Development and validation of a biomechanically fidelic surgical training knee model
Knee arthroplasty technique is constantly evolving and the opportunity for surgeons to practice new techniques is currently highly dependent on the availability of cadaveric specimens requiring certified facilities. The high cost, limited supply, and heterogeneity of cadaveric specimens has increase...
Saved in:
Published in: | Journal of orthopaedic research Vol. 42; no. 10; pp. 2181 - 2188 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
01-10-2024
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Knee arthroplasty technique is constantly evolving and the opportunity for surgeons to practice new techniques is currently highly dependent on the availability of cadaveric specimens requiring certified facilities. The high cost, limited supply, and heterogeneity of cadaveric specimens has increased the demand for synthetic training models, which are currently limited by a lack of biomechanical fidelity. Here, we aimed to design, manufacture, and experimentally validate a synthetic knee surgical training model which reproduces the flexion dependent varus‐valgus (VV) and anterior‐posterior (AP) mechanics of cadaveric knees, while maintaining anatomic accuracy. A probabilistic finite element modeling approach was employed to design physical models to exhibit passive cadaveric VV and AP mechanics. Seven synthetic models were manufactured and tested in a six‐degree‐of‐freedom hexapod robot. Overall, the synthetic models exhibited cadaver‐like VV and AP mechanics across a wide range of flexion angles with little variation between models. In the extended position, two models showed increased valgus rotation (<0.5°), and three models showed increased posterior tibial translation (<1.7 mm) when compared to the 95% confidence interval (CI) of cadaveric measurements. At full flexion, all models showed VV and AP mechanics within the 95% CI of cadaveric measurements. Given the repeatable mechanics exhibited, the knee models developed in this study can be used to reduce the current reliance on cadaveric specimens in surgical training. |
---|---|
AbstractList | Knee arthroplasty technique is constantly evolving and the opportunity for surgeons to practice new techniques is currently highly dependent on the availability of cadaveric specimens requiring certified facilities. The high cost, limited supply, and heterogeneity of cadaveric specimens has increased the demand for synthetic training models, which are currently limited by a lack of biomechanical fidelity. Here, we aimed to design, manufacture, and experimentally validate a synthetic knee surgical training model which reproduces the flexion dependent varus‐valgus (VV) and anterior‐posterior (AP) mechanics of cadaveric knees, while maintaining anatomic accuracy. A probabilistic finite element modeling approach was employed to design physical models to exhibit passive cadaveric VV and AP mechanics. Seven synthetic models were manufactured and tested in a six‐degree‐of‐freedom hexapod robot. Overall, the synthetic models exhibited cadaver‐like VV and AP mechanics across a wide range of flexion angles with little variation between models. In the extended position, two models showed increased valgus rotation (<0.5°), and three models showed increased posterior tibial translation (<1.7 mm) when compared to the 95% confidence interval (CI) of cadaveric measurements. At full flexion, all models showed VV and AP mechanics within the 95% CI of cadaveric measurements. Given the