: 2013 end-page: 852 ident: bib2 article-title: Quantitative analysis of light-phase restricted feeding reveals metabolic dyssynchrony in mice publication-title: Int. J. Obes. contributor: fullname: Young – volume: 130 start-page: 182 year: 2021 end-page: 192 ident: bib17 article-title: Barriers in translating preclinical rodent exercise metabolism findings to human health publication-title: J. Appl. Physiol. contributor: fullname: Thyfault – volume: 60 start-page: R77 year: 2018 end-page: R95 ident: bib30 article-title: Voluntary exercise and depression-like behavior in rodents: are we running in the right direction? publication-title: J. Mol. Endocrinol. contributor: fullname: Mul – volume: 2 start-page: 112 year: 2011 ident: bib24 article-title: The role of skeletal muscle glycogen breakdown for regulation of insulin sensitivity by exercise publication-title: Front. Physiol. contributor: fullname: Lai – volume: 61 year: 2022 ident: bib3 article-title: Daily running enhances molecular and physiological circadian rhythms in skeletal muscle publication-title: Mol. Metabol. contributor: fullname: Lamia – volume: 25 start-page: 372 year: 2010 end-page: 380 ident: bib20 article-title: JTK_CYCLE: an efficient non-parametric algorithm for detecting rhythmic components in genome-scale datasets publication-title: J. Biol. Rhythm. contributor: fullname: Kornacker – volume: 15 year: 2020 ident: bib47 article-title: RandoMice, a novel, user-friendly randomization tool in animal research publication-title: PLoS One contributor: fullname: Kooijman – volume: 32 start-page: 380 year: 2017 end-page: 393 ident: bib19 article-title: Guidelines for genome-scale analysis of biological rhythms publication-title: J. Biol. Rhythm. contributor: fullname: DiTacchio – volume: 10 start-page: 1328 year: 2019 ident: bib22 article-title: Muscle-specific sensitivity to voluntary physical activity and detraining publication-title: Front. Physiol. contributor: fullname: McCall – volume: 8 start-page: 457 year: 2012 end-page: 465 ident: bib34 article-title: Muscles, exercise and obesity: skeletal muscle as a secretory organ publication-title: Nat. Rev. Endocrinol. contributor: fullname: Febbraio – volume: 1832 start-page: 228 year: 2013 end-page: 238 ident: bib37 article-title: Altered feeding differentially regulates circadian rhythms and energy metabolism in liver and muscle of rats publication-title: Biochim. Biophys. Acta contributor: fullname: Cooney – volume: 10 year: 2015 ident: bib50 article-title: Correction: free access to a running-wheel advances the phase of behavioral and physiological circadian rhythms and peripheral molecular clocks in mice publication-title: PLoS One contributor: fullname: Oishi – volume: 600 start-page: 797 year: 2022 end-page: 813 ident: bib48 article-title: Time-restricted feeding combined with aerobic exercise training can prevent weight gain and improve metabolic disorders in mice fed a high-fat diet publication-title: J. Physiol. contributor: fullname: Pauli – volume: 7 year: 2021 ident: bib18 article-title: Integration of feeding behavior by the liver circadian clock reveals network dependency of metabolic rhythms publication-title: Sci. Adv. contributor: fullname: Van – volume: 4 