Improvement of Fuzzy Newton Power Flow Convergence

In order to address the convergence issue in fuzzy power flow calculations, this paper proposes an analytical approach based on the Levenberg–Marquardt method, aiming to improve the convergence of the fuzzy Newton power flow method. Firstly, a detailed analysis is conducted on the convergence theore...

Full description

Saved in:
Bibliographic Details
Published in:Energies (Basel) Vol. 16; no. 24; p. 8044
Main Authors: Zhao, Ligang, Zheng, Hua, Zhen, Hongyue, Xie, Li, Xu, Yuan, Huang, Xianchao
Format: Journal Article
Language:English
Published: Basel MDPI AG 01-12-2023
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In order to address the convergence issue in fuzzy power flow calculations, this paper proposes an analytical approach based on the Levenberg–Marquardt method, aiming to improve the convergence of the fuzzy Newton power flow method. Firstly, a detailed analysis is conducted on the convergence theorem and convergence behavior of the fuzzy Newton method, revealing its poor convergence when the initial values are not properly selected. The Levenberg–Marquardt method is then selected as a means to enhance the convergence of the fuzzy Newton power flow calculations, specifically to tackle the problem of initial value deviation. Since the Jacobian matrix has a significant impact on the convergence region of the power flow, this paper reconstructs the Jacobian matrix based on the Levenberg–Marquardt method, effectively enlarging the convergence region. Through validation experiments on the IEEE 118 standard nodes and simulation comparative analysis, the results confirm the method’s effectiveness in resolving the problem of initial value deviation and notably enlarging the convergence region, thereby improving the convergence of power flow calculations.
ISSN:1996-1073
1996-1073
DOI:10.3390/en16248044