repeatable mechanics exhibited, the knee models developed in this study can be used to reduce the current reliance on cadaveric specimens in surgical training. Knee arthroplasty technique is constantly evolving and the opportunity for surgeons to practice new techniques is currently highly dependent on the availability of cadaveric specimens requiring certified facilities. The high cost, limited supply, and heterogeneity of cadaveric specimens has increased the demand for synthetic training models, which are currently limited by a lack of biomechanical fidelity. Here, we aimed to design, manufacture, and experimentally validate a synthetic knee surgical training model which reproduces the flexion dependent varus-valgus (VV) and anterior-posterior (AP) mechanics of cadaveric knees, while maintaining anatomic accuracy. A probabilistic finite element modeling approach was employed to design physical models to exhibit passive cadaveric VV and AP mechanics. Seven synthetic models were manufactured and tested in a six-degree-of-freedom hexapod robot. Overall, the synthetic models exhibited cadaver-like VV and AP mechanics across a wide range of flexion angles with little variation between models. In the extended position, two models showed increased valgus rotation (<0.5°), and three models showed increased posterior tibial translation (<1.7 mm) when compared to the 95% confidence interval (CI) of cadaveric measurements. At full flexion, all models showed VV and AP mechanics within the 95% CI of cadaveric measurements. Given the repeatable mechanics exhibited, the knee models developed in this study can be used to reduce the current reliance on cadaveric specimens in surgical training.Knee arthroplasty technique is constantly evolving and the opportunity for surgeons to practice new techniques is currently highly dependent on the availability of cadaveric specimens requiring certified facilities. The high cost, limited supply, and heterogeneity of cadaveric specimens has increased the demand for synthetic training models, which are currently limited by a lack of biomechanical fidelity. Here, we aimed to design, manufacture, and experimentally validate a synthetic knee surgical training model which reproduces the flexion dependent varus-valgus (VV) and anterior-posterior (AP) mechanics of cadaveric knees, while maintaining anatomic accuracy. A probabilistic finite element modeling approach was employed to design physical models to exhibit passive cadaveric VV and AP mechanics. Seven synthetic models were manufactured and tested in a six-degree-of-freedom hexapod robot. Overall, the synthetic models exhibited cadaver-like VV and AP mechanics across a wide range of flexion angles with little variation between models. In the extended position, two models showed increased valgus rotation (<0.5°), and three models showed increased posterior tibial translation (<1.7 mm) when compared to the 95% confidence interval (CI) of cadaveric measurements. At full flexion, all models showed VV and AP mechanics within the 95% CI of cadaveric measurements. Given the repeatable mechanics exhibited, the knee models developed in this study can be used to reduce the current reliance on cadaveric specimens in surgical training. |
Author | Reynolds, Karen J. Al‐Dirini, Rami M. A. Bennett, Kieran J. Sobey, Sammuel A. Foroutan, Parham Taylor, Mark Litchfield, Nick Roe, Mark Fairweather, Ella Costi, John J. |