start-page: 24 year: 2018 end-page: 33 ident: bib10 article-title: Differential effects of diet composition and timing of feeding behavior on rat brown adipose tissue and skeletal muscle peripheral clocks publication-title: Neurobiology of Sleep and Circadian Rhythms contributor: fullname: Kalsbeek – volume: 53 start-page: 1643 year: 2004 end-page: 1648 ident: bib16 article-title: Interleukin-6 is a novel factor mediating glucose homeostasis during skeletal muscle contraction publication-title: Diabetes contributor: fullname: Pedersen – volume: 14 start-page: 507 year: 2014 ident: bib13 article-title: Metabolic consequences of sleep and circadian disorders publication-title: Curr. Diabetes Rep. contributor: fullname: Wright – volume: 43 start-page: 1934 year: 2018 end-page: 1942 ident: bib31 article-title: Voluntary wheel running promotes resilience to chronic social defeat stress in mice: a role for nucleus accumbens ΔFosB publication-title: Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology contributor: fullname: Goodyear – volume: 32 start-page: 357 year: 1984 end-page: 368 ident: bib15 article-title: Suprachiasmatic nuclei lesions eliminate circadian temperature and sleep rhythms in the rat publication-title: Physiol. Behav. contributor: fullname: Rechtschaffen – volume: 28 year: 2020 ident: bib9 article-title: After‐effects of time‐restricted feeding on whole‐body metabolism and gene expression in four different peripheral tissues publication-title: Obesity contributor: fullname: Kalsbeek – volume: 19 start-page: 3171 year: 2018 ident: bib11 article-title: An ultradian feeding schedule in rats affects metabolic gene expression in liver, Brown adipose tissue and skeletal muscle with only mild effects on circadian clocks publication-title: Int. J. Mol. Sci. contributor: fullname: Kalsbeek – volume: 393 start-page: 230 year: 2005 end-page: 239 ident: bib44 article-title: Methods to record circadian rhythm wheel running activity in mice publication-title: Methods Enzymol. contributor: fullname: Takahashi – volume: 13 year: 2018 ident: bib27 article-title: Daily variation of gene expression in diverse rat tissues publication-title: PLoS One contributor: fullname: Jusko – volume: 6 year: 2016 ident: bib38 article-title: Forced rather than voluntary exercise entrains peripheral clocks via a corticosterone/noradrenaline increase in PER2::LUC mice publication-title: Sci. Rep. contributor: fullname: Shibata – volume: 21 start-page: 485 year: 2020 ident: bib28 article-title: CosinorPy: a python package for cosinor-based rhythmometry publication-title: BMC Bioinf. contributor: fullname: Moškon – volume: 28 start-page: S93 year: 2020 end-page: S103 ident: bib23 article-title: Mild exercise does not prevent atherosclerosis in APOE∗3-Leiden.CETP mice or improve lipoprotein profile of men with obesity publication-title: Obesity contributor: fullname: Schönke – volume: 17 start-page: 4138 year: 2020 ident: bib14 article-title: Effect of a six-week intermittent fasting intervention program on the composition of the human body in women over 60 Years of age publication-title: Int. J. Environ. Res. Publ. Health contributor: fullname: Sadowska-Krępa – volume: 120 issue: 8 year: 2023 ident: 