Bimetallic Pd–Fe Supported on Nitrogen-Doped Reduced Graphene Oxide as Electrocatalyst for Formic Acid Oxidation

This study was conducted to exploit the properties of nitrogen-doped reduced graphene oxide (N-rGO) as support material for formic acid fuel cell. Nitrogen-doped reduced graphene oxide was synthesized by the hydrothermal synthesis method using graphene oxide (GO) flakes and urea as a nitrogen source...

Full description

Saved in:
Bibliographic Details
Published in:Arabian journal for science and engineering (2011) Vol. 46; no. 7; pp. 6543 - 6556
Main Author: Hossain, SK Safdar
Format: Journal Article
Language:English
Published: Berlin/Heidelberg Springer Berlin Heidelberg 01-07-2021
Springer Nature B.V
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This study was conducted to exploit the properties of nitrogen-doped reduced graphene oxide (N-rGO) as support material for formic acid fuel cell. Nitrogen-doped reduced graphene oxide was synthesized by the hydrothermal synthesis method using graphene oxide (GO) flakes and urea as a nitrogen source. Palladium and iron with controllable atomic ratio were used as the active metals. Graphene oxide and carbon nanotube-supported PdFe nanoparticles were synthesized for comparison. The structure, morphology, and chemical composition of the synthesized catalysts were ascertained by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). The average particle sizes for Pd 3 Fe/N-rGO and Pd/N-rGO were 4.65 and 3.95 nm, respectively. The electrochemical characterizations (CO stripping, cyclic voltammetry, and chronoamperometry) showed that the Pd 3 Fe/N-rGO electrocatalyst had higher electrocatalytic activity and stability compared with that of Pd 3 Fe/rGO and Pd 3 Fe/CNT. The mass activity of Pd 3 Fe/N-rGO in 0.5 M of HCOOH and 0.5 M of H 2 SO 4 solutions was 1463.9 mAmg −1 Pd, which was 3.3 and 1.35 times that of the activity obtained with graphene oxide and carbon nanotubes with the same composition, respectively. The superior performance of the Pd 3 Fe/N-rGO catalyst was ascribed to the presence of nitrogen functionalities in the nitrogen-doped reduced GO and the synergistic interaction between Pd and Fe nanoparticles. Nitrogen-doped reduced GO promoted the formation of smaller and narrowly distributed nanoparticles and exerted favorable electronic effects because of electron transfer from N to Pd. Therefore, Pd 3 Fe/N-rGO can serve as a potential electrocatalyst for the oxidation of formic acid.
AbstractList This study was conducted to exploit the properties of nitrogen-doped reduced graphene oxide (N-rGO) as support material for formic acid fuel cell. Nitrogen-doped reduced graphene oxide was synthesized by the hydrothermal synthesis method using graphene oxide (GO) flakes and urea as a nitrogen source. Palladium and iron with controllable atomic ratio were used as the active metals. Graphene oxide and carbon nanotube-supported PdFe nanoparticles were synthesized for comparison. The structure, morphology, and chemical composition of the synthesized catalysts were ascertained by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). The average particle sizes for Pd 3 Fe/N-rGO and Pd/N-rGO were 4.65 and 3.95 nm, respectively. The electrochemical characterizations (CO stripping, cyclic voltammetry, and chronoamperometry) showed that the Pd 3 Fe/N-rGO electrocatalyst had higher electrocatalytic activity and stability compared with that of Pd 3 Fe/rGO and Pd 3 Fe/CNT. The mass activity of Pd 3 Fe/N-rGO in 0.5 M of HCOOH and 0.5 M of H 2 SO 4 solutions was 1463.9 mAmg −1 Pd, which was 3.3 and 1.35 times that of the activity obtained with graphene oxide and carbon nanotubes with the same composition, respectively. The superior performance of the Pd 3 Fe/N-rGO catalyst was ascribed to the presence of nitrogen functionalities in the nitrogen-doped reduced GO and the synergistic interaction between Pd and Fe nanoparticles. Nitrogen-doped reduced GO promoted the formation of smaller and narrowly distributed nanoparticles and exerted favorable electronic effects because of electron transfer from N to Pd. Therefore, Pd 3 Fe/N-rGO can serve as a potential electrocatalyst for the oxidation of formic acid.
This study was conducted to exploit the properties of nitrogen-doped reduced graphene oxide (N-rGO) as support material for formic acid fuel cell. Nitrogen-doped reduced graphene oxide was synthesized by the hydrothermal synthesis method using graphene oxide (GO) flakes and urea as a nitrogen source. Palladium and iron with controllable atomic ratio were used as the active metals. Graphene oxide and carbon nanotube-supported PdFe nanoparticles were synthesized for comparison. The structure, morphology, and chemical composition of the synthesized catalysts were ascertained by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). The average particle sizes for Pd3Fe/N-rGO and Pd/N-rGO were 4.65 and 3.95 nm, respectively. The electrochemical characterizations (CO stripping, cyclic voltammetry, and chronoamperometry) showed that the Pd3Fe/N-rGO electrocatalyst had higher electrocatalytic activity and stability compared with that of Pd3Fe/rGO and Pd3Fe/CNT. The mass activity of Pd3Fe/N-rGO in 0.5 M of HCOOH and 0.5 M of H2SO4 solutions was 1463.9 mAmg−1 Pd, which was 3.3 and 1.35 times that of the activity obtained with graphene oxide and carbon nanotubes with the same composition, respectively. The superior performance of the Pd3Fe/N-rGO catalyst was ascribed to the presence of nitrogen functionalities in the nitrogen-doped reduced GO and the synergistic interaction between Pd and Fe nanoparticles. Nitrogen-doped reduced GO promoted the formation of smaller and narrowly distributed nanoparticles and exerted favorable electronic effects because of electron transfer from N to Pd. Therefore, Pd3Fe/N-rGO can serve as a potential electrocatalyst for the oxidation of formic acid.
