Model elements identification using neural networks: a comprehensive study
Modeling of natural language requirements, especially for a large system, can take a significant amount of effort and time. Many automated model-driven approaches partially address this problem. However, the application of state-of-the-art neural network architectures to automated model element iden...
Saved in:
Published in: | Requirements engineering Vol. 26; no. 1; pp. 67 - 96 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
London
Springer London
01-03-2021
Springer Nature B.V |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Modeling of natural language requirements, especially for a large system, can take a significant amount of effort and time. Many automated model-driven approaches partially address this problem. However, the application of state-of-the-art neural network architectures to automated model element identification tasks has not been studied. In this paper, we perform an empirical study on automatic model elements identification for component state transition models from use case documents. We analyzed four different neural network architectures: feed forward neural network, convolutional neural network, recurrent neural network (RNN) with long short-term memory, and RNN with gated recurrent unit (GRU), and the trade-offs among them using six use case documents. We analyzed the effect of factors such as types of splitting, types of predictions, types of designs, and types of annotations on performance of neural networks. The results of neural networks on the test and unseen data showed that RNN with GRU is the most effective neural network architecture. However, the factors that result in effective predictions of neural networks are dependent on the type of the model element. |
---|---|
AbstractList | Modeling of natural language requirements, especially for a large system, can take a significant amount of effort and time. Many automated model-driven approaches partially address this problem. However, the application of state-of-the-art neural network architectures to automated model element identification tasks has not been studied. In this paper, we perform an empirical study on automatic model elements identification for component state transition models from use case documents. We analyzed four different neural network architectures: feed forward neural network, convolutional neural network, recurrent neural network (RNN) with long short-term memory, and RNN with gated recurrent unit (GRU), and the trade-offs among them using six use case documents. We analyzed the effect of factors such as types of splitting, types of predictions, types of designs, and types of annotations on performance of neural networks. The results of neural networks on the test and unseen data showed that RNN with GRU is the most effective neural network architecture. However, the factors that result in effective predictions of neural networks are dependent on the type of the model element. |
Author | Do, Hyunsook Madala, Kaushik Piparia, Shraddha Blanco, Eduardo Bryce, Renee |
Author_xml | – sequence: 1 givenname: Kaushik orcidid: 0000-0003-2437-0498 surname: Madala fullname: Madala, Kaushik email: kaushikmadala@my.unt.edu organization: University of North Texas – sequence: 2 givenname: Shraddha surname: Piparia fullname: Piparia, Shraddha organization: University of North Texas – sequence: 3 givenname: Eduardo surname: Blanco fullname: Blanco, Eduardo organization: University of North Texas – sequence: 4 givenname: Hyunsook surname: Do fullname: Do, Hyunsook organization: University of North Texas – sequence: 5 givenname: Renee surname: Bryce fullname: Bryce, Renee organization: University of North Texas |
BookMark | eNp9kE9PwzAMxSM0JLbBF-BUiXPB-dN04YYmGKAhLiBxi7LUHR1dMpIWtG9PoEjcuPhZ1nu29ZuQkfMOCTmlcE4ByouYipQ5MMgBOGc5OyBjKlIDFF5GZAxKlDmXwI7IJMYNABOlUmNy_-ArbDNscYuui1lTJWnqxpqu8S7rY-PWmcM-mDZJ9-nDW7zMTGb9dhfwFV1sPjCLXV_tj8lhbdqIJ786Jc8310_z23z5uLibXy1zy6nq8qqSnK1qsJYbQSlbifQxEyCYFYzyqpAW1YobaaSEWU0NiGImVZnGhcXS8ik5G_bugn_vMXZ64_vg0knNhKKSC8WL5GKDywYfY8Ba70KzNWGvKehvZnpgphMz_cNMsxTiQygms1tj-Fv9T-oLKlRwrQ |
CitedBy_id | crossref_primary_10_1109_JSEN_2023_3331026 crossref_primary_10_1002_smr_2515 crossref_primary_10_1007_s00766_021_00365_1 |