10.1016/j.nbscr.2024.100106_bib36 article-title: Time of day determines postexercise metabolism in mouse adipose tissue publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.2218510120 contributor: fullname: Pendergrast – volume: 28 issue: S1 year: 2020 ident: 10.1016/j.nbscr.2024.100106_bib9 article-title: After‐effects of time‐restricted feeding on whole‐body metabolism and gene expression in four different peripheral tissues publication-title: Obesity doi: 10.1002/oby.22830 contributor: fullname: De Goede – volume: 10 start-page: 1328 year: 2019 ident: 10.1016/j.nbscr.2024.100106_bib22 article-title: Muscle-specific sensitivity to voluntary physical activity and detraining publication-title: Front. Physiol. doi: 10.3389/fphys.2019.01328 contributor: fullname: Hyatt – volume: 60 start-page: R77 issue: 3 year: 2018 ident: 10.1016/j.nbscr.2024.100106_bib30 article-title: Voluntary exercise and depression-like behavior in rodents: are we running in the right direction? publication-title: J. Mol. Endocrinol. doi: 10.1530/JME-17-0165 contributor: fullname: Mul – volume: 28 start-page: 513 issue: 6 year: 2013 ident: 10.1016/j.nbscr.2024.100106_bib12 article-title: The Netherlands Epidemiology of Obesity (NEO) study: study design and data collection publication-title: Eur. J. Epidemiol. doi: 10.1007/s10654-013-9801-3 contributor: fullname: de Mutsert – volume: 42 issue: 6 year: 2023 ident: 10.1016/j.nbscr.2024.100106_bib46 article-title: Liver and muscle circadian clocks cooperate to support glucose tolerance in mice publication-title: Cell Rep. doi: 10.1016/j.celrep.2023.112588 contributor: fullname: Smith – volume: 4 start-page: 24 year: 2018 ident: 10.1016/j.nbscr.2024.100106_bib10 article-title: Differential effects of diet composition and timing of feeding behavior on rat brown adipose tissue and skeletal muscle peripheral clocks publication-title: Neurobiology of Sleep and Circadian Rhythms doi: 10.1016/j.nbscr.2017.09.002 contributor: fullname: de Goede – volume: 130 start-page: 182 issue: 1 year: 2021 ident: 10.1016/j.nbscr.2024.100106_bib17 article-title: Barriers in translating preclinical rodent exercise metabolism findings to human health publication-title: J. Appl. Physiol. doi: 10.1152/japplphysiol.00683.2020 contributor: fullname: Fuller – volume: 28 issue: S1 year: 2020 ident: 10.1016/j.nbscr.2024.100106_bib32 article-title: Synergistic effect of feeding time and diet on hepatic steatosis and gene expression in male wistar rats publication-title: Obesity doi: 10.1002/oby.22832 contributor: fullname: Oosterman – volume: 10 issue: 4 year: 2015 ident: 10.1016/j.nbscr.2024.100106_bib50 article-title: Correction: free access to a running-wheel advances the phase of behavioral and physiological circadian rhythms and peripheral molecular clocks in mice publication-title: PLoS One doi: 10.1371/journal.pone.0125646 contributor: fullname: Yasumoto – volume: 5 start-page: 177 year: 2014 ident: 10.1016/j.nbscr.2024.100106_bib35 article-title: Wheel-running activity modulates circadian organization and the daily rhythm of eating behavior publication-title: Front. Psychol. doi: 10.3389/fpsyg.2014.00177 contributor: fullname: Pendergast – volume: 88 start-page: 459 issue: 4–5 year: 2006 ident: 