CFR: collaborative feature ranking for improving the performance of credit scoring data classification
Credit scoring is a prominent research problem as its predictive performance is accountable for the viability of financial industry. Credit scoring datasets are high-dimensional which are related to customers’ credentials such as annual income, job status, residential status, etc. In high-dimensiona...
Saved in:
Published in: | Computing Vol. 104; no. 4; pp. 893 - 923 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
Vienna
Springer Vienna
01-04-2022
Springer Nature B.V |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Credit scoring is a prominent research problem as its predictive performance is accountable for the viability of financial industry. Credit scoring datasets are high-dimensional which are related to customers’ credentials such as annual income, job status, residential status, etc. In high-dimensional data, many of the features may be irrelevant or redundant which leads to problems such as over-fitting and high computational overhead. So, effective feature selection approaches may overcome both the