Author Hossain, SK Safdar
Author_xml – sequence: 1
  givenname: SK Safdar
  orcidid: 0000-0003-3076-1161
  surname: Hossain
  fullname: Hossain, SK Safdar
  email: snooruddin@kfu.edu.sa, safdarnoor@gmail.com
  organization: Department of Chemical Engineering, College of Engineering, King Faisal University
BookMark eNp9kM9qGzEQh0VwoPnjF-hJ0LPSGWm1Xh0TJ04LpglpC70JrXbW2WKvNtIa6lveIW_YJ6lqB3LLaYbh-_0GvlM26UNPjH1EuECA2eeESpVGgAQBGo0UcMROJBoUhaxwst-V0OXs1wc2TamroaiU0YjqhMWrbkOjW687z--bv88vC-Lft8MQ4kgNDz3_1o0xrKgX12HIlwdqtj7P2-iGR-qJ3_3pGuIu8Zs1-Yx6l9t2aeRtiHwR4iYXX_qu2YNu7EJ_zo5bt040fZ1n7Ofi5sf8i1je3X6dXy6FV2hGQegbXZYosfaaWqw1zuqWKqgNkXdlA0pWDkkVypvCFw6gxcJpXaEEolqdsU-H3iGGpy2l0f4O29jnl1ZqZQyUAEWm5IHyMaQUqbVD7DYu7iyC_a_XHvTarNfu9VrIIXUIpQz3K4pv1e-k_gHpG4C-
CitedBy_id crossref_primary_10_1002_slct_202302061
crossref_primary_10_1016_j_electacta_2022_139977
crossref_primary_10_1002_tcr_202200045
crossref_primary_10_1016_j_ijhydene_2023_06_004
crossref_primary_10_3390_catal11080910
crossref_primary_10_1016_j_colsurfa_2023_132991
crossref_primary_10_1007_s13369_022_07543_5
crossref_primary_10_1016_j_aej_2023_06_069
crossref_primary_10_1016_j_electacta_2022_140179
Cites_doi 10.1021/cs200661z
10.1016/j.mattod.2020.04.010
10.1016/j.energy.2016.07.143
10.1039/C9NR06344G
10.1002/adsu.202000065
10.1016/j.carbon.2012.09.019
10.1016/j.apcatb.2007.09.047
10.1016/j.cis.2018.07.001
10.1039/c3ta14546h
10.1016/j.ijhydene.2018.11.112
10.1016/j.jechem.2019.02.009
10.1016/j.apsusc.2018.08.048
10.1016/j.electacta.2013.08.102
10.1016/j.jechem.2017.10.024
10.1016/j.ijhydene.2014.12.080
10.1016/j.ijhydene.2019.04.100
10.1016/j.ijhydene.2015.08.048
10.3390/catal9030298
10.1002/smtd.201800323
10.1016/j.ijhydene.2018.12.004
10.1002/anie.201205057
10.1021/ja902876v
10.1016/j.ijhydene.2014.09.006
10.1007/s13738-018-1457-1
10.1039/C7TA07116G
10.1016/j.comptc.2014.09.020
10.1016/j.jece.2020.104055
10.1039/C5RA05769H
10.1016/j.elecom.2009.08.041
10.1021/acsenergylett.6b00574
10.1080/1536383X.2019.1622528
10.1016/j.cej.2017.10.175
10.1039/C8RA07194B
10.1016/j.jpowsour.2014.03.109
10.1016/j.ijhydene.2019.04.025
10.1016/j.apcatb.2015.07.023
10.1016/j.ijhydene.2020.07.169
10.1016/j.elecom.2013.11.010
10.1039/C5CY02217G
10.1021/jp077068m
10.1039/C8CY02402B
10.1016/j.ijhydene.2019.10.226
10.1016/j.electacta.2016.10.087
10.1039/C8TA06908E
10.1016/j.apsusc.2011.04.078
10.1002/er.4485
10.1021/acsami.6b01580
10.1039/c3nr03100d
10.1016/j.apsusc.2019.01.114
10.1039/C6TA10476B
10.1016/j.apsusc.2017.04.160
10.1016/j.nanoso.2017.09.003
10.1039/C4CC04887C
ContentType Journal Article
Copyright King Fahd University of Petroleum & Minerals 2021
King Fahd University of Petroleum & Minerals 2021.
Copyright_xml – notice: King Fahd University of Petroleum & Minerals 2021
– notice: King Fahd University of Petroleum & Minerals 2021.
DBID AAYXX
CITATION
DOI 10.1007/s13369-020-05192-0
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2191-4281
EndPage 6556
ExternalDocumentID 10_1007_s13369_020_05192_0
GrantInformation_xml – fundername: Deanship of Scientific Research, King Faisal University
  grantid: 150212
  funderid: 0000-0003-3076-1161
GroupedDBID -EM
203
2KG
406
AAAVM
AAFGU
AAHNG
AAIAL
AANZL
AARHV
AATNV
AATVU
AAUYE
AAYFA
AAYTO
ABDBF
ABDZT
ABECU
ABFGW
ABFTD
ABFTV
ABJNI
ABJOX
ABKAS
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTKH
ABTMW
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACHSB
ACIGE
ACIPQ
ACMDZ
ACMLO
ACOKC
ACTTH
ACVWB
ACWMK
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFTE
AEJRE
AEOHA
AESKC
AESTI
AEVLU
AEVTX
AEXYK
AFLOW
AFNRJ
AFQWF
AGAYW
AGGBP
AGJBK
AGMZJ
AGQMX
AHAVH
AHBYD
AHSBF
AIAKS
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMXSW
AMYLF
AOCGG
AXYYD
BGNMA
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESX
FERAY
FIGPU
FINBP
FNLPD
FSGXE
GGCAI
GQ6
GQ7
HG6
I-F
IKXTQ
IWAJR
J-C
JBSCW
JZLTJ
L8X
LLZTM
M4Y
MK~
NPVJJ
NQJWS
NU0
O9J
PT4
RSV
SISQX
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TSG
TUS
UOJIU
UTJUX
UZXMN
VFIZW
Z5O
Z7R
Z7S
Z7V
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z88
ZMTXR
~8M
0R~
AACDK
AAJBT
AASML
AAYXX
AAYZH
ABAKF
ACAOD
ACDTI
ACZOJ
AEFQL
AEMSY
AFBBN
AGQEE
AGRTI
AIGIU
CITATION
H13
ROL
SJYHP
06D
0VY
23M
29~
2KM
30V
408
5GY
96X
AAJKR
AARTL
AAYIU
AAYQN
AAZMS
ABTHY
ACGFS
ACKNC
ADHHG
ADHIR
AEGNC
AEJHL
AENEX
AEPYU
AETCA
AFWTZ
AFZKB
AGDGC
AGWZB
AGYKE
AHYZX
AIIXL
AMKLP
AMYQR
ANMIH
AYJHY
ESBYG
FFXSO
FRRFC
FYJPI
GGRSB
GJIRD
GX1
HMJXF
HRMNR
HZ~
I0C
IXD
J9A
KOV
O93
P9P
R9I
RLLFE
S27
S3B
SEG
SHX
T13
U2A
UG4
VC2
W48
WK8
~A9
ID FETCH-LOGICAL-c319t-e1cd566121bc5ef1b517bfe80b9eeca6d0328a1e343c94c4a00f14a558120eeb3
ISSN 2193-567X
1319-8025
IngestDate Thu Oct 10 18:57:02 EDT 2024
Fri Nov 22 00:27:15 EST 2024
Sat Dec 16 12:09:42 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Electrooxidation
Catalytic activity
N-doped reduced graphene oxide
Formic acid
Bimetallic Pd-Fe