10.1016/j.nbscr.2024.100106_bib6 article-title: Scheduled wheel access during daytime: a method for studying conflicting zeitgebers publication-title: Physiol. Behav. doi: 10.1016/j.physbeh.2006.04.022 contributor: fullname: Dallmann – volume: 44 start-page: 2795 issue: 10 year: 2016 ident: 10.1016/j.nbscr.2024.100106_bib33 article-title: Feeding during the resting phase causes profound changes in physiology and desynchronization between liver and muscle rhythms of rats publication-title: Eur. J. Neurosci. doi: 10.1111/ejn.13377 contributor: fullname: Opperhuizen – volume: 1832 start-page: 228 issue: 1 year: 2013 ident: 10.1016/j.nbscr.2024.100106_bib37 article-title: Altered feeding differentially regulates circadian rhythms and energy metabolism in liver and muscle of rats publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbadis.2012.08.010 contributor: fullname: Reznick – volume: 32 start-page: 357 issue: 3 year: 1984 ident: 10.1016/j.nbscr.2024.100106_bib15 article-title: Suprachiasmatic nuclei lesions eliminate circadian temperature and sleep rhythms in the rat publication-title: Physiol. Behav. doi: 10.1016/0031-9384(84)90248-8 contributor: fullname: Eastman – volume: 28 start-page: S93 issue: S1 year: 2020 ident: 10.1016/j.nbscr.2024.100106_bib23 article-title: Mild exercise does not prevent atherosclerosis in APOE∗3-Leiden.CETP mice or improve lipoprotein profile of men with obesity publication-title: Obesity doi: 10.1002/oby.22799 contributor: fullname: In het Panhuis – volume: 14 start-page: 2950 issue: 23 year: 2000 ident: 10.1016/j.nbscr.2024.100106_bib7 article-title: Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus publication-title: Gene Dev. doi: 10.1101/gad.183500 contributor: fullname: Damiola – volume: 598 start-page: 3631 issue: 17 year: 2020 ident: 10.1016/j.nbscr.2024.100106_bib25 article-title: Time-of-day dependent effects of contractile activity on the phase of the skeletal muscle clock publication-title: J. Physiol. doi: 10.1113/JP279779 contributor: fullname: Kemler – volume: 44 start-page: 1663 issue: 9 year: 2012 ident: 10.1016/j.nbscr.2024.100106_bib49 article-title: Scheduled exercise phase shifts the circadian clock in skeletal muscle publication-title: Med. Sci. Sports Exerc. doi: 10.1249/MSS.0b013e318255cf4c contributor: fullname: Wolff – volume: 2 start-page: 112 year: 2011 ident: 10.1016/j.nbscr.2024.100106_bib24 article-title: The role of skeletal muscle glycogen breakdown for regulation of insulin sensitivity by exercise publication-title: Front. Physiol. doi: 10.3389/fphys.2011.00112 contributor: fullname: Jensen – volume: 37 start-page: 843 issue: 6 year: 2013 ident: 10.1016/j.nbscr.2024.100106_bib2 article-title: Quantitative analysis of light-phase restricted feeding reveals metabolic dyssynchrony in mice publication-title: Int. J. Obes. doi: 10.1038/ijo.2012.137 contributor: fullname: Bray – volume: 21 start-page: 485 issue: 1 year: 2020 ident: 10.1016/j.nbscr.2024.100106_bib28 article-title: CosinorPy: a python package for cosinor-based rhythmometry publication-title: BMC Bioinf. doi: 10.1186/s12859-020-03830-w contributor: fullname: Moškon – volume: 20 start-page: 3967 issue: 15 year: 2001 ident: 10.1016/j.nbscr.2024.100106_bib4 