Cites_doi | 10.1007/978-3-319-74817-7_3 10.1145/2347736.2347755 10.3115/v1/P14-1062 10.3115/v1/D14-1181 10.1162/tacl_a_00051 10.3115/v1/P14-5010 10.1002/047084535X 10.1109/RE.2012.6345825 10.1561/2200000013 10.18653/v1/N16-1170 10.1007/978-3-642-11266-9_58 10.3115/v1/D14-1162 10.1016/j.jbi.2015.07.010 10.1016/j.procs.2018.04.010 10.1075/scl.4 10.3115/1608858.1608859 10.1007/978-3-540-87875-9_6 10.1145/2970276.2970289 10.1109/EDOC.2007.15 10.1109/SITA.2015.7358415 10.1109/RE.2015.7320415 10.1109/RE.2015.7320416 10.1162/COLI_a_00074 10.18653/v1/E17-2068 10.1371/journal.pcbi.1002854 10.1007/s00766-017-0270-1 10.1109/TIT.2004.833339 10.1145/291469.293165 10.1021/ci00027a006 10.1016/0893-6080(89)90020-8 10.18653/v1/N18-1202 10.1007/s10270-016-0560-y 10.1109/RE.2019.00031 10.18653/v1/P16-1101 10.3115/1117601.1117639 10.1109/ICRE.1996.491438 10.3115/1613715.1613835 10.18653/v1/P16-1105 10.1145/2642937.2642969 10.1109/AIRE.2018.00014 10.1016/j.infsof.2017.11.008 10.18653/v1/D17-1035 10.1016/j.infsof.2018.12.007 10.1145/3180155.3180204 10.1007/978-3-319-69904-2_18 10.1016/j.jss.2010.10.020 10.1016/0020-0255(83)90014-2 10.11613/BM.2012.031 10.1162/tacl_a_00104 10.3115/v1/P14-2050 10.1109/REW.2017.73 10.1186/s12859-015-0871-y 10.1007/s00766-014-0209-8 10.1007/978-94-017-2390-9_10 10.1016/j.engappai.2007.09.009 10.1023/A:1022916028950 10.1609/aaai.v29i1.9513 10.1109/RE.2019.00069 10.1109/RE.2016.40 10.1177/001316446002000104 10.1007/978-3-642-24485-8_20 10.1016/j.jss.2013.08.036 10.1162/coli.07-034-R2 10.1371/journal.pone.0118432 10.1007/s00766-013-0181-8 10.1145/1553374.1553507 10.1109/DSN-W.2017.33 10.1109/TPAMI.2017.2699184 10.1145/2635868.2635891 10.1109/RE.2018.00022 |
ContentType | Journal Article |
Copyright | Springer-Verlag London Ltd., part of Springer Nature 2020 Springer-Verlag London Ltd., part of Springer Nature 2020. |
Copyright_xml | – notice: Springer-Verlag London Ltd., part of Springer Nature 2020 – notice: Springer-Verlag London Ltd., part of Springer Nature 2020. |
DBID | AAYXX CITATION 3V. 7SC 7XB 88I 8AL 8AO 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L6V L7M L~C L~D M0N M2P M7S P5Z P62 PQEST PQQKQ PQUKI PRINS PTHSS Q9U |
DOI | 10.1007/s00766-020-00332-2 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Aerospace Database (1962 - current) ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection (Proquest) (PQ_SDU_P3) ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Science Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic |
DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest Engineering Collection ProQuest Central Korea Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection ProQuest Computing Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest Central (Alumni) |
DatabaseTitleList | Computer Science Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1432-010X |
EndPage | 96 |
ExternalDocumentID | 10_1007_s00766_020_00332_2 |
GrantInformation_xml | – fundername: National Science Foundation grantid: CCF-1564238 funderid: http://dx.doi.org/10.13039/100000001 |
GroupedDBID | -4Z -59 -5G -BR -CS -D8 -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29P 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3EH 3V. 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 88I 8AO 8FE 8FG 8FW 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AABYN AAFGU AAHNG AAIAL AAJKR AANZL AAOBN AAPBV AARHV AARTL AATNV AATVU AAUYE AAWCG AAWWR AAYFA AAYIU AAYQN AAYTO ABBBX ABBXA ABDBF ABDZT ABECU ABFGW ABFTV ABHFT ABHLI ABHQN ABJCF ABJNI ABJOX ABKAS ABKCH ABKTR ABMNI ABMQK ABNWP ABPTK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACBMV ACBRV ACBXY ACBYP ACGFO ACGFS ACGOD ACHSB ACHXU ACIGE ACIHN ACIPQ ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACREN ACSNA ACTTH ACVWB ACWMK ADGRI ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEAQA AEBTG AEEQQ AEFIE AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AEYWE AFEXP AFGCZ AFKRA AFLOW AFNRJ AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGBP AGGDS AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BPHCQ CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EAD EAP EBLON EBS EDO EIOEI EJD EMK EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K6V K7- KDC KOV KOW KZ1 L6V LAS LLZTM LMP M0N M2P M4Y M7S MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9O PF0 PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7X Z7Z Z81 Z83 Z88 Z8M Z8N Z8R Z8T Z8U Z8W Z92 ZMTXR ~8M ~EX AACDK AAEOY AAGNY AAJBT AASML AAYXX AAYZH ABAKF ACAOD ACDTI ACZOJ AEFQL AEMSY AFBBN AGQEE AGRTI AIGIU CITATION H13 7SC 7XB 8AL 8FD 8FK JQ2 L7M L~C L~D PQEST PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c319t-dd632bf0cc3a4112b400324042c4213d56ce9b3a6a6608f1a04586976ce5ce7c3 |
IEDL.DBID | AEJHL |
ISSN | 0947-3602 |