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c319t-e1cd566121bc5ef1b517bfe80b9eeca6d0328a1e343c94c4a00f14a558120eeb3
ORCID 0000-0003-3076-1161
PQID 2539906004
PQPubID 2044268
PageCount 14
ParticipantIDs proquest_journals_2539906004
crossref_primary_10_1007_s13369_020_05192_0
springer_journals_10_1007_s13369_020_05192_0
PublicationCentury 2000
PublicationDate 2021-07-01
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Arabian journal for science and engineering (2011)
PublicationTitleAbbrev Arab J Sci Eng
PublicationYear 2021
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Xu, Yan, Li, Wang, Wang, Guo (CR25) 2018; 334
Yan, Xiang, Zhang, Lu, Jiang (CR1) 2020; 4
Hu, Scudiero, Ha (CR9) 2014; 38
Zhuang, Nunna, Mandal, Lee (CR20) 2018; 15
Zhou, Zhu, Zhang, Ye, Chen, Liao (CR15) 2020; 45
Wang, Qi, Zhang (CR5) 2014; 1049
Zarin, Aslam, Zahir, Kamal, Rana, Ahmad (CR33) 2018; 15
Man, Brown, Wolf (CR29) 2012; 51
Chen, Sun, Liu, Yang (CR54) 2017; 5
Wang, Li, Li, Wang, Xu, Li (CR42) 2018; 6
Choi, Herron, Scaranto, Huang, Wang, Xia (CR6) 2015; 7
Kaur, Kaur, Sharma (CR21) 2018; 259
Shao, Sui, Yin, Gao (CR24) 2008; 79
Yu, Pickup (CR46) 2009; 11
Zhang, Gong, Wu, Li, Li, Zheng (CR53) 2019; 44
Yousaf, Imran, Zeb, Xie, Liang, Zhou (CR8) 2016; 6
Zhan, Velmurugan, Mirkin (CR36) 2009; 131
Kiyani, Rowshanzamir, Parnian (CR43) 2016; 113
Cuesta, Cabello, Osawa, Gutiérrez (CR4) 2012; 2
Chowdhury, Maiyalagan (CR23) 2019; 44
Liao, Hu, Zheng, Li, Zhou, Zhong (CR30) 2013; 111
Han, Xu (CR38) 2014; 39
Mazurkiewicz-Pawlicka, Malolepszy, Mikolajczuk-Zychora, Mierzwa, Borodzinski, Stobinski (CR14) 2019; 476
Cai, Ma, Wang, Yi, Zheng, Qiu (CR31) 2019; 11
Xu, Yan, Zhang, Wang, Li, Wang (CR49) 2017; 416
Xiong, Zhou, Zhao, Wang, Chen, O’Hayre (CR47) 2013; 52
Chen, Wan, Liu, Xiong, Yu, Huang (CR19) 2019; 3
Zhu, Xiao, Zhao, Li, Liu, Xing (CR51) 2014; 50
Hu, Munoz, Noborikawa, Haan, Scudiero, Ha (CR52) 2016; 180
Juárez-Marmolejo, Pérez-Rodríguez, Montes de Oca-Yemha, Palomar-Pardavé, Romero-Romo, Ezeta-Mejía (CR12) 2019; 44
Aslam, Qaiser, Ali, Abbas, Ihsanullah, Zarin (CR32) 2019; 27
Akhtar, Aslam, Asghar, Bello, Raman (CR34) 2020; 8
Matin, Jang, Kwon (CR10) 2014; 262
She, Lu, Fan, Jewell, Leung (CR44) 2014; 2
Çögenli, Bayrakçeken (CR16) 2020; 45
Xing, Guo, Chen, Zhang, Yang (CR39) 2019; 9
Iqbal, Rehman, Siddique (CR17) 2019; 39
Zhang, Yin, Wang, Chang, Gao, Liu (CR37) 2013; 5
Jin, Zhao, Li, Jia, Liang, Chen (CR22) 2016; 220
Sun, Zhou, Pan, Zhang, Guo (CR26) 2015; 5
Zhou, Lee (CR35) 2008; 112
Ulas, Caglar, Kivrak (CR40) 2019; 43
Ma, Wang, Mu, Li (CR48) 2015; 40
Hossain, Saleem, Rahman, Zaidi, McKay, Cheng (CR3) 2019; 9
Eppinger, Huang (CR2) 2017; 2
Zhang, Zhu, Tiwary, Ma, Huang, Zhang (CR50) 2016; 8
Ferre-Vilaplana, Perales-Rondón, Buso-Rogero, Feliu, Herrero (CR7) 2017; 5
Yuan, Zhang (CR41) 2018; 462
Kumar, Sahoo, Joanni, Singh, Maegawa, Tan (CR18) 2020; 39
Malolepszy, Mazurkiewicz, Stobinski, Lesiak, Kövér, Tóth (CR28) 2015; 40
Li, Zhou, Le, Liao, Liu, Na (CR27) 2018; 8
Mikołajczuk, Borodzinski, Kedzierzawski, Stobinski, Mierzwa, Dziura (CR45) 2011; 257
Mansor, Timmiati, Lim, Wong, Kamarudin, Nazirah Kamarudin (CR13) 2019; 44
Ma, Li, Chen, Chen, Deng, Xu (CR11) 2017; 26
Y Wang (5192_CR5) 2014; 1049
A Mikołajczuk (5192_CR45) 2011; 257
B Ulas (5192_CR40) 2019; 43
A Malolepszy (5192_CR28) 2015; 40
W Zhou (5192_CR35) 2008; 112
W Yan (5192_CR1) 2020; 4
A Ferre-Vilaplana (5192_CR7) 2017; 5
B Han (5192_CR38) 2014; 39
S Zarin (5192_CR33) 2018; 15
M Liao (5192_CR30) 2013; 111
SS Hossain (5192_CR3) 2019; 9
R Kiyani (5192_CR43) 2016; 113
D Chen (5192_CR54) 2017; 5
W Chen (5192_CR19) 2019; 3
B Xiong (5192_CR47) 2013; 52
S Hu (5192_CR9) 2014; 38
J Eppinger (5192_CR2) 2017; 2
S Hu (5192_CR52) 2016; 180
Y She (5192_CR44) 2014; 2
M Mansor (5192_CR13) 2019; 44
X Yu (5192_CR46) 2009; 11
D Zhan (5192_CR36) 2009; 131
Z Aslam (5192_CR32) 2019; 27
L Juárez-Marmolejo (5192_CR12) 2019; 44
S-I Choi (5192_CR6) 2015; 7
MA Matin (5192_CR10) 2014; 262
Y Shao (5192_CR24) 2008; 79
R Kumar (5192_CR18) 2020; 39
J Zhu (5192_CR51) 2014; 50
Z Zhang (5192_CR53) 2019; 44
S Zhuang (5192_CR20) 2018; 15
M Mazurkiewicz-Pawlicka (5192_CR14) 2019; 476
Y Jin (5192_CR22) 2016; 220
Y Zhou (5192_CR15) 2020; 45
A Cuesta (5192_CR4) 2012; 2
SR Chowdhury (5192_CR23) 2019; 44
AB Yousaf (5192_CR8) 2016; 6
M Kaur (5192_CR21) 2018; 259
W Li (5192_CR27) 2018; 8
X Zhang (5192_CR50) 2016; 8
Y Ma (5192_CR11) 2017; 26
B Cai (5192_CR31) 2019; 11
Jh Ma (5192_CR48) 2015; 40
H Wang (5192_CR42) 2018; 6
H Xu (5192_CR25) 2018; 334
Y Sun (5192_CR26) 2015; 5
D Yuan (5192_CR41) 2018; 462
MS Çögenli (5192_CR16) 2020; 45
RWY Man (5192_CR29) 2012; 51
Z Xing (5192_CR39) 2019; 9
X Zhang (5192_CR37) 2013; 5
MZ Iqbal (5192_CR17) 2019; 39
H Xu (5192_CR49) 2017; 416
A Akhtar (5192_CR34) 2020; 8
References_xml – volume: 39
  start-page: 217
  year: 2019
  end-page: 234
  ident: CR17
  article-title: Prospects and challenges of graphene based fuel cells
  publication-title: J. Energy Chem.