Author_xml | – sequence: 1 givenname: Kieran J. orcidid: 0000-0001-5411-0289 surname: Bennett fullname: Bennett, Kieran J. email: kieran.bennett@flinders.edu.au organization: Flinders University – sequence: 2 givenname: Parham orcidid: 0000-0002-0510-8518 surname: Foroutan fullname: Foroutan, Parham organization: Flinders University – sequence: 3 givenname: Ella surname: Fairweather fullname: Fairweather, Ella organization: Flinders University – sequence: 4 givenname: Rami M. A. orcidid: 0000-0001-6412-6057 surname: Al‐Dirini fullname: Al‐Dirini, Rami M. A. organization: Flinders University – sequence: 5 givenname: Sammuel A. surname: Sobey fullname: Sobey, Sammuel A. organization: Fusetec – sequence: 6 givenname: Nick surname: Litchfield fullname: Litchfield, Nick organization: Fusetec – sequence: 7 givenname: Mark surname: Roe fullname: Roe, Mark organization: Fusetec – sequence: 8 givenname: Karen J. orcidid: 0000-0002-8273-1610 surname: Reynolds fullname: Reynolds, Karen J. organization: Flinders University – sequence: 9 givenname: John J. orcidid: 0000-0002-8267-7837 surname: Costi fullname: Costi, John J. organization: Flinders University – sequence: 10 givenname: Mark orcidid: 0000-0001-7842-6472 surname: Taylor fullname: Taylor, Mark organization: Flinders University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38735861$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kD1PwzAQQC1UBKUw8AeQRxhC7TiOw4jKt5AqIZDYootzBhfHLnFS1H9PoMDGdKe7pze8PTLywSMhh5ydcsbS6SK0p6kslNgiYy5llshUPY_ImCmRJyzN812yF-OCMaZ4WuyQXTGwssj5mDxe4ApdWDboOwq-pitwtobOBk-DoUArGxrUr-CtBufW1NgandU09u3L14l2LVhv_Qt984i0CcN7n2wbcBEPfuaEPF1dPs5ukvv59e3s_D7RImUiAVNxhVKh0VCbTHADqcwqVclCSK6VRFadZXmlTSERzrThAMOiUgDOK0AxIccb77IN7z3Grmxs1OgceAx9LAWTWSYEy4oBPdmgug0xtmjKZWsbaNclZ-VXxHKIWH5HHNijH21fNVj_kb_VBmC6AT6sw_X_pvJu_rBRfgKFR39e |
Cites_doi | 10.2106/JBJS.18.00754 10.5435/JAAOS-20-07-410 10.1186/s12891-016-1052-5 10.1016/j.jbiomech.2016.09.009 10.2106/00004623-200709000-00016 10.1097/00003086-197501000-00033 10.1016/j.jbiomech.2014.06.023 10.1177/03635465030310062101 10.1007/s001670050128 10.1016/S0021-9290(99)00206-7 10.2147/AMEP.S138758 10.1016/j.jbiomech.2011.11.052 10.1243/09544119JEIM181 10.1115/1.3138397 10.1115/1.4033882 10.1080/00401706.2000.10485979 10.1007/s00167-006-0076-z 10.1115/1.4027945 10.1002/ca.23545 10.5312/wjo.v8.i4.290 10.1007/s11517-010-0653-7 10.1016/0021-9290(95)00149-2 10.1097/00003086-198301000-00006 10.15537/smj.2016.4.13575 10.4081/or.2009.e26 10.1002/jor.1100050208 10.1080/10255840902822550 10.1016/0021-9290(80)90354-1 10.1016/j.asmart.2015.07.002 10.1007/s00264-024-06092-w |
ContentType | Journal Article |
Copyright | 2024 The Authors. ® published by Wiley Periodicals LLC on behalf of Orthopaedic Research Society. 2024 The Authors. Journal of Orthopaedic Research® published by Wiley Periodicals LLC on behalf of Orthopaedic Research Society. |
Copyright_xml | – notice: 2024 The Authors. ® published by Wiley Periodicals LLC on behalf of Orthopaedic Research Society. – notice: 2024 The Authors. Journal of Orthopaedic Research® published by Wiley Periodicals LLC on behalf of Orthopaedic Research Society. |
DBID | 24P WIN CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 |
DOI | 10.1002/jor.25873 |
DatabaseName | Wiley Online Library Open Access Wiley Online Library Free Content Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 1554-527X |
EndPage | 2188 |
ExternalDocumentID | 10_1002_jor_25873 38735861 JOR25873 |
Genre | researchArticle Validation Study Journal Article |
GrantInformation_xml | – fundername: Australian Government funderid: GILIII000120 – fundername: Australian Government grantid: GILIII000120 |