IngestDate | Tue Nov 19 05:41:19 EST 2024 Thu Nov 21 20:33:06 EST 2024 Sat Dec 16 12:10:46 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Requirements analysis Sequence labeling Component state transition diagrams Automated requirements modeling Neural networks Empirical study |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-dd632bf0cc3a4112b400324042c4213d56ce9b3a6a6608f1a04586976ce5ce7c3 |
ORCID | 0000-0003-2437-0498 |
PQID | 2491634935 |
PQPubID | 43844 |
PageCount | 30 |
ParticipantIDs | proquest_journals_2491634935 crossref_primary_10_1007_s00766_020_00332_2 springer_journals_10_1007_s00766_020_00332_2 |
PublicationCentury | 2000 |
PublicationDate | 2021-03-01 |
PublicationDateYYYYMMDD | 2021-03-01 |
PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Requirements engineering |
PublicationTitleAbbrev | Requirements Eng |
PublicationYear | 2021 |
Publisher | Springer London Springer Nature B.V |
Publisher_xml | – name: Springer London – name: Springer Nature B.V |
References | Mitchell (CR100) 1997; 45 CR39 CR38 CR37 CR35 Bengio, Grandvalet (CR62) 2004; 5 CR32 CR31 CR30 Witten, Frank, Hall, Pal (CR34) 2016 Ben-David (CR66) 2008; 21 Artstein, Poesio (CR69) 2008; 34 Zeni, Kiyavitskaya, Mich, Cordy, Mylopoulos (CR43) 2015; 20 Viera, Garrett (CR96) 2005; 37 Echeverría, Pérez, Pastor, Cetina, Nearchos, Marios, Chris, Michael, Henry, Christoph (CR13) 2018 CR49 CR48 CR47 CR46 CR45 CR44 Mandic, Chambers (CR75) 2001 Li, Horkoff, Mylopoulos (CR9) 2018; 17 CR41 (CR70) 2011; 37 Lucassen, Robeer, Dalpiaz, van der Werf, Brinkkemper (CR11) 2017; 22 Saito, Rehmsmeier (CR94) 2015; 10 McHugh (CR97) 2012; 22 CR59 Chiu, Nichols (CR36) 2016; 4 CR58 CR57 CR56 CR55 CR54 Cunningham, Tablan, Roberts, Bontcheva (CR95) 2013; 9 CR52 CR51 Powers (CR67) 2011; 2 Mikolov, Sutskever, Chen, Corrado, Dean, Burges, Bottou, Welling, Ghahramani, Weinberger (CR79) 2013 dos Santos, Vrancken, Verbraeck (CR3) 2011; 84 CR68 (CR21) 1983; 29 CR63 Hornik, Stinchcombe, White (CR26) 1989; 2 CR61 CR60 Horkoff, Eric (CR6) 2016; 21 Śmiałek, Kalnins, Kalnina, Ambroziewicz, Straszak, Wolter, van Leeuwen, Muscholl, Peleg, Pokorný, Rumpe (CR53) 2010 Cesa-Bianchi, Conconi, Gentile (CR102) 2004; 50 CR78 CR77 CR76 Gutiérrez, Nebut, Escalona, Mejías, Ramos, Krzysztof, Ileana, Jean-Michel, Axel, Markus (CR42) 2008 CR74 CR73 Hunston, Francis (CR50) 2000 Sutton, McCallum (CR33) 2012; 4 CR2 Krizhevsky, Sutskever, Hinton, Pereira, Burges, Bottou, Weinberger (CR71) 2012 CR4 Vidya, Vidhu, Abirami (CR20) 2014; 88 Bojanowski, Grave, Joulin, Mikolov (CR84) 2017; 5 Domingos (CR99) 2012; 55 CR8 Yue, Briand, Labiche (CR40) 2015; 24 Leaman, Khare, Zhiyong (CR104) 2015; 57 CR89 Tong, Liu, Wang (CR23) 2018; 96 CR88 CR87 CR86 CR85 CR83 CR82 CR81 CR80 Piras, Paja, Giorgini, Mylopoulos, Heinrich, Giancarlo, Hui, Oscar (CR7) 2017 CR19 CR17 CR16 CR15 CR14 CR10 CR98 Cohen (CR65) 1960; 20 CR93 CR92 Pustejovsky, Stubbs (CR64) 2012 CR91 Tetko, Livingstone, Luik (CR24) 1995; 35 CR90 Chen, Papandreou, Kokkinos, Murphy, Yuille (CR72) 2018; 40 Harmain, Gaizauskas (CR18) 2003; 10 CR29 CR28 CR27 Tseytlin, Mitchell, Legowski, Corrigan, Chavan, Jacobson (CR105) 2016; 17 CR25 Mylopoulos, Chung, Eric (CR5) 1999; 42 Maiden, Jones, Manning, Greenwood, Renou, Anne, Janis (CR1) 2004 CR22 CR103 Dalpiaz, van der Schalk, Brinkkemper, Aydemir, Lucassen (CR12) 2018; 110 CR101 332_CR39 332_CR37 332_CR38 332_CR103 P Domingos (332_CR99) 2012; 55 T Mikolov (332_CR79) 2013 H Cunningham (332_CR95) 2013; 9 332_CR46 332_CR47 Y Bengio (332_CR62) 2004; 5 A Ben-David (332_CR66) 2008; 21 332_CR44 Petra Saskia Bayerl and Karsten Ingmar Paul (332_CR70) 2011; 37 N Cesa-Bianchi (332_CR102) 2004; 50 332_CR45 R Artstein (332_CR69) 2008; 34 332_CR101 332_CR41 332_CR28 332_CR29 332_CR27 R Leaman (332_CR104) 2015; 57 T Saito (332_CR94) 2015; 10 332_CR35 332_CR31 L Chen (332_CR72) 2018; 40 332_CR32 332_CR30 332_CR19 332_CR17 332_CR15 332_CR16 P Bojanowski (332_CR84) 2017; 5 332_CR25 332_CR22 J Horkoff (332_CR6) 2016; 21 DMW Powers (332_CR67) 2011; 2 332_CR2 332_CR4 H Tong (332_CR23) 2018; 96 332_CR8 332_CR93 332_CR91 332_CR92 332_CR90 F Dalpiaz (332_CR12) 2018; 110 332_CR14 332_CR10 332_CR98 DP Mandic (332_CR75) 2001 JPC Chiu (332_CR36) 2016; 4 L Piras (332_CR7) 2017 IV Tetko (332_CR24) 1995; 35 SM dos Santos (332_CR3) 2011; 84 332_CR82 J Echeverría (332_CR13) 2018 332_CR83 332_CR80 332_CR81 HM Harmain (332_CR18) 2003; 10 332_CR88 G Lucassen (332_CR11) 2017; 22 332_CR89 T Yue (332_CR40) 2015; 24 JJ Gutiérrez (332_CR42) 2008 332_CR86 332_CR87 332_CR85 S Hunston (332_CR50) 2000 ML McHugh (332_CR97) 2012; 22 C Sutton (332_CR33) 2012; 4 Peter Pin-Shan Chen (332_CR21) 1983; 29 J Pustejovsky (332_CR64) 2012 332_CR77 332_CR78 332_CR76 332_CR73 332_CR74 S Vidya (332_CR20) 2014; 88 T Li (332_CR9) 2018; 17 332_CR59 M Śmiałek (332_CR53) 2010 J Cohen (332_CR65) 1960; 20 332_CR60 332_CR61 N Zeni (332_CR43) 2015; 20 TM Mitchell (332_CR100) 1997; 45 332_CR68 E Tseytlin (332_CR105) 2016; 17 332_CR63 NAM Maiden (332_CR1) 2004 332_CR48 332_CR49 A Krizhevsky (332_CR71) 2012 AJ Viera (332_CR96) 2005; 37 K Hornik (332_CR26) 1989; 2 332_CR57 J Mylopoulos (332_CR5) 1999; 42 332_CR58 IH Witten (332_CR34) 2016 332_CR55 332_CR56 332_CR54 332_CR51 332_CR52 |