  contributor:
    fullname: Siddique
– volume: 6
  start-page: 17514
  year: 2018
  end-page: 17518
  ident: CR42
  article-title: Hyperbranched PdRu nanospine assemblies: an efficient electrocatalyst for formic acid oxidation
  publication-title: J. Mater. Chem. A.
  contributor:
    fullname: Li
– volume: 7
  start-page: 2077
  year: 2015
  end-page: 2084
  ident: CR6
  article-title: A comprehensive study of formic acid oxidation on palladium nanocrystals with different types of facets and twin defects
  publication-title: Chem. Cat. Chem.
  contributor:
    fullname: Xia
– volume: 43
  start-page: 3436
  year: 2019
  end-page: 3445
  ident: CR40
  article-title: Determination of optimum Pd: Ni ratio for PdxNi100-x/CNTs formic acid electrooxidation catalysts synthesized via sodium borohydride reduction method
  publication-title: Int. J. Energy Res.
  contributor:
    fullname: Kivrak
– volume: 11
  start-page: 18015
  year: 2019
  end-page: 18020
  ident: CR31
  article-title: Facile synthesis of PdFe alloy tetrahedrons for boosting electrocatalytic property towards formic acid oxidation
  publication-title: Nanoscale
  contributor:
    fullname: Qiu
– volume: 45
  start-page: 650
  year: 2020
  end-page: 666
  ident: CR16
  article-title: Heteroatom doped 3D graphene aerogel supported catalysts for formic acid and methanol oxidation
  publication-title: Int. J. Hydrogen Energy
  contributor:
    fullname: Bayrakçeken
– volume: 112
  start-page: 3789
  year: 2008
  end-page: 3793
  ident: CR35
  article-title: Particle size effects in Pd-Catalyzed electrooxidation of formic acid
  publication-title: J. Phys. Chem. C
  contributor:
    fullname: Lee
– volume: 8
  start-page: 35496
  year: 2018
  end-page: 35502
  ident: CR27
  article-title: Effect of thermal treatment of Pd decorated Fe/C nanocatalysts on their catalytic performance for formic acid oxidation
  publication-title: RSC Adv.
  contributor:
    fullname: Na
– volume: 8
  start-page: 104055
  year: 2020
  ident: CR34
  article-title: Electrocoagulation of Congo Red dye-containing wastewater: optimization of operational parameters and process mechanism
  publication-title: J. Environ. Chem. Eng.
  contributor:
    fullname: Raman
– volume: 39
  start-page: 18247
  year: 2014
  end-page: 18255
  ident: CR38
  article-title: Nanoporous PdFe alloy as highly active and durable electrocatalyst for oxygen reduction reaction
  publication-title: Int. J. Hydrogen Energy
  contributor:
    fullname: Xu
– volume: 9
  start-page: 588
  year: 2019
  end-page: 592
  ident: CR39
  article-title: Optimizing the activity of Pd based catalysts towards room-temperature formic acid decomposition by Au alloying
  publication-title: Catal. Sci. Technol.
  contributor:
    fullname: Yang
– volume: 262
  start-page: 356
  year: 2014
  end-page: 363
  ident: CR10
  article-title: PdM nanoparticles (M = Ni Co, Fe, Mn) with high activity and stability in formic acid oxidation synthesized by sonochemical reactions
  publication-title: J. Power Sourc.
  contributor:
    fullname: Kwon
– volume: 5
  start-page: 4421
  year: 2017
  end-page: 4429
  ident: CR54
  article-title: Bimetallic Cu–Pd alloy multipods and their highly electrocatalytic performance for formic acid oxidation and oxygen reduction
  publication-title: J. Mater. Chem. A.
  contributor:
    fullname: Yang
– volume: 1049
  start-page: 51
  year: 2014
  end-page: 54
  ident: CR5
  article-title: New mechanism of the direct pathway for formic acid oxidation on Pd(111)
  publication-title: Comput. Theoret. Chem.
  contributor:
    fullname: Zhang
– volume: 220
  start-page: 83
  year: 2016
  end-page: 90
  ident: CR22
  article-title: Nitrogen-doped graphene supported palladium-nickel nanoparticles with enhanced catalytic performance for formic acid oxidation
  publication-title: Electrochim. Acta
  contributor:
    fullname: Chen
– volume: 40
  start-page: 2641
  year: 2015
  end-page: 2647
  ident: CR48
  article-title: Nitrogen-doped graphene supported Pt nanoparticles with enhanced performance for methanol oxidation
  publication-title: Int. J. Hydrogen Energy
  contributor:
    fullname: Li
– volume: 5
  start-page: 8392
  year: 2013
  end-page: 8397
  ident: CR37
  article-title: Shape-dependent electrocatalytic activity of monodispersed palladium nanocrystals toward formic acid oxidation
  publication-title: Nanoscale
  contributor:
    fullname: Liu
– volume: 11
  start-page: 2012
  year: 2009
  end-page: 2014
  ident: CR46
  article-title: Mechanistic study of the deactivation of carbon supported Pd during formic acid oxidation
  publication-title: Electrochem. Commun.
  contributor:
    fullname: Pickup
– volume: 39
  start-page: 45
  year: 2020
  end-page: 65
  ident: CR18
  article-title: Heteroatom doped graphene engineering for energy storage and conversion
  publication-title: Mater. Today
  contributor:
    fullname: Tan
– volume: 6
  start-page: 4794
  year: 2016
  end-page: 4801
  ident: CR8
  article-title: Synergistic effect of graphene and multi-walled carbon nanotubes composite supported Pd nanocubes on enhancing catalytic activity for electro-oxidation of formic acid
  publication-title: Catal. Sci. Technol.
