Discrimination between natural and other gamma ray sources from environmental gamma ray dose rate monitoring data

In this study, a method to discriminate between natural and other γ-ray sources from environmental γ-ray dose rate monitoring data was developed, and it was successfully applied to actual monitoring data around nuclear facilities. The environmental dose rate is generally monitored by NaI(Tl) detecto...

Full description

Saved in:
Bibliographic Details
Published in:Radiation protection dosimetry Vol. 167; no. 1-3; pp. 293 - 297
Main Authors: Kumagai, K, Ookubo, H, Kimura, H
Format: Journal Article
Language:English
Published: England 01-11-2015
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this study, a method to discriminate between natural and other γ-ray sources from environmental γ-ray dose rate monitoring data was developed, and it was successfully applied to actual monitoring data around nuclear facilities. The environmental dose rate is generally monitored by NaI(Tl) detector systems in the low dose rate range. The background dose rate varies mainly as a result of the deposition of (222)Rn progeny in precipitation and shielding of the ground by snow cover. Increments in the environmental dose rate due to radionuclides released from nuclear facilities must be separated from these background variations. The method in the present study corrects for the dose rate variations from natural sources by multiple regression analysis based on the γ-ray counting rates of single-channel analysers opened in the energy ranges of γ-rays emitted by (214)Bi and (208)Tl. Assuming a normal distribution of the results and using the one-sided type I error of 0.01 while ignoring the type II error, the detection limit of the γ-ray dose rate from artificial sources was 0.77 nGy h(-1).
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0144-8420
1742-3406
DOI:10.1093/rpd/ncv265