References_xml | – ident: CR45 – ident: CR22 – start-page: 83 year: 2008 end-page: 96 ident: CR42 article-title: Visualization of use cases through automatically generated activity diagrams publication-title: Model driven engineering languages and systems contributor: fullname: Markus – year: 2001 ident: CR75 publication-title: Recurrent neural networks for prediction: learning algorithms. Architectures and stability contributor: fullname: Chambers – ident: CR68 – ident: CR74 – volume: 10 start-page: 157 issue: 2 year: 2003 end-page: 181 ident: CR18 article-title: Cm-builder: a natural language-based case tool for object-oriented analysis publication-title: Autom Softw Eng contributor: fullname: Gaizauskas – ident: CR39 – ident: CR16 – ident: CR51 – ident: CR54 – ident: CR80 – ident: CR77 – ident: CR8 – ident: CR25 – ident: CR101 – ident: CR19 – ident: CR92 – ident: CR88 – ident: CR57 – volume: 21 start-page: 29 issue: 1 year: 2016 end-page: 61 ident: CR6 article-title: Interactive goal model analysis for early requirements engineering publication-title: Requir Eng contributor: fullname: Eric – ident: CR60 – ident: CR85 – ident: CR91 – ident: CR47 – ident: CR89 – volume: 88 start-page: 25 year: 2014 end-page: 41 ident: CR20 article-title: Conceptual modeling of natural language functional requirements publication-title: J Syst Softw contributor: fullname: Abirami – ident: CR30 – ident: CR10 – volume: 20 start-page: 1 issue: 1 year: 2015 end-page: 22 ident: CR43 article-title: Gaiust: supporting the extraction of rights and obligations for regulatory compliance publication-title: Requir Eng contributor: fullname: Mylopoulos – ident: CR86 – volume: 40 start-page: 834 issue: 4 year: 2018 end-page: 848 ident: CR72 article-title: Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs publication-title: IEEE Trans Pattern Anal Mach Intell contributor: fullname: Yuille – ident: CR63 – ident: CR27 – start-page: 33 year: 2018 end-page: 49 ident: CR13 article-title: Assessing the performance of automated model extraction rules publication-title: Advances in information systems development contributor: fullname: Christoph – ident: CR44 – ident: CR103 – ident: CR38 – volume: 22 start-page: 276 issue: 3 year: 2012 end-page: 282 ident: CR97 article-title: Interrater reliability: the kappa statistic publication-title: Biochem Med contributor: fullname: McHugh – ident: CR52 – volume: 55 start-page: 78 issue: 10 year: 2012 end-page: 87 ident: CR99 article-title: A few useful things to know about machine learning publication-title: Commun ACM contributor: fullname: Domingos – volume: 29 start-page: 127 issue: 2 year: 1983 end-page: 149 ident: CR21 article-title: English sentence structure and entity-relationship diagrams publication-title: Inform Sci – volume: 9 start-page: 1 issue: 2 year: 2013 end-page: 16 ident: CR95 article-title: Getting more out of biomedical documents with gate’s full lifecycle open source text analytics publication-title: PLOS Comput Biol contributor: fullname: Bontcheva – volume: 2 start-page: 359 issue: 5 year: 1989 end-page: 366 ident: CR26 article-title: Multilayer feedforward networks are universal approximators publication-title: Neural Netw contributor: fullname: White – start-page: 697 year: 2010 end-page: 708 ident: CR53 article-title: Comprehensive system for systematic case-driven software reuse publication-title: SOFSEM 2010: theory and practice of computer science contributor: fullname: Rumpe – ident: CR55 – volume: 5 start-page: 1089 year: 2004 end-page: 1105 ident: CR62 article-title: No unbiased estimator of the variance of k-fold cross-validation publication-title: J Mach Learn Res contributor: fullname: Grandvalet – ident: CR83 – ident: CR41 – volume: 5 start-page: 135 year: 2017 end-page: 146 ident: CR84 article-title: Enriching word vectors with subword information publication-title: Trans Assoc Comput Linguist contributor: fullname: Mikolov – start-page: 3111 year: 2013 end-page: 3119 ident: CR79 article-title: Distributed representations of words and phrases and their compositionality publication-title: Advances in neural information processing systems contributor: fullname: Weinberger – ident: CR49 – ident: CR93 – volume: 