  contributor:
    fullname: Zhou
– volume: 79
  start-page: 89
  year: 2008
  end-page: 99
  ident: CR24
  article-title: Nitrogen-doped carbon nanostructures and their composites as catalytic materials for proton exchange membrane fuel cell
  publication-title: Appl. Catal. B Environ.
  contributor:
    fullname: Gao
– volume: 416
  start-page: 191
  year: 2017
  end-page: 199
  ident: CR49
  article-title: N-doped graphene-supported binary PdBi networks for formic acid oxidation
  publication-title: Appl. Surf. Sci.
  contributor:
    fullname: Wang
– volume: 5
  start-page: 21773
  year: 2017
  end-page: 21784
  ident: CR7
  article-title: Formic acid oxidation on platinum electrodes: a detailed mechanism supported by experiments and calculations on well-defined surfaces
  publication-title: J. Mater. Chem. A.
  contributor:
    fullname: Herrero
– volume: 44
  start-page: 14808
  year: 2019
  end-page: 14819
  ident: CR23
  article-title: Enhanced electro-catalytic activity of nitrogen-doped reduced graphene oxide supported PdCu nanoparticles for formic acid electro-oxidation
  publication-title: Int. J. Hydrogen Energy
  contributor:
    fullname: Maiyalagan
– volume: 131
  start-page: 14756
  year: 2009
  end-page: 14760
  ident: CR36
  article-title: Adsorption/Desorption of hydrogen on Pt nanoelectrodes: evidence of surface diffusion and spillover
  publication-title: J. Am. Chem. Soc.
  contributor:
    fullname: Mirkin
– volume: 3
  start-page: 1800323
  year: 2019
  ident: CR19
  article-title: Heteroatom-doped carbon materials: synthesis, mechanism, and application for sodium-ion batteries
  publication-title: Small Methods
  contributor:
    fullname: Huang
– volume: 334
  start-page: 2638
  year: 2018
  end-page: 2646
  ident: CR25
  article-title: N-doped graphene supported PtAu/Pt intermetallic core/dendritic shell nanocrystals for efficient electrocatalytic oxidation of formic acid
  publication-title: Chem. Eng. J.
  contributor:
    fullname: Guo
– volume: 476
  start-page: 806
  year: 2019
  end-page: 814
  ident: CR14
  article-title: A simple method for enhancing the catalytic activity of Pd deposited on carbon nanotubes used in direct formic acid fuel cells
  publication-title: Appl. Surf. Sci.
  contributor:
    fullname: Stobinski
– volume: 9
  start-page: 298
  year: 2019
  ident: CR3
  article-title: Synthesis and evaluation of copper-supported titanium oxide nanotubes as electrocatalyst for the electrochemical reduction of carbon oxide to organics
  publication-title: Catalysts
  contributor:
    fullname: Cheng
– volume: 259
  start-page: 44
  year: 2018
  end-page: 64
  ident: CR21
  article-title: Nitrogen-doped graphene and graphene quantum dots: a review onsynthesis and applications in energy, sensors and environment
  publication-title: Adv. Colloid Interface Sci.
  contributor:
    fullname: Sharma
– volume: 44
  start-page: 1640
  year: 2019
  end-page: 1649
  ident: CR12
  article-title: Carbon supported PdM (M = Fe, Co) electrocatalysts for formic acid oxidation. Influence of the Fe and Co precursors
  publication-title: Int. J. Hydrogen Energy
  contributor:
    fullname: Ezeta-Mejía
– volume: 113
  start-page: 1162
  year: 2016
  end-page: 1173
  ident: CR43
  article-title: Nitrogen doped graphene supported palladium-cobalt as a promising catalyst for methanol oxidation reaction: synthesis, characterization and electrocatalytic performance
  publication-title: Energy
  contributor:
    fullname: Parnian
– volume: 462
  start-page: 649
  year: 2018
  end-page: 658
  ident: CR41
  article-title: Theoretical investigations of HCOOH decomposition on ordered Cu-Pd alloy surfaces
  publication-title: Appl. Surf. Sci.
  contributor:
    fullname: Zhang
– volume: 51
  start-page: 11350
  year: 2012
  end-page: 11353
  ident: CR29
  article-title: Mechanism of formation of palladium nanoparticles: lewis base assisted, low-temperature preparation of monodisperse nanoparticles
  publication-title: Angew. Chem. Int. Ed.
  contributor:
    fullname: Wolf
– volume: 257
  start-page: 8211
  year: 2011
  end-page: 8214
  ident: CR45
  article-title: Deactivation of carbon supported palladium catalyst in direct formic acid fuel cell
  publication-title: Appl. Surf. Sci.
  contributor:
    fullname: Dziura
– volume: 52
  start-page: 181
  year: 2013
  end-page: 192
  ident: CR47
  article-title: The use of nitrogen-doped graphene supporting Pt nanoparticles as a catalyst for methanol electrocatalytic oxidation
  publication-title: Carbon
  contributor:
    fullname: O’Hayre
– volume: 2
  start-page: 3894
  year: 2014
  end-page: 3898
  ident: CR44
  article-title: Facile preparation of PdNi/rGO and its electrocatalytic performance towards formic acid oxidation
  publication-title: J. Mater. Chem. A.
  contributor:
    fullname: Leung
– volume: 45
  start-page: 29235
  year: 2020
  end-page: 29245
  ident: CR15
  article-title: High performance formic acid fuel cell benefits from Pd–PdO catalyst supported by ordered mesoporous carbon
  publication-title: Int. J. Hydrogen Energy
  contributor:
    fullname: Liao
– volume: 8
  start-page: 10858
  year: 2016
  end-page: 10865
  ident: CR50
  article-title: Palladium nanoparticles supported on nitrogen and sulfur dual-doped graphene as highly active electrocatalysts for formic acid and methanol oxidation
  publication-title: ACS Appl. Mater. Interfaces.
  contributor:
    fullname: Zhang
– volume: 180
  start-page: 758
  year: 2016
  end-page: 765
  ident: CR52
  article-title: Carbon supported Pd-based bimetallic and trimetallic catalyst for formic acid electrochemical oxidation
  publication-title: Appl. Catal. B Environ.
  contributor:
    fullname: Ha
– volume: 5
  start-page: 60237
  year: 2015
  end-page: 60245
  ident: CR26
  article-title: PtFe/nitrogen-doped graphene for high-performance electrooxidation of formic acid with composition sensitive electrocatalytic activity
  publication-title: RSC Adv.