article-title: Altered behavioral rhythms and clock gene expression in mice with a targeted mutation in the Period 1 gene publication-title: EMBO J. doi: 10.1093/emboj/20.15.3967 contributor: fullname: Cermakian – volume: 15 issue: 8 year: 2020 ident: 10.1016/j.nbscr.2024.100106_bib47 article-title: RandoMice, a novel, user-friendly randomization tool in animal research publication-title: PLoS One doi: 10.1371/journal.pone.0237096 contributor: fullname: van Eenige – volume: 53 start-page: 1643 issue: 7 year: 2004 ident: 10.1016/j.nbscr.2024.100106_bib16 article-title: Interleukin-6 is a novel factor mediating glucose homeostasis during skeletal muscle contraction publication-title: Diabetes doi: 10.2337/diabetes.53.7.1643 contributor: fullname: Febbraio – volume: 11 issue: 3 year: 2015 ident: 10.1016/j.nbscr.2024.100106_bib21 article-title: Improved statistical methods enable greater sensitivity in rhythm detection for genome-wide data publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1004094 contributor: fullname: Hutchison – volume: 8 start-page: 457 issue: 8 year: 2012 ident: 10.1016/j.nbscr.2024.100106_bib34 article-title: Muscles, exercise and obesity: skeletal muscle as a secretory organ publication-title: Nat. Rev. Endocrinol. doi: 10.1038/nrendo.2012.49 contributor: fullname: Pedersen – volume: 7 issue: 39 year: 2021 ident: 10.1016/j.nbscr.2024.100106_bib18 article-title: Integration of feeding behavior by the liver circadian clock reveals network dependency of metabolic rhythms publication-title: Sci. Adv. doi: 10.1126/sciadv.abi7828 contributor: fullname: Greco – volume: 393 start-page: 230 year: 2005 ident: 10.1016/j.nbscr.2024.100106_bib44 article-title: Methods to record circadian rhythm wheel running activity in mice publication-title: Methods Enzymol. doi: 10.1016/S0076-6879(05)93008-5 contributor: fullname: Siepka – volume: 14 start-page: 507 issue: 7 year: 2014 ident: 10.1016/j.nbscr.2024.100106_bib13 article-title: Metabolic consequences of sleep and circadian disorders publication-title: Curr. Diabetes Rep. doi: 10.1007/s11892-014-0507-z contributor: fullname: Depner – volume: 37 issue: 1 year: 2023 ident: 10.1016/j.nbscr.2024.100106_bib40 article-title: Time to run: late rather than early exercise training in mice remodels the gut microbiome and reduces atherosclerosis development publication-title: FASEB (Fed. Am. Soc. Exp. Biol.) J.: Official Publication of the Federation of American Societies for Experimental Biology contributor: fullname: Schönke – volume: 593 start-page: 5387 issue: 24 year: 2015 ident: 10.1016/j.nbscr.2024.100106_bib42 article-title: Intrinsic muscle clock is necessary for musculoskeletal health publication-title: J. Physiol. doi: 10.1113/JP271436 contributor: fullname: Schroder – volume: 32 start-page: 380 issue: 5 year: 2017 ident: 10.1016/j.nbscr.2024.100106_bib19 article-title: Guidelines for genome-scale analysis of biological rhythms publication-title: J. Biol. Rhythm. doi: 10.1177/0748730417728663 contributor: fullname: Hughes – volume: 10 start-page: 554 year: 2019 ident: 10.1016/j.nbscr.2024.100106_bib8 article-title: Time-restricted feeding improves glucose tolerance in rats, but only when in line with the circadian timing system