GroupedDBID | --- --K .3N .55 .GA .GJ .Y3 05W 0R~ 10A 1B1 1KJ 1L6 1OB 1OC 1ZS 1~5 24P 29L 31~ 33P 3SF 3V. 3WU 4.4 4G. 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5VS 66C 7-5 702 7PT 7X7 8-0 8-1 8-3 8-4 8-5 88E 88I 8AF 8FI 8FJ 8R4 8R5 8UM 930 A01 A03 AAEDT AAESR AAEVG AAHHS AALRI AANLZ AAONW AAQFI AAQQT AAQXK AASGY AAXRX AAXUO AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABMAC ABPVW ABQWH ABUWG ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOD ACGOF ACIUM ACMXC ACPOU ACSCC ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADMUD ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFKRA AFPWT AFZJQ AHBTC AHEFC AHMBA AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZQEC AZVAB BAFTC BDRZF BENPR BFHJK BHBCM BMXJE BPHCQ BQCPF BROTX BRXPI BVXVI BY8 C45 CCPQU CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRMAN DRSTM DU5 DWQXO EBD EBS EJD EMOBN F00 F01 F04 F5P FDB FEDTE FGOYB FUBAC FYUFA G-S G.N GNP GNUQQ GODZA H.X HBH HCIFZ HF~ HGLYW HHY HHZ HMCUK HVGLF HZ~ IHE IX1 J0M JPC KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M1P M2P M41 M56 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB NQ- O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ PROAC PSQYO Q.N Q11 Q2X QB0 QRW R.K R2- RIG RIWAO RJQFR RNS ROL RPZ RWI RWL RWR RX1 RXW RYL SAMSI SEW SSZ SUPJJ SV3 TAE TEORI UB1 UKHRP UPT V2E V8K W8V W99 WBKPD WIB WIH WIJ WIK WIN WJL WNSPC WOHZO WQJ WRC WXI WXSBR WYB WYISQ X7M XG1 XV2 YCJ YQT ZGI ZXP ZZTAW ~IA ~WT CGR CUY CVF ECM EIF NPM AAMNL AAYXX CITATION 7X8 |
ID | FETCH-LOGICAL-c3203-afb17e57efcadf431fa254b7b58351c75e0b946bcf85ea9cf1aa5ea72aa11bae3 |
IEDL.DBID | 33P |
ISSN | 0736-0266 1554-527X |
IngestDate | Fri Oct 18 23:32:17 EDT 2024 Fri Nov 22 02:03:19 EST 2024 Sat Nov 02 12:29:56 EDT 2024 Fri Oct 18 09:55:04 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | knee joint mechanics knee orthopedics biomechanics ligament |
Language | English |
License | Attribution 2024 The Authors. Journal of Orthopaedic Research® published by Wiley Periodicals LLC on behalf of Orthopaedic Research Society. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3203-afb17e57efcadf431fa254b7b58351c75e0b946bcf85ea9cf1aa5ea72aa11bae3 |
Notes | Kieran J. Bennett and Parham Foroutan contributed equally to the publication of the manuscript. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Undefined-3 |
ORCID | 0000-0001-6412-6057 0000-0001-5411-0289 0000-0002-8273-1610 0000-0002-0510-8518 0000-0001-7842-6472 0000-0002-8267-7837 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjor.25873 |
PMID | 38735861 |
PQID | 3054433048 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_3054433048 crossref_primary_10_1002_jor_25873 pubmed_primary_38735861 wiley_primary_10_1002_jor_25873_JOR25873 |
PublicationCentury | 2000 |
PublicationDate | October 2024 |
PublicationDateYYYYMMDD | 2024-10-01 |
PublicationDate_xml | – month: 10 year: 2024 text: October 2024 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of orthopaedic research |
PublicationTitleAlternate | J Orthop Res |
PublicationYear | 2024 |
References | 2015; 2 2017; 8 1983; 172 2007; 221 1987; 5 2006; 14 2000; 42 2014; 47 2020; 33 1999; 7 2016; 17 2016; 37 2014; 136 2003; 31 2019; 101 2009; 12 1983; 105 2018; 9 1996; 29 2010; 48 1980; 13 2000; 33 2016; 138 2024; 48 2009; 1 2016; 49 2012; 45 2007; 89 2012; 20 1975; 106 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_27_1 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_21_1 e_1_2_8_22_1 e_1_2_8_23_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_14_1 e_1_2_8_15_1 e_1_2_8_16_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_12_1 e_1_2_8_30_1 |