  contributor:
    fullname: Guo
– volume: 50
  start-page: 12201
  year: 2014
  end-page: 12203
  ident: CR51
  article-title: Nitrogen-doped carbon–graphene composites enhance the electrocatalytic performance of the supported Pt catalysts for methanol oxidation
  publication-title: Chem. Commun.
  contributor:
    fullname: Xing
– volume: 2
  start-page: 728
  year: 2012
  end-page: 738
  ident: CR4
  article-title: Mechanism of the electrocatalytic oxidation of formic acid on metals
  publication-title: ACS Catal.
  contributor:
    fullname: Gutiérrez
– volume: 44
  start-page: 2731
  year: 2019
  end-page: 2740
  ident: CR53
  article-title: Facile fabrication of stable PdCu clusters uniformly decorated on graphene as an efficient electrocatalyst for formic acid oxidation
  publication-title: Int. J. Hydrogen Energy
  contributor:
    fullname: Zheng
– volume: 40
  start-page: 16724
  year: 2015
  end-page: 16733
  ident: CR28
  article-title: Deactivation resistant Pd–ZrO2 supported on multiwall carbon nanotubes catalyst for direct formic acid fuel cells
  publication-title: Int. J. Hydrogen Energy
  contributor:
    fullname: Tóth
– volume: 27
  start-page: 591
  year: 2019
  end-page: 600
  ident: CR32
  article-title: Al2O3/MnO2/CNTs nanocomposite: synthesis, characterization and phenol adsorption
  publication-title: Fullerenes, Nanotubes, Carbon Nanostruct.
  contributor:
    fullname: Zarin
– volume: 4
  start-page: 2000065
  year: 2020
  ident: CR1
  article-title: Substantially enhanced power output and durability of direct formic acid fuel cells at elevated temperatures
  publication-title: Adv. Sustain. Syst.
  contributor:
    fullname: Jiang
– volume: 26
  start-page: 1238
  year: 2017
  end-page: 1244
  ident: CR11
  article-title: A general strategy to the synthesis of carbon-supported PdM (M = Co, Fe and Ni) nanodendrites as high-performance electrocatalysts for formic acid oxidation
  publication-title: J. Energy Chem.
  contributor:
    fullname: Xu
– volume: 111
  start-page: 504
  year: 2013
  end-page: 509
  ident: CR30
  article-title: Pd decorated Fe/C nanocatalyst for formic acid electrooxidation
  publication-title: Electrochim. Acta
  contributor:
    fullname: Zhong
– volume: 38
  start-page: 107
  year: 2014
  end-page: 109
  ident: CR9
  article-title: Electronic effect of Pd-transition metal bimetallic surfaces toward formic acid electrochemical oxidation
  publication-title: Electrochem. Commun.
  contributor:
    fullname: Ha
– volume: 15
  start-page: 140
  year: 2018
  end-page: 152
  ident: CR20
  article-title: A review of nitrogen-doped graphene catalysts for proton exchange membrane fuel cells-synthesis, characterization, and improvement
  publication-title: Nano-Struct. Nano-Obj.
  contributor:
    fullname: Lee
– volume: 2
  start-page: 188
  year: 2017
  end-page: 195
  ident: CR2
  article-title: Formic acid as a hydrogen energy carrier
  publication-title: ACS Energy Lett.
  contributor:
    fullname: Huang
– volume: 44
  start-page: 14744
  year: 2019
  end-page: 14769
  ident: CR13
  article-title: Recent progress of anode catalysts and their support materials for methanol electrooxidation reaction
  publication-title: Int. J.Hydrogen Energy
  contributor:
    fullname: Nazirah Kamarudin
– volume: 15
  start-page: 2689
  year: 2018
  end-page: 2701
  ident: CR33
  article-title: Synthesis of bimetallic/carbon nanocomposite and its application for phenol removal
  publication-title: J. Iran. Chem. Soc.
  contributor:
    fullname: Ahmad
– volume: 2
  start-page: 728
  year: 2012
  ident: 5192_CR4
  publication-title: ACS Catal.
  doi: 10.1021/cs200661z
  contributor:
    fullname: A Cuesta
– volume: 39
  start-page: 45
  year: 2020
  ident: 5192_CR18
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2020.04.010
  contributor:
    fullname: R Kumar
– volume: 113
  start-page: 1162
  year: 2016
  ident: 5192_CR43
  publication-title: Energy
  doi: 10.1016/j.energy.2016.07.143
  contributor:
    fullname: R Kiyani
– volume: 11
  start-page: 18015
  year: 2019
  ident: 5192_CR31
  publication-title: Nanoscale
  doi: 10.1039/C9NR06344G
  contributor:
    fullname: B Cai
– volume: 4
  start-page: 2000065
  year: 2020
  ident: 5192_CR1
  publication-title: Adv. Sustain. Syst.
  doi: 10.1002/adsu.202000065
  contributor:
    fullname: W Yan
– volume: 52
  start-page: 181
  year: 2013
  ident: 5192_CR47
  publication-title: Carbon
  doi: 10.1016/j.carbon.2012.09.019
  contributor:
    fullname: B Xiong
– volume: 79
  start-page: 89
  year: 2008
  ident: 5192_CR24
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2007.09.047
  contributor:
    fullname: Y Shao
– volume: 259
  start-page: 44
  year: 2018
  ident: 5192_CR21
  publication-title: Adv. Colloid Interface Sci.
  doi: 10.1016/j.cis.2018.07.001
  contributor:
    fullname: M Kaur
– volume: 2
  start-page: 3894
  year: 2014
  ident: 5192_CR44
  publication-title: J. Mater. Chem. A.
  doi: 10.1039/c3ta14546h
  contributor:
    fullname: Y She
– volume: 44
  start-page: 1640
  year: 2019
  ident: 5192_CR12
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2018.11.112
  contributor:
    fullname: L Juárez-Marmolejo
– volume: 39
  start-page: 217
  year: 2019
  ident: 5192_CR17
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2019.02.009
  contributor:
    fullname: MZ Iqbal
– volume: 462
  start-page: 649
  year: 2018
  ident: 5192_CR41
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2018.08.048
  contributor:
    fullname: D Yuan
– volume: 111
  start-page: 504
  year: 2013
  ident: 5192_CR30
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2013.08.102
  contributor:
    fullname: M Liao
– volume: 26
  start-page: 1238
  year: 2017
  ident: 5192_CR11
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2017.10.024
  contributor:
    fullname: Y Ma
– volume: 40
  start-page: 2641
  year: 2015
  ident: 5192_CR48
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2014.12.080
  contributor:
    fullname: Jh Ma
– volume: 44
  start-page: 14744
  year: 2019
  ident: 5192_CR13
  publication-title: Int. J.Hydrogen Energy
  doi: 10.1016/j.ijhydene.2019.04.100
  contributor:
    fullname: M Mansor
– volume: 40
  start-page: 16724
  year: 2015
  ident: 5192_CR28
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2015.08.048
  contributor:
    fullname: A Malolepszy
– volume: 9
  start-page: 298
  year: 2019
  ident: 5192_CR3
  publication-title: Catalysts
  doi: 10.3390/catal9030298
  contributor:
    fullname: SS Hossain
– volume: 3
  start-page: 1800323
  year: 2019
  ident: 5192_CR19
  publication-title: Small Methods
  doi: 10.1002/smtd.201800323
  contributor:
    fullname: W Chen
– volume: 44
  start-page: 2731
  year: 2019
  ident: 5192_CR53
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2018.12.004
  contributor:
    fullname: Z Zhang
– volume: 51
  start-page: 11350
  year: 2012
  ident: 5192_CR29
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201205057
  contributor:
    fullname: RWY Man
– volume: 131
  start-page: 14756
  year: 2009
  ident: 5192_CR36
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja902876v
  contributor:
    fullname: D Zhan
– volume: 39
  start-page: 18247
  year: 2014
  ident: 5192_CR38
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2014.09.006
  contributor:
    fullname: B Han
– volume: 15
  start-page: 2689
  year: 2018
  ident: 5192_CR33
  publication-title: J. Iran. Chem. Soc.