publication-title: Front. Endocrinol. doi: 10.3389/fendo.2019.00554 contributor: fullname: de Goede – volume: 31 start-page: 959 issue: 9 year: 2014 ident: 10.1016/j.nbscr.2024.100106_bib39 article-title: Combination of meal and exercise timing with a high-fat diet influences energy expenditure and obesity in mice publication-title: Chronobiol. Int. doi: 10.3109/07420528.2014.935785 contributor: fullname: Sasaki – volume: 25 start-page: 372 issue: 5 year: 2010 ident: 10.1016/j.nbscr.2024.100106_bib20 article-title: JTK_CYCLE: an efficient non-parametric algorithm for detecting rhythmic components in genome-scale datasets publication-title: J. Biol. Rhythm. doi: 10.1177/0748730410379711 contributor: fullname: Hughes – volume: 17 start-page: 4138 issue: 11 year: 2020 ident: 10.1016/j.nbscr.2024.100106_bib14 article-title: Effect of a six-week intermittent fasting intervention program on the composition of the human body in women over 60 Years of age publication-title: Int. J. Environ. Res. Publ. Health doi: 10.3390/ijerph17114138 contributor: fullname: Domaszewski – volume: 590 start-page: 6213 issue: 23 year: 2012 ident: 10.1016/j.nbscr.2024.100106_bib43 article-title: Voluntary scheduled exercise alters diurnal rhythms of behaviour, physiology and gene expression in wild‐type and vasoactive intestinal peptide‐deficient mice publication-title: J. Physiol. doi: 10.1113/jphysiol.2012.233676 contributor: fullname: Schroeder – volume: 11 year: 2020 ident: 10.1016/j.nbscr.2024.100106_bib1 article-title: Muscle-organ crosstalk: focus on immunometabolism publication-title: Front. Physiol. doi: 10.3389/fphys.2020.567881 contributor: fullname: Bay – volume: 13 issue: 5 year: 2018 ident: 10.1016/j.nbscr.2024.100106_bib27 article-title: Daily variation of gene expression in diverse rat tissues publication-title: PLoS One doi: 10.1371/journal.pone.0197258 contributor: fullname: Mavroudis – volume: 41 start-page: 224 issue: 4 year: 2013 ident: 10.1016/j.nbscr.2024.100106_bib41 article-title: Circadian rhythms, skeletal muscle molecular clocks, and exercise publication-title: Exerc. Sport Sci. Rev. doi: 10.1097/JES.0b013e3182a58a70 contributor: fullname: Schroder – volume: 43 start-page: 1934 issue: 9 year: 2018 ident: 10.1016/j.nbscr.2024.100106_bib31 article-title: Voluntary wheel running promotes resilience to chronic social defeat stress in mice: a role for nucleus accumbens ΔFosB publication-title: Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology doi: 10.1038/s41386-018-0103-z contributor: fullname: Mul – volume: 6 issue: 1 year: 2016 ident: 10.1016/j.nbscr.2024.100106_bib38 article-title: Forced rather than voluntary exercise entrains peripheral clocks via a corticosterone/noradrenaline increase in PER2::LUC mice publication-title: Sci. Rep. doi: 10.1038/srep27607 contributor: fullname: Sasaki – volume: 598 start-page: 5739 issue: 24 year: 2020 ident: 10.1016/j.nbscr.2024.100106_bib45 article-title: Contraction influences Per2 gene expression in skeletal muscle through a calcium-dependent pathway publication-title: J. Physiol. doi: 10.1113/JP280428 contributor: fullname: Small – volume: 600 start-page: 797 issue: 4 year: 2022 ident: 10.1016/j.nbscr.2024.100106_bib48 article-title: Time-restricted