21 start-page: 874 issue: 6 year: 2008 end-page: 882 ident: CR66 article-title: About the relationship between ROC curves and Cohen’s Kappa publication-title: Eng Appl Artif Intell contributor: fullname: Ben-David – ident: CR4 – ident: CR87 – volume: 17 start-page: 1253 issue: 4 year: 2018 end-page: 1285 ident: CR9 article-title: Holistic security requirements analysis for socio-technical systems publication-title: Softw Syst Model contributor: fullname: Mylopoulos – volume: 84 start-page: 328 issue: 2 year: 2011 end-page: 339 ident: CR3 article-title: User requirements modeling and analysis of software-intensive systems publication-title: J Syst Softw contributor: fullname: Verbraeck – ident: CR35 – ident: CR29 – ident: CR61 – volume: 34 start-page: 555 issue: 4 year: 2008 end-page: 596 ident: CR69 article-title: Inter-coder agreement for computational linguistics publication-title: Comput Linguist contributor: fullname: Poesio – volume: 4 start-page: 267 issue: 4 year: 2012 end-page: 373 ident: CR33 article-title: An introduction to conditional random fields publication-title: Found Trends Mach Learn contributor: fullname: McCallum – ident: CR58 – start-page: 368 year: 2004 end-page: 383 ident: CR1 article-title: Model-driven requirements engineering: synchronising models in an air traffic management case study publication-title: Advanced information systems engineering contributor: fullname: Janis – volume: 22 start-page: 339 issue: 3 year: 2017 end-page: 358 ident: CR11 article-title: Extracting conceptual models from user stories with visual narrator publication-title: Requir Eng contributor: fullname: Brinkkemper – year: 2000 ident: CR50 publication-title: Pattern grammar: a corpus-driven approach to the lexical grammar of English contributor: fullname: Francis – volume: 50 start-page: 2050 issue: 9 year: 2004 end-page: 2057 ident: CR102 article-title: On the generalization ability of on-line learning algorithms publication-title: IEEE Trans Inf Theory contributor: fullname: Gentile – ident: CR46 – volume: 57 start-page: 28 year: 2015 end-page: 37 ident: CR104 article-title: Challenges in clinical natural language processing for automated disorder normalization publication-title: J Biomed Inf contributor: fullname: Zhiyong – ident: CR15 – year: 2012 ident: CR64 publication-title: Natural language annotation for machine learning: a guide to corpus-building for applications contributor: fullname: Stubbs – ident: CR32 – ident: CR78 – ident: CR81 – volume: 17 start-page: 32 issue: 1 year: 2016 ident: CR105 article-title: Noble—flexible concept recognition for large-scale biomedical natural language processing publication-title: BMC Bioinf contributor: fullname: Jacobson – volume: 4 start-page: 357 year: 2016 end-page: 370 ident: CR36 article-title: Named entity recognition with bidirectional LSTM-CNNS publication-title: Trans Assoc Comput Linguist contributor: fullname: Nichols – volume: 20 start-page: 37 issue: 1 year: 1960 end-page: 46 ident: CR65 article-title: A coefficient of agreement for nominal scales publication-title: Educ Psychol Meas contributor: fullname: Cohen – ident: CR14 – ident: CR2 – ident: CR37 – start-page: 223 year: 2017 end-page: 230 ident: CR7 article-title: Goal models for acceptance requirements analysis and gamification design publication-title: Conceptual modeling contributor: fullname: Oscar – ident: CR82 – volume: 45 start-page: 81 year: 1997 end-page: 127 ident: CR100 article-title: Artificial neural networks publication-title: Mach Learn contributor: fullname: Mitchell – ident: CR56 – ident: CR98 – volume: 24 start-page: 13:1 issue: 3 year: 2015 end-page: 13:52 ident: CR40 article-title: Atoucan: An automated framework to derive UML analysis models from use case models publication-title: ACM Trans Softw Eng Methodol contributor: fullname: Labiche – volume: 96 start-page: 94 year: 2018 end-page: 111 ident: CR23 article-title: Software defect prediction using stacked denoising autoencoders and two-stage ensemble learning publication-title: Inf Softw Technol contributor: fullname: Wang – ident: CR48 – volume: 2 start-page: 37 year: 2011 end-page: 63 ident: CR67 article-title: Evaluation: from precision, recall and f-measure to ROC, informedness, markedness and correlation publication-title: J Mach Learn Technol contributor: fullname: Powers – volume: 37 start-page: 699 issue: 4 year: 2011 end-page: 725 ident: CR70 article-title: What determines inter-coder agreement in manual annotations? A meta-analytic investigation publication-title: Comput Linguist – ident: CR73 – volume: 42 start-page: 31 issue: 1 year: 1999 end-page: 