  doi: 10.1007/s13738-018-1457-1
  contributor:
    fullname: S Zarin
– volume: 5
  start-page: 21773
  year: 2017
  ident: 5192_CR7
  publication-title: J. Mater. Chem. A.
  doi: 10.1039/C7TA07116G
  contributor:
    fullname: A Ferre-Vilaplana
– volume: 1049
  start-page: 51
  year: 2014
  ident: 5192_CR5
  publication-title: Comput. Theoret. Chem.
  doi: 10.1016/j.comptc.2014.09.020
  contributor:
    fullname: Y Wang
– volume: 8
  start-page: 104055
  year: 2020
  ident: 5192_CR34
  publication-title: J. Environ. Chem. Eng.
  doi: 10.1016/j.jece.2020.104055
  contributor:
    fullname: A Akhtar
– volume: 5
  start-page: 60237
  year: 2015
  ident: 5192_CR26
  publication-title: RSC Adv.
  doi: 10.1039/C5RA05769H
  contributor:
    fullname: Y Sun
– volume: 11
  start-page: 2012
  year: 2009
  ident: 5192_CR46
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2009.08.041
  contributor:
    fullname: X Yu
– volume: 2
  start-page: 188
  year: 2017
  ident: 5192_CR2
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.6b00574
  contributor:
    fullname: J Eppinger
– volume: 27
  start-page: 591
  year: 2019
  ident: 5192_CR32
  publication-title: Fullerenes, Nanotubes, Carbon Nanostruct.
  doi: 10.1080/1536383X.2019.1622528
  contributor:
    fullname: Z Aslam
– volume: 334
  start-page: 2638
  year: 2018
  ident: 5192_CR25
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.10.175
  contributor:
    fullname: H Xu
– volume: 8
  start-page: 35496
  year: 2018
  ident: 5192_CR27
  publication-title: RSC Adv.
  doi: 10.1039/C8RA07194B
  contributor:
    fullname: W Li
– volume: 262
  start-page: 356
  year: 2014
  ident: 5192_CR10
  publication-title: J. Power Sourc.
  doi: 10.1016/j.jpowsour.2014.03.109
  contributor:
    fullname: MA Matin
– volume: 7
  start-page: 2077
  year: 2015
  ident: 5192_CR6
  publication-title: Chem. Cat. Chem.
  contributor:
    fullname: S-I Choi
– volume: 44
  start-page: 14808
  year: 2019
  ident: 5192_CR23
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2019.04.025
  contributor:
    fullname: SR Chowdhury
– volume: 180
  start-page: 758
  year: 2016
  ident: 5192_CR52
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2015.07.023
  contributor:
    fullname: S Hu
– volume: 45
  start-page: 29235
  year: 2020
  ident: 5192_CR15
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2020.07.169
  contributor:
    fullname: Y Zhou
– volume: 38
  start-page: 107
  year: 2014
  ident: 5192_CR9
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2013.11.010
  contributor:
    fullname: S Hu
– volume: 6
  start-page: 4794
  year: 2016
  ident: 5192_CR8
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/C5CY02217G
  contributor:
    fullname: AB Yousaf
– volume: 112
  start-page: 3789
  year: 2008
  ident: 5192_CR35
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp077068m
  contributor:
    fullname: W Zhou
– volume: 9
  start-page: 588
  year: 2019
  ident: 5192_CR39
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/C8CY02402B
  contributor:
    fullname: Z Xing
– volume: 45
  start-page: 650
  year: 2020
  ident: 5192_CR16
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2019.10.226
  contributor:
    fullname: MS Çögenli
– volume: 220
  start-page: 83
  year: 2016
  ident: 5192_CR22
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2016.10.087
  contributor:
    fullname: Y Jin
– volume: 6
  start-page: 17514
  year: 2018
  ident: 5192_CR42
  publication-title: J. Mater. Chem. A.
  doi: 10.1039/C8TA06908E
  contributor:
    fullname: H Wang
– volume: 257
  start-page: 8211
  year: 2011
  ident: 5192_CR45
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2011.04.078
  contributor:
    fullname: A Mikołajczuk
– volume: 43
  start-page: 3436
  year: 2019
  ident: 5192_CR40
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.4485
  contributor:
    fullname: B Ulas
– volume: 8
  start-page: 10858
  year: 2016
  ident: 5192_CR50
  publication-title: ACS Appl. Mater. Interfaces.
  doi: 10.1021/acsami.6b01580
  contributor:
    fullname: X Zhang
– volume: 5
  start-page: 8392
  year: 2013
  ident: 5192_CR37
  publication-title: Nanoscale
  doi: 10.1039/c3nr03100d
  contributor:
    fullname: X Zhang
– volume: 476
  start-page: 806
  year: 2019
  ident: 5192_CR14
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2019.01.114
  contributor:
    fullname: M Mazurkiewicz-Pawlicka
– volume: 5
  start-page: 4421
  year: 2017
  ident: 5192_CR54
  publication-title: J. Mater. Chem. A.
  doi: 10.1039/C6TA10476B
  contributor:
    fullname: D Chen
– volume: 416
  start-page: 191
  year: 2017
  ident: 5192_CR49
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2017.04.160
  contributor:
    fullname: H Xu
– volume: 15
  start-page: 140
  year: 2018
  ident: 5192_CR20
  publication-title: Nano-Struct. Nano-Obj.
  doi: 10.1016/j.nanoso.2017.09.003
  contributor:
    fullname: S Zhuang
– volume: 50
  start-page: 12201
  year: 2014
  ident: 5192_CR51
  publication-title: Chem. Commun.
  doi: 10.1039/C4CC04887C
  contributor:
    fullname: J Zhu
SSID ssib048395113
ssj0001916267
ssj0061873
Score 2.3245096
Snippet This study was conducted to exploit the properties of nitrogen-doped reduced graphene oxide (N-rGO) as support material for formic acid fuel cell....