feeding combined with aerobic exercise training can prevent weight gain and improve metabolic disorders in mice fed a high-fat diet publication-title: J. Physiol. doi: 10.1113/JP280820 contributor: fullname: Vieira – volume: 629 start-page: 174 issue: 8010 year: 2024 ident: 10.1016/j.nbscr.2024.100106_bib29 article-title: Temporal dynamics of the multi-omic response to endurance exercise training publication-title: Nature doi: 10.1038/s41586-023-06877-w – volume: 19 start-page: 3171 issue: 10 year: 2018 ident: 10.1016/j.nbscr.2024.100106_bib11 article-title: An ultradian feeding schedule in rats affects metabolic gene expression in liver, Brown adipose tissue and skeletal muscle with only mild effects on circadian clocks publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms19103171 contributor: fullname: de Goede – volume: 34 start-page: 1442 issue: 10 year: 2022 ident: 10.1016/j.nbscr.2024.100106_bib26 article-title: Feasibility of time-restricted eating and impacts on cardiometabolic health in 24-hour shift workers: the healthy heroes randomized clinical trial publication-title: Cell Metabol. doi: 10.1016/j.cmet.2022.08.018 contributor: fullname: Manoogian – volume: 126 start-page: 993 issue: 4 year: 2019 ident: 10.1016/j.nbscr.2024.100106_bib5 article-title: Voluntary wheel running in the late dark phase ameliorates diet-induced obesity in mice without altering insulin action publication-title: J. Appl. Physiol. doi: 10.1152/japplphysiol.00737.2018 contributor: fullname: Dalbram – volume: 61 year: 2022 ident: 10.1016/j.nbscr.2024.100106_bib3 article-title: Daily running enhances molecular and physiological circadian rhythms in skeletal muscle publication-title: Mol. Metabol. doi: 10.1016/j.molmet.2022.101504 contributor: fullname: Casanova-Vallve |
SSID | ssj0001946432 |
Score | 2.323822 |
Snippet | Circadian disruption is an important factor driving the current-day high prevalence of obesity and type-2 diabetes. While the impact of incorrect timing of... |
SourceID | doaj pubmedcentral proquest crossref pubmed elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 100106 |
SubjectTerms | Circadian misalignment Energy metabolism Liver Muscle Research Paper Time restriction Wheel running |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nj9MwELWgJy4IxFcXWA0SRyKaOE2cI7Bb7YlLQeJm2clYDajuqmmEeuG3M2MnVUul3QvXOLFjz9hvJpl5I8R769CkucOkds08yVXtEuWwSlLHWY5KIpacO3yzLL_-UFfXTJNzKPXFMWGRHjgu3MfK5M6kpkyNImO2QIK3eWqNzJwqimxI852pI2cqfF2pcoLabKQZCgFdnjcieYRZHoiHuMbRERQFxv4TRDq3OP8NnDxCosUT8XgwIeFTfPWn4gH6Z-LPch-y-GAIvAIuGp9w4Q066MiqBBdhCoxvztq2fShcBG0HHjlvwGz3sNtAt2rdDshEhHXf0VhQE_T9gtbDmnAFfrPtuQXSoe65-L64_vblJhlqKyS1zNIicbYhZ8K4lERlU1XWBPu0jnTyqYZcZqOwsGjroi5tNZs3zilpUcpqhmbeFKjkCzHxG4-vBJDHRJ4u9YI2z22WKcePc9qJ5Liacio-jMusbyOFhh5jy37qIBXNUtFRKlPxmUVxuJX5r8MF0go9aIW-TyumohgFqQdTIpoI1FV79-jvRrFr2mj898R43PSdZlqiWVWSck3Fy6gGh3eUlaRzr6Jh1YmCnEzitMW3q0DmzVnhmSzlxf-Y9mvxiOcScyXfiMlu2-Nb8bBr-suwP_4CPHsWoQ priority: 102 providerName: Directory of Open Access Journals |
Title | Synergy between time-restricted feeding and time-restricted running is necessary to shift the muscle clock in male wistar rats |