References_xml | – volume: 106 start-page: 216 year: 1975 end-page: 231 article-title: The cruciate ligaments of the knee joint: anatomical. functional and experimental analysis publication-title: Clin Orthop Relat Res – volume: 47 start-page: 3241 year: 2014 end-page: 3247 article-title: Adaptive velocity‐based six degree of freedom load control for real‐time unconstrained biomechanical testing publication-title: J Biomech – volume: 1 start-page: 26 year: 2009 article-title: The relevance of ligament balancing in total knee arthroplasty: how important is it? A systematic review of the literature publication-title: Orthop Rev – volume: 7 start-page: 93 year: 1999 end-page: 97 article-title: Relative contribution of the ACL, MCL, and bony contact to the anterior stability of the knee publication-title: Knee Surg Sports Traumatol Arthrosc – volume: 89 start-page: 2000 year: 2007 end-page: 2010 article-title: The anatomy of the medial part of the knee publication-title: J Bone Jt Surg Am Vol – volume: 5 start-page: 217 year: 1987 end-page: 230 article-title: In‐vitro ligament tension pattern in the flexed knee in passive loading publication-title: J Orthop Res – volume: 20 start-page: 410 year: 2012 end-page: 422 article-title: Surgical simulation in orthopaedic skills training publication-title: J Am Acad Orthop Surg – volume: 29 start-page: 955 year: 1996 end-page: 961 article-title: Validation of a three‐dimensional model of the knee publication-title: J Biomech – volume: 12 start-page: 651 year: 2009 end-page: 659 article-title: Efficient probabilistic representation of tibiofemoral soft tissue constraint publication-title: Comput Methods Biomech Biomed Engin – volume: 42 start-page: 55 year: 2000 end-page: 61 article-title: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code publication-title: Technometrics – volume: 2 start-page: 108 year: 2015 end-page: 113 article-title: Ligament balancing in total knee arthroplasty—medial stabilizing technique publication-title: Asia Pac J Sports Med Arthrosc Rehabil Technol – volume: 105 start-page: 136 year: 1983 end-page: 144 article-title: A joint coordinate system for the clinical description of three‐dimensional motions: application to the knee publication-title: J Biomech Eng – volume: 49 start-page: 3407 year: 2016 end-page: 3414 article-title: The effect of six degree of freedom loading sequence on the in‐vitro compressive properties of human lumbar spine segments publication-title: J Biomech – volume: 31 start-page: 854 year: 2003 end-page: 860 article-title: The posterolateral attachments of the knee publication-title: Am J Sports Med – volume: 17 start-page: 193 year: 2016 article-title: Biomechanical study of strength and stiffness of the knee anterolateral ligament publication-title: BMC Musculoskelet Disord – volume: 33 start-page: 428 year: 2020 end-page: 430 article-title: The three‐dimensional printing renaissance of individualized anatomical modeling: are we repeating history? publication-title: Clin Anat – volume: 37 start-page: 348 year: 2016 end-page: 353 article-title: Sawbones laboratory in orthopedic surgical training publication-title: Saudi Med J – volume: 48 start-page: 1077 year: 2010 end-page: 1085 article-title: Development of a subject‐specific model to predict the forces in the knee ligaments at high flexion angles publication-title: Med Biol Eng Comput – volume: 136 year: 2014 article-title: Stiffness analysis and control of a stewart platform‐based