SourceID proquest
crossref
springer
SourceType Aggregation Database
Publisher
StartPage 6543
SubjectTerms Bimetals
Carbon nanotubes
Catalysts
Chemical composition
Chemical synthesis
Electrocatalysts
Electron microscopy
Electron transfer
Engineering
Formic acid
Fuel cells
Graphene
Humanities and Social Sciences
Iron
Microscopy
Morphology
multidisciplinary
Nanoparticles
Nitrogen
Oxidation
Palladium
Photoelectrons
Research Article-Chemical Engineering
Science
Sulfuric acid
X ray photoelectron spectroscopy
Title Bimetallic Pd–Fe Supported on Nitrogen-Doped Reduced Graphene Oxide as Electrocatalyst for Formic Acid Oxidation
URI https://link.springer.com/article/10.1007/s13369-020-05192-0
https://www.proquest.com/docview/2539906004
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELa6uxc4IJ6isKx84BYsxXk0zbHQlArQslIXqXuK_IrUw7arPiS48R_4h_wSZuI4TosqsQcuUeW6Vur5Mp6ZzHxDyFupUj4Ucc4inecMzlvFpEgippN4qKuwymQd75jOssv5cFwkRa_nOoj5sf8qaRgDWWPl7D2k3S4KA_AZZA5XkDpc_0nu7xe3Bgxq5K6-0i6VIZ6YAPt3YmatxvcDl4vtegVrsPHqzmCFot5hIsBHpK8G7Rd8_b7QBnvQFLZNTh3l-bHZ1lmJE7BzYfmRWuh6ohduS2crkMq8paXAH7n6IQzUG0-CiBYuWgediMQUzm1hqQ1mn4OZqLRYd4MTEW8TWfeDk8Ex7i5Qc6AyY5YOsrk9kdwYeLaRbebi9HQTqrR4zDpKF8tjOwf4ILVU5X8dDmFTLB3Hg5yh24zma8RCfxS2CYqezBknlzC5rCeX4Qk5i0CngUo9G81vbsZOeSVgaYLxGvsAHxjeUd3BuP2HTdGWLd08vIt9w8h7Owcv6Gu75_oxedQ4LHRkkfaE9MzyKXnYobF8RtYec_RK__75a2Joiza6WtJ9tNEGbdShjdZoo2JDD9BGATjUoo0i2miLtufk26S4_jBlTS8PpkDJb5nhSoPnwCMO2sFUXKY8k5UZhjI3RomBRl5HwU2cxCpPVCLCsOKJSFMwQENjZPyCnC5XS_OS0ApcdCVNpRWYwoZLmedCRnmmDK8ywdM-CdxGlneWsqU8Ls8-OXd7XTZPxaaMkK85BF8g6ZN3bv_918dXe3W_6a_JA__UnJPT7Xpn3pCTjd5dALyKT9MvFw3M_gBNkqP0
link.rule.ids 315,782,786,27933,27934,48344,48347,49649,49652
linkProvider Springer Nature
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxEB7RcKAcgL5EeNUHbsXS2uvNxsdAEoJKQ9WCFE4rv1ZaqSQoCRLc-A_8Q34JY2dXCxUc2tNKu9ZoNZ7xfGOPvwHY1yZhbRVLyq2UFOOtoVoJTq2I2zaP8lSH_Y7B73Q4and7niZHVHdhQrV7dSQZVur6slsctyT16Y6HHZxior7s2c55A5Y7o8vLbmVHAoM-4oi43mtBDMRDM1n0z5gmrXRU3p95XfDLGFUDz7_OSkMI6q__389vwFoJOUlnYSMfYMmNP8LqMyLCTzA9LK4cwvA_hSE_7eP9Q98R3-_TV-JaMhmTYTGfTtDWaHdyjW9-ecJXfB57umtcLcnZbWEdUTPSW7TVCbtCd7M5QUxM-oiLUXDHFDYMDMbwGS76vfOjAS27MVCDbjqnjhmL2I9xhvPrcqYTlurctSMtnTOqZT0zn2IuFrGRwggVRTkTKkkQQkQOc_Yv0BhPxm4TSI5JltEutwbBjGNaS6k0l6lxLE8VS5rwrdJ_dr0g3chqemWvyQw1mQVNZlETdqopykoHnGXcM-5GiOZEEw6qKak_vy1t69-Gf4WVwfmP0-z0ZPh9G95zX_ESinl3oDGf3rhdeDezN3ulhT4BIODe3w
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTvMwELZYJAQHdkRZfeDGbxFnaepjoQ0gUEHAL5VT5FWKBGnVBgluvANvyJMwdhMKCA6IUyTHshTPOPPNeOYbhPaEjGiDB4z4ijEC9lYSwUOfqDBoKOOZWLh4x8l13Ok2Wm1Lk_Nexe-y3asryVFNg2VpyouDvjIH48K3IKgzYl0fC0F8Ak77tA2Lgfs13eze3rYqnYJBwBClyXJxF8BDvmssC2c1IFE97pa1NN8v_NlejUHol3tTZ46Shb9_yCKaL6Eobo50ZwlN6HwZzX0gKFxBg8PsXgM8v8skvlSvzy-JxrYPqM3QVbiX405WDHqgg6TV68PIlSWCheexpcGGvyi-eMyUxnyI26N2Oy5a9DQsMGBlnABehoWbMlNuolOSVfQ_ad8cnZCySwORcHwLoqlUgAmpT0Hu2lAR0VgY3fAE01ryurKMfZzqIAwkC2XIPc_QkEcRQAtPgy-_hqbyXq7XETbgfEmhjZIAcjQVgjEufBZLTU3MaVRD-5Us0v6IjCMd0y7bnUxhJ1O3k6lXQ1uVuNLyYA5T3zLxeoDywhr6V4ln_Prn1TZ-N30XzVy2kvT8tHO2iWZ9mwjjcny30FQxeNDbaHKoHnZKZX0DQDbnwQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bimetallic+Pd%E2%80%93Fe+Supported+on+Nitrogen-Doped+Reduced+Graphene+Oxide+as+Electrocatalyst+for+Formic+Acid+Oxidation&rft.jtitle=Arabian+journal+for+science+and+engineering+%282011%29&rft.au=Hossain%2C+SK+Safdar&rft.date=2021-07-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=2193-567X&rft.eissn=2191-4281&rft.volume=46&rft.issue=7&rft.spage=6543&rft.epage=6556&rft_id=info:doi/10.1007%2Fs13369-020-05192-0&rft.externalDocID=10_1007_s13369_020_05192_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2193-567X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2193-567X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2193-567X&client=summon