37 ident: CR5 article-title: From object-oriented to goal-oriented requirements analysis publication-title: Commun ACM contributor: fullname: Eric – ident: CR90 – ident: CR17 – ident: CR31 – volume: 10 start-page: e0118432 issue: 3 year: 2015 ident: CR94 article-title: The precision-recall plot is more informative than the ROC plot when evaluating binary classifiers on imbalanced datasets publication-title: PloS One contributor: fullname: Rehmsmeier – year: 2016 ident: CR34 publication-title: Data mining: practical machine learning tools and techniques contributor: fullname: Pal – start-page: 1097 year: 2012 end-page: 1105 ident: CR71 article-title: Imagenet classification with deep convolutional neural networks publication-title: Advances in neural information processing systems contributor: fullname: Weinberger – volume: 37 start-page: 360 issue: 5 year: 2005 end-page: 363 ident: CR96 article-title: Understanding interobserver agreement: the kappa statistic publication-title: Family Med contributor: fullname: Garrett – volume: 110 start-page: 3 year: 2018 end-page: 16 ident: CR12 article-title: Detecting terminological ambiguity in user stories: tool and experimentation publication-title: Inf Softw Technol contributor: fullname: Lucassen – ident: CR59 – ident: CR76 – ident: CR28 – volume: 35 start-page: 826 issue: 5 year: 1995 end-page: 833 ident: CR24 article-title: Neural network studies. 1. Comparison of overfitting and overtraining publication-title: J Chem Inf Comput Sci contributor: fullname: Luik – start-page: 33 volume-title: Advances in information systems development year: 2018 ident: 332_CR13 doi: 10.1007/978-3-319-74817-7_3 contributor: fullname: J Echeverría – volume: 55 start-page: 78 issue: 10 year: 2012 ident: 332_CR99 publication-title: Commun ACM doi: 10.1145/2347736.2347755 contributor: fullname: P Domingos – ident: 332_CR27 doi: 10.3115/v1/P14-1062 – ident: 332_CR74 doi: 10.3115/v1/D14-1181 – volume: 5 start-page: 135 year: 2017 ident: 332_CR84 publication-title: Trans Assoc Comput Linguist doi: 10.1162/tacl_a_00051 contributor: fullname: P Bojanowski – ident: 332_CR49 doi: 10.3115/v1/P14-5010 – volume-title: Recurrent neural networks for prediction: learning algorithms. Architectures and stability year: 2001 ident: 332_CR75 doi: 10.1002/047084535X contributor: fullname: DP Mandic – ident: 332_CR32 – ident: 332_CR55 doi: 10.1109/RE.2012.6345825 – volume: 4 start-page: 267 issue: 4 year: 2012 ident: 332_CR33 publication-title: Found Trends Mach Learn doi: 10.1561/2200000013 contributor: fullname: C Sutton – ident: 332_CR28 doi: 10.3115/v1/D14-1181 – ident: 332_CR37 doi: 10.18653/v1/N16-1170 – start-page: 697 volume-title: SOFSEM 2010: theory and practice of computer science year: 2010 ident: 332_CR53 doi: 10.1007/978-3-642-11266-9_58 contributor: fullname: M Śmiałek – ident: 332_CR82 doi: 10.3115/v1/D14-1162 – volume: 57 start-page: 28 year: 2015 ident: 332_CR104 publication-title: J Biomed Inf doi: 10.1016/j.jbi.2015.07.010 contributor: fullname: R Leaman – ident: 332_CR16 doi: 10.1016/j.procs.2018.04.010 – volume-title: Pattern grammar: a corpus-driven approach to the lexical grammar of English year: 2000 ident: 332_CR50 doi: 10.1075/scl.4 contributor: fullname: S Hunston – ident: 332_CR48 doi: 10.3115/1608858.1608859 – start-page: 83 volume-title: Model driven engineering languages and systems year: 2008 ident: 332_CR42 doi: 10.1007/978-3-540-87875-9_6 contributor: fullname: JJ Gutiérrez – ident: 332_CR38 – ident: 332_CR41 doi: 10.1145/2970276.2970289 – ident: 332_CR2 doi: 10.1109/EDOC.2007.15 – volume: 5 start-page: 1089 year: 2004 ident: 332_CR62 publication-title: J Mach Learn Res contributor: fullname: Y Bengio – ident: 332_CR54 doi: 10.1109/SITA.2015.7358415 – ident: 332_CR58 doi: 10.1109/RE.2015.7320415 – ident: 332_CR44 – ident: 332_CR47 – ident: 332_CR63 doi: 10.1109/RE.2015.7320416 – volume: 37 start-page: 699 issue: 4 year: 2011 ident: 332_CR70 publication-title: Comput Linguist doi: 10.1162/COLI_a_00074 contributor: fullname: Petra Saskia Bayerl and Karsten Ingmar Paul – ident: 332_CR85 doi: 10.18653/v1/E17-2068 – volume: 9 start-page: 1 issue: 2 year: 2013 ident: 332_CR95 publication-title: PLOS Comput Biol doi: 10.1371/journal.pcbi.1002854 contributor: fullname: H Cunningham – ident: 332_CR89 – volume: 22 start-page: 339 issue: 3 year: 2017 ident: 332_CR11 publication-title: Requir Eng doi: 10.1007/s00766-017-0270-1 contributor: fullname: G Lucassen – volume: 50 start-page: 2050 issue: 9 year: 2004 ident: 332_CR102 publication-title: IEEE Trans Inf Theory doi: 10.1109/TIT.2004.833339 contributor: fullname: N Cesa-Bianchi – ident: 332_CR81 – volume: 42 start-page: 31 issue: 1 year: 1999 ident: 332_CR5 publication-title: Commun ACM doi: 10.1145/291469.293165 contributor: fullname: J Mylopoulos – volume: 35 start-page: 826 issue: 5 year: 1995 ident: 332_CR24 publication-title: J Chem Inf Comput Sci doi: 10.1021/ci00027a006 contributor: fullname: IV Tetko – ident: 332_CR98 – volume: 2 start-page: 359 issue: 5 year: 1989 ident: 332_CR26 publication-title: Neural Netw doi: 10.1016/0893-6080(89)90020-8 contributor: fullname: K Hornik – ident: 332_CR86 doi: 10.18653/v1/N18-1202 – volume: 17 start-page: 1253 issue: 4 year: 2018 ident: 332_CR9 publication-title: Softw Syst Model doi: 10.1007/s10270-016-0560-y contributor: fullname: T Li – ident: 332_CR19 – ident: 332_CR51 doi: 10.1109/RE.2019.00031 – ident: 332_CR31 – ident: 332_CR76 doi: 10.18653/v1/P16-1101 – ident: 332_CR88 doi: 10.3115/1117601.1117639 – ident: 332_CR4 doi: 10.1109/ICRE.1996.491438 – ident: 332_CR93 doi: 10.3115/1613715.1613835 – ident: 332_CR35 doi: 10.18653/v1/P16-1105 – ident: 332_CR25 – ident: 332_CR90 doi: 10.1145/2642937.2642969 – start-page: 1097 volume-title: Advances in neural information processing systems year: 2012 ident: 332_CR71 contributor: fullname: A Krizhevsky – ident: 332_CR68 – ident: 332_CR39 – ident: 332_CR14 doi: 10.1109/AIRE.2018.00014 – volume: 96 start-page: 94 year: 2018 ident: 332_CR23 publication-title: Inf Softw Technol doi: 10.1016/j.infsof.2017.11.008 contributor: fullname: H Tong – ident: 332_CR59 – ident: 332_CR60 – ident: 332_CR78 doi: 10.18653/v1/D17-1035 – start-page: 368 volume-title: Advanced information systems engineering year: 2004 ident: 332_CR1 contributor: fullname: NAM Maiden – volume: 110 start-page: 3 year: 2018 ident: 332_CR12 publication-title: Inf Softw Technol doi: 10.1016/j.infsof.2018.12.007 contributor: fullname: F Dalpiaz – ident: 332_CR8 doi: 10.1145/3180155.3180204 – ident: 332_CR45 – start-page: 223 volume-title: Conceptual modeling year: 2017 ident: 332_CR7 doi: 10.1007/978-3-319-69904-2_18 contributor: fullname: L Piras – volume: 84 start-page: 328 issue: 2 year: 2011 ident: 332_CR3 publication-title: J Syst Softw doi: 10.1016/j.jss.2010.10.020 contributor: fullname: SM dos Santos – volume: 29 start-page: 127 issue: 2 year: 1983 ident: 332_CR21 publication-title: Inform Sci doi: 10.1016/0020-0255(83)90014-2 contributor: fullname: Peter Pin-Shan Chen – ident: 332_CR30 doi: 10.18653/v1/P16-1101 – ident: 332_CR92 – volume: 22 start-page: 276 issue: 3 year: 2012 ident: 332_CR97 publication-title: Biochem Med doi: 10.11613/BM.2012.031 contributor: fullname: ML McHugh – volume: 4 start-page: 357 year: 2016 ident: 332_CR36 publication-title: Trans Assoc Comput Linguist doi: 10.1162/tacl_a_00104 contributor: fullname: JPC Chiu – ident: 332_CR83 doi: 10.3115/v1/P14-2050 – ident: 332_CR22 doi: 10.1109/REW.2017.73 – volume: 17 start-page: 32 issue: 1 year: 2016 ident: 332_CR105 publication-title: BMC Bioinf doi: 10.1186/s12859-015-0871-y contributor: fullname: E Tseytlin – volume: 21 start-page: 29 issue: 1 year: 2016 ident: 332_CR6 publication-title: Requir Eng doi: 10.1007/s00766-014-0209-8 contributor: fullname: J Horkoff – volume-title: Data mining: practical machine learning tools and techniques year: 2016 ident: 332_CR34 contributor: fullname: IH Witten – volume: 24 start-page: 13:1 issue: 3 year: 2015 ident: 332_CR40 publication-title: ACM Trans Softw Eng Methodol contributor: fullname: T Yue – ident: 332_CR87 doi: 10.1007/978-94-017-2390-9_10 – volume: 37 start-page: 360 issue: 5 year: 2005 ident: 332_CR96 publication-title: Family Med contributor: fullname: AJ Viera – volume: 21 start-page: 874 issue: 6 year: 2008 ident: 332_CR66 publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2007.09.009 contributor: fullname: A Ben-David – ident: 332_CR103 – volume: 10 start-page: 157 issue: 2 year: 2003 ident: 332_CR18 publication-title: Autom Softw Eng doi: 10.1023/A:1022916028950 contributor: fullname: HM Harmain – ident: 332_CR91 – volume-title: Natural language annotation for machine learning: a guide to corpus-building for applications year: 2012 ident: 332_CR64 contributor: fullname: J Pustejovsky – ident: 332_CR73 doi: 10.1609/aaai.v29i1.9513 – ident: 332_CR61 doi: 10.1109/RE.2019.00069 – ident: 332_CR17 doi: 10.1109/RE.2016.40 – volume: 20 start-page: 37 issue: 1 year: 1960 ident: 332_CR65 publication-title: Educ Psychol Meas doi: 10.1177/001316446002000104 contributor: fullname: J Cohen – ident: 332_CR57 doi: 10.1007/978-3-642-24485-8_20 – volume: 45 start-page: 81 year: 1997 ident: 332_CR100 publication-title: Mach Learn contributor: fullname: TM Mitchell – volume: 88 start-page: 25 year: 2014 ident: 332_CR20 publication-title: J Syst Softw doi: 10.1016/j.jss.2013.08.036 contributor: fullname: S Vidya – ident: 332_CR46 – volume: 34 start-page: 555 issue: 4 year: 2008 ident: 332_CR69 publication-title: Comput Linguist doi: 10.1162/coli.07-034-R2 contributor: fullname: R Artstein – volume: 10 start-page: e0118432 issue: 3 year: 2015 ident: 332_CR94 publication-title: PloS One doi: 10.1371/journal.pone.0118432 contributor: fullname: T Saito – ident: 332_CR77 – volume: 20 start-page: 1 issue: 1 year: 2015 ident: 332_CR43 publication-title: Requir Eng doi: 10.1007/s00766-013-0181-8 contributor: fullname: N Zeni – ident: 332_CR101 doi: 10.1145/1553374.1553507 – ident: 332_CR56 doi: 10.1109/DSN-W.2017.33 – volume: 40 start-page: 834 issue: 4 year: 2018 ident: 332_CR72 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2017.2699184 contributor: fullname: L Chen – ident: 332_CR15 – ident: 332_CR10 doi: 10.1145/2635868.2635891 – ident: 332_CR29 – ident: 332_CR52 doi: 10.1109/RE.2018.00022 – volume: 2 start-page: 37 year: 2011 ident: 332_CR67 publication-title: J Mach Learn Technol contributor: fullname: DMW Powers – ident: 332_CR80 – start-page: 3111 volume-title: Advances in neural information processing systems year: 2013 ident: 332_CR79 contributor: fullname: T Mikolov |
SSID | ssj0024799 |
Score | 2.3152254 |
Snippet | Modeling of natural language requirements, especially for a large system, can take a significant amount of effort and time. Many automated model-driven... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Publisher |
StartPage | 67 |
SubjectTerms | Annotations Artificial neural networks Automation Computer architecture Computer Science Empirical analysis Neural networks Original Article Recurrent neural networks Software Engineering |
Title | Model elements identification using neural networks: a comprehensive study |
URI | https://link.springer.com/article/10.1007/s00766-020-00332-2 https://www.proquest.com/docview/2491634935 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwELWgXVgon6KlIA9sYJTYjhOzVdCqqhALILVTFH8EECigpv3_nJ2kFUgdYMqQ6BRd7nzPued3CF1A0YlpbiRhLBSEW84JoGpGTKBoKCKjAs-qHD_GD9Pkbuhkctjq10Xxft10JP1CvTrr5npGji_rDkIzRgmsu22oPREEd3swnIzv1xJ7sawk9jjkj3AEnt5mKz_r0Rpk_uqL-nIz6vzrRffQbo0u8aAKh320ZYsD1GkmN-A6kQ_RxI1A-8C24o6X-M3UpCH_nbAjw79gJ3UJxoqKKF7e4Aw7Avrcvlakd-ylaY_Q82j4dDsm9VQFoiHdFsQYwajKA61ZxgFtKchip8rHqeY0ZCYS2krFMpEJESR5mLlWqgDUom2kbazZMWoVn4U9QVjaJM5g_5YnieW5ijJhJJMJ1bDHU4zJLrpsfJt-VeIZ6Uom2bspBTel3k0p7aJ-4_60TqQyBeuAGLlkURddNf5e395srfe3x0_RDnVsFc8u66PWYr60Z2i7NMvzOrzcdTqb3X0DC0bIgA |
link.rule.ids | 315,782,786,27933,27934,41073,42142,48344,48347,49649,49652,52153 |
linkProvider | Springer Nature |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwED1BO8BC-RQtBTywgaXEdpyYrYKWFkoXisQWJbYDSCigpv3_2E7SCqQOMCc6RS93vrPu3TuAC5N0QpIpgSn1OWaaMWyqaoqVlxKfByr1HKty-BROXqLbvpXJYfUsjGO71y1Jd1Ivh91s08gSZu0kNKUEm4O3yQRnxpebvdH0brDS2AtFqbHHTABxy-DprLfyMyGtqsxfjVGXbwat_33pLuxU9SXqlQ6xBxs634dWvbsBVaF8APd2CdoH0iV7vEDvqqINuT-FLB3-FVmxS2MsL6nixTVKkKWgz_RbSXtHTpz2EJ4H_enNEFd7FbA0ATfHSnFK0syTkibM1FupiWOry8eIZMSnKuBSi5QmPOHcizI_sc1UbuoWqQOpQ0mPoJF_5voYkNBRmJgbXBZFmmVpkHAlqIiINLe8lFLRhssa3PirlM-Il0LJDqbYwBQ7mGLShm6Nf1yFUhEb66ZmZIIGbbiq8V49Xm-t87fXz2FrOH0cx-PR5OEEtonlrjiuWRca89lCn8JmoRZnla99A9qGyr4 |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fS8MwEA66gfji_ImbU_Pgm4Z1SZo2vg23MecYggq-lTZJVZA61u3_95K2Gwp7EJ9bjnLJ9b7jvvsOoStIOgFNtSSMdQXhhnMCqJoR7SW0K3ydeI5VOXoKpq9hf2BlclZT_I7tXrUki5kGq9KULToznXZWg2-2gWTJs3YqmjFK4Cdc51DJwE2v9wbj0WSttxfIQm-PQzAJy-ZpbbbyMzmtEeevJqnLPcPG_796H-2VuBP3iotygLZMdoga1U4HXIb4ERrb5Wif2BSs8hx_6JJO5E4QW5r8G7YimGAsKyjk-S2OsaWmz817QYfHTrT2GL0MB893I1LuWyAKAnFBtBaMJqmnFIs54LAE4tvq9XGqOO0y7QtlZMJiEQvhhWk3tk1WAXhGGV-ZQLETVMu-MnOKsDRhEENll4ah4Wnix0JLJkOqoPpLGJNNdF05OpoVshrRSkDZuSkCN0XOTRFtonZ1FlEZYnkE1gFLcsn8JrqpfL9-vNla62-vX6Kdx_4wmtxPH87QLrWUFkdBa6PaYr4052g718uL8tp9A-r404E |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Model+elements+identification+using+neural+networks%3A+a+comprehensive+study&rft.jtitle=Requirements+engineering&rft.au=Madala%2C+Kaushik&rft.au=Piparia%2C+Shraddha&rft.au=Blanco%2C+Eduardo&rft.au=Do%2C+Hyunsook&rft.date=2021-03-01&rft.pub=Springer+London&rft.issn=0947-3602&rft.eissn=1432-010X&rft.volume=26&rft.issue=1&rft.spage=67&rft.epage=96&rft_id=info:doi/10.1007%2Fs00766-020-00332-2&rft.externalDocID=10_1007_s00766_020_00332_2 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-3602&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-3602&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-3602&client=summon |