manipulator with decoupled sensor–actuator locations for ultrahigh accuracy positioning under large external loads publication-title: J Dyn Syst Meas Control – volume: 48 start-page: 955 year: 2024 end-page: 964 article-title: Meniscus root tears: state of the art publication-title: Int Orthop – volume: 172 start-page: 19 year: 1983 end-page: 25 article-title: Anatomy of the anterior cruciate ligament publication-title: Clin Orthop Relat Res – volume: 8 start-page: 290 year: 2017 article-title: Orthopaedic education in the era of surgical simulation: still at the crawling stage publication-title: World J Orthop – volume: 33 start-page: 465 year: 2000 end-page: 473 article-title: The components of passive knee movement are coupled to flexion angle publication-title: J Biomech – volume: 101 start-page: 1119 year: 2019 end-page: 1131 article-title: The laxity of the native knee: a meta‐analysis of in vitro studies publication-title: J Bone Jt Surg – volume: 138 year: 2016 article-title: A combined experimental and computational approach to Subject‐Specific analysis of knee joint laxity publication-title: J Biomech Eng – volume: 221 start-page: 821 year: 2007 end-page: 832 article-title: Mechanics of the passive knee joint. Part 2: interaction between the ligaments and the articular surfaces in guiding the joint motion publication-title: Proc Inst Mech Eng Part H – volume: 45 start-page: 474 year: 2012 end-page: 483 article-title: Dynamic finite element knee simulation for evaluation of knee replacement mechanics publication-title: J Biomech – volume: 14 start-page: 982 year: 2006 end-page: 992 article-title: Anterior cruciate ligament anatomy and function relating to anatomical reconstruction publication-title: Knee Surg Sports Traumatol Arthrosc – volume: 13 start-page: 677 year: 1980 end-page: 685 article-title: A three‐dimensional mathematical model of the knee‐joint publication-title: J Biomech – volume: 9 start-page: 125 year: 2018 end-page: 131 article-title: Surgical simulation training in orthopedics: current insights publication-title: Adv Med Educ Pract – ident: e_1_2_8_29_1 doi: 10.2106/JBJS.18.00754 – ident: e_1_2_8_2_1 doi: 10.5435/JAAOS-20-07-410 – ident: e_1_2_8_18_1 doi: 10.1186/s12891-016-1052-5 – ident: e_1_2_8_27_1 doi: 10.1016/j.jbiomech.2016.09.009 – ident: e_1_2_8_16_1 doi: 10.2106/00004623-200709000-00016 – ident: e_1_2_8_20_1 doi: 10.1097/00003086-197501000-00033 – ident: e_1_2_8_28_1 doi: 10.1016/j.jbiomech.2014.06.023 – ident: e_1_2_8_17_1 doi: 10.1177/03635465030310062101 – ident: e_1_2_8_8_1 doi: 10.1007/s001670050128 – ident: e_1_2_8_10_1 doi: 10.1016/S0021-9290(99)00206-7 – ident: e_1_2_8_3_1 doi: 10.2147/AMEP.S138758 – ident: e_1_2_8_30_1 doi: 10.1016/j.jbiomech.2011.11.052 – ident: e_1_2_8_9_1 doi: 10.1243/09544119JEIM181 – ident: e_1_2_8_25_1 doi: 10.1115/1.3138397 – ident: e_1_2_8_11_1 doi: 10.1115/1.4033882 – ident: e_1_2_8_26_1 doi: 10.1080/00401706.2000.10485979 – ident: e_1_2_8_31_1 doi: 10.1007/s00167-006-0076-z – ident: e_1_2_8_15_1 doi: 10.1115/1.4027945 – ident: e_1_2_8_14_1 doi: 10.1002/ca.23545 – ident: e_1_2_8_4_1 doi: 10.5312/wjo.v8.i4.290 – ident: e_1_2_8_12_1 doi: 10.1007/s11517-010-0653-7 – ident: e_1_2_8_21_1 doi: 10.1016/0021-9290(95)00149-2 – ident: e_1_2_8_19_1 doi: 10.1097/00003086-198301000-00006 – ident: e_1_2_8_5_1 doi: 10.15537/smj.2016.4.13575 – ident: e_1_2_8_6_1 doi: 10.4081/or.2009.e26 – ident: e_1_2_8_13_1 doi: 10.1002/jor.1100050208 – ident: e_1_2_8_22_1 doi: 10.1080/10255840902822550 – ident: e_1_2_8_23_1 doi: 10.1016/0021-9290(80)90354-1 – ident: e_1_2_8_7_1 doi: 10.1016/j.asmart.2015.07.002 – ident: e_1_2_8_24_1 doi: 10.1007/s00264-024-06092-w |