URI | https://dx.doi.org/10.1016/j.nbscr.2024.100106 https://www.ncbi.nlm.nih.gov/pubmed/39387098 https://www.proquest.com/docview/3115097000 https://pubmed.ncbi.nlm.nih.gov/PMC11462373 https://doaj.org/article/9a4fa1a71a80496e91051ba32f866208 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbYnrggqvJYoNUgcSTdTZx1nGOf6gWEVJC4WbZj0wDrrZKNql762zvjJNVuK3HgGsePZMaeb5JvZhj7ZLzTae5dYn21SHJpfSK9K5PUU5Sj5M4VFDt8cVl8_SlPzyhNjhhjYSJp35r6MPxdHob6KnIrr5d2NvLEZt--nFAkbcYLPpuwCYLDDR89flkpczSz2ZhiKJK5Am1C9AazPCYdovpGG2YoZuvfskZP0eZj0uSGFTp_yV4M8BGO-mXusmcu7LG7y9sYwQcD6QqoYHxCRTfwkENECb43UaBD9aSt6WLRIqhbCI5iBnRzC-sVtFe1XwPCQ1h2Lc4FFs3eH6gDLNGmwA3hzgZQf9pX7Mf52feTi2Soq5BYnqUi8aZCR0L7FMVkUllYNPno-eGpJyt0l7V0wjhjhS1MOV9U3ktuHOfl3OlFJZzkr9lOWAX3lgF6S-jl4ijO5LnJMumpO4WccOLUFFP2eXzN6rpPn6FGXtlvFaWiSCqql8qUHZMoHm6l3Nfxwqr5pQYNUKXOvU51kWqJ7o1wCHgWqdE881KIbC6nTIyCVAOM6OEBDlX_e_aPo9gVbjL6c6KDW3WtopRE87JA5ZqyN70aPKyRlxzPvBKnlVsKsvUQ2y2o1zGR96jH7_6_63v2nJ6gj478wHbWTef22aStuoP4eeEg7o17Sa8Xyg |
link.rule.ids | 230,315,729,782,786,866,887,2108,27935,27936,53803,53805 |
linkProvider | National Library of Medicine |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYKPbQXWtQHS2lxpR4bNomzjnMsFLRVAVWCSr1ZtmNDaNeLko0qLv3tnXEStAsSB65xbMeZsef7knkQ8kk7q5LM2ci4chJlwrhIOFtEicMoR8GszTF2eHqWn_4SXw8xTQ4fYmGC077R1Z7_M9vz1WXwrbyemfHgJzb-cXKAkbQpy9l4jTyFDRuzJZYevq0UGRjadEgyFNy5PG5D4INpFtIOYYWjJUMU8vWv2KP7ePOu2-SSHTp68dgVvCQbPfKkX7r2TfLE-lfk39lNCP6jvb8WxVrzEdbrgPMRwCh1nXWjypf32uo21DuiVUO9xXADVd_QxZw2l5VbUECWdNY2MBc1YDF_08rTGZgj-hcha01B9ZrX5OfR4fnBNOpLMkSGpQmPnC6BgyiXgIR1InIDaAFIIxyYogSmrYTl2mrDTa6LeFI6J5i2jBWxVZOSW8HekHU_93aLUCBaQJBhFKuzTKepcNgdo1UYuuPkI_J5kI-87jJvyMEl7UoGcUoUp-zEOSL7KMPbWzFtdrgwry9k_-ploTKnEpUnSgAz4haw0iTRiqVOcJ7GYkT4oAGyRyAdsoChqodn_zjoi4T9iT9dlLfztpGYzSguctDKEXnb6c_tM7KCwXFZwLRiRbNWFrHaAgoVcoAPCrT9-K675Nn0_ORYHn87_f6OPMfVdEGWO2R9Ubf2PVlryvZD2Fr_AdodLIw |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELb6kBAXoOK1UKiROJJuEufh9FbarloBVaWCxM2yHbsNsN5VslHVS397Z5yk2qUSB3qNYzvOjD3fJDPfEPJRWSOjxJpA2zINEq5twK0pgshiliNnxuSYO3x8np_-5IdHSJOzN-TC-KB9rapd92e666pLH1s5n-rxECc2Pvt2gJm0McvZeF7a8TrZhE0bpkueuv--UiRgbOOBaMiHdDnciuATxomnHsIqR0vGyHP2r9ik-5jz79DJJVs0efqQVTwjT3oESve7e7bImnHPyc35tU8CpH3cFsWa8wHW7YBzEkAptZ2Vo9KV99rq1tc9olVDncG0A1lf08WMNpeVXVBAmHTaNjAX1WA5f9PK0SmYJXqF0LWmoILNC_JjcvT94DjoSzMEmsVRFlhVgi8ibQSSVhHPNaAGcB7h4OQleNySm0wZpTOdqyJMS2s5U4axIjQyLTPD2Uuy4WbOvCYUHC5wlGEUo5JExTG32B2zVhiG5eQj8mmQkZh3DBxiCE37JbxIBYpUdCIdkc8ox7tbkT7bX5jVF6J__aKQiZWRzCPJwUPKDGCmNFKSxZZnWRzyEckGLRA9EukQBgxV_Xv2D4POCNin-PNFOjNrG4GsRmGRg2aOyKtOh-6ekRUMjs0CpuUr2rWyiNUWUCrPBT4o0Zv_77pDHp0dTsTXk9Mvb8ljXEyXa7lNNhZ1a96R9aZs3_vddQssaC8M |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synergy+between+time-restricted+feeding+and+time-restricted+running+is+necessary+to+shift+the+muscle+clock+in+male+wistar+rats&rft.jtitle=Neurobiology+of+sleep+and+circadian+rhythms&rft.au=Shiba%2C+Ayano&rft.au=de+Goede%2C+Paul&rft.au=Tandari%2C+Roberta&rft.au=Foppen%2C+Ewout&rft.date=2024-11-01&rft.pub=Elsevier+Inc&rft.issn=2451-9944&rft.eissn=2451-9944&rft.volume=17&rft_id=info:doi/10.1016%2Fj.nbscr.2024.100106&rft.externalDocID=S245199442400004X |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2451-9944&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2451-9944&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2451-9944&client=summon |