SSID | ssj0007128 |
Score | 2.4906871 |
Snippet | Knee arthroplasty technique is constantly evolving and the opportunity for surgeons to practice new techniques is currently highly dependent on the... |
SourceID | proquest crossref pubmed wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 2181 |
SubjectTerms | Arthroplasty, Replacement, Knee - education Biomechanical Phenomena biomechanics Cadaver Finite Element Analysis Humans knee Knee Joint - anatomy & histology Knee Joint - physiology Knee Joint - surgery knee joint mechanics ligament Models, Anatomic orthopedics |
Title | Development and validation of a biomechanically fidelic surgical training knee model |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjor.25873 https://www.ncbi.nlm.nih.gov/pubmed/38735861 https://www.proquest.com/docview/3054433048 |
Volume | 42 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA66Jy8-8FVfRPHgpW7TJE0XT6K7LB5UdAVvZdKm4INWtvbgv3eSbquLCIK3HJoQJl8m36SZbwg55shCNMOwRKEH9oUMhQ9cR34UGYkEVoA2Nnd4fK-uH-PLoZXJOWtzYRp9iO7Cze4M56_tBgdd9b9EQ5_L6WkoY2WVPjFKcOkb_Lbzwoq5uqqIYPvINopaVaEg7Hc958-iHwRznq-6A2e08q-prpLlGc-k5w0w1siCKdbJ5NsTIQpFRhFmT01RJVrmFKhLxre5wHbpXj9obkWwnlJa1VPnIWlbUYK-FMZQV0ZngzyMhpOLsT8rq-CnPAy4D7lmykhl8hSyHAlEDhglaqUlsjGWKmkCPRCRTvNYGhikOQPAhgoBGNNg-CbpFWVhtgkVIFQGmgcDDG6zlGmZWUGjFJQAQIx65Kg1cPLWqGckjU5ymKBREmcUjxy2pk8Q2_aHBRSmrKsEfZEQ9sIl9shWsybdMBx7yjhiHjlxpv99_OTq5s41dv7-6S5ZCpG9NK_29kjvfVqbfbJYZfWBg9kng_TV3w |
link.rule.ids | 315,782,786,1408,27933,27934,46064,46488 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB50PejFB77WZxQPXqqbJmm64EV8sL5FV_BWJm0Kq9KVXffgv3eSbldFBMFbDk0Iky-TL-nMNwA7gliI4XQt0eSBA6lCGaAwURBFVhGBlWisyx1u3evrx_j4xMnkHFS5MKU-xOjBze0M76_dBncP0vufqqFP3d5eqGItxmFCRgREl8Ahbkd-WHNfWZUw7MJso6jSFWqE-6Ou30-jHxTzO2P1R87pzP8mOwvTQ6rJDktszMGYLeah_SVKiGGRMUJap6yrxLo5Q-bz8V06sFu9l3eWOx2sTsr6g553kqwqKsGeC2uZr6SzAA-nJ-2jVjCsrBCkImyIAHPDtVXa5ilmOXGIHOmiaLRRRMh4qpVtmKaMTJrHymIzzTkiNXSIyLlBKxahVnQLuwxMotQZGtFo0v02S7lRmdM0SlFLRIJpHbYrCyevpYBGUkolhwkZJfFGqcNWZfuE4O3-WWBhu4N-Qu5ISvfmEtdhqVyU0TCCeqo44nXY9bb_ffzk_ObON1b-_ukmTLbaV5fJ5dn1xSpMhURmyiC-Nai99QZ2Hcb72WDDY-4DC9HaBw |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB58gHjxga_1GcWDl-qmSZounkRdfKHiA7yVSZvAqnRl1z34752kdlVEELzl0IQw-TL5ks58A7AtiIUYTtcSTR44kiqWEQqTREliFRFYicb63OGTW335kB4de5mc_ToXptKHGD64-Z0R_LXf4C-F2_sUDX3s9nZjlWoxCuOSaLgXzhfieuiGNQ-FVQnCPso2SWpZoWa8N-z6_TD6wTC_E9Zw4rSn_zXXGZj6IJrsoELGLIzYcg7uvsQIMSwLRjjrVFWVWNcxZCEb3ycD-7V7fmPOq2B1ctYf9IKLZHVJCfZUWstCHZ15uG8f3x2eRB91FaJcxE0RoTNcW6Wty7FwxCAc0jXRaKOIjvFcK9s0LZmY3KXKYit3HJEaOkbk3KAVCzBWdku7BEyi1AUa0WzR7bbIuVGFVzTKUUtEAmkDtmoDZy-VfEZWCSXHGRklC0ZpwGZt-ozA7f9YYGm7g35GzkhK_-KSNmCxWpPhMIJ6qjThDdgJpv99_Ozs6iY0lv_-6QZMXB-1s4vTy_MVmIyJyVQRfKsw9tob2DUY7ReD9YC4d4zQ2K0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+and+validation+of+a+biomechanically+fidelic+surgical+training+knee+model&rft.jtitle=Journal+of+orthopaedic+research&rft.au=Bennett%2C+Kieran+J.&rft.au=Foroutan%2C+Parham&rft.au=Fairweather%2C+Ella&rft.au=Al%E2%80%90Dirini%2C+Rami+M.+A.&rft.date=2024-10-01&rft.issn=0736-0266&rft.eissn=1554-527X&rft.volume=42&rft.issue=10&rft.spage=2181&rft.epage=2188&rft_id=info:doi/10.1002%2Fjor.25873&rft.externalDBID=10.1002%252Fjor.25873&rft.externalDocID=JOR25873 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0736-0266&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0736-0266&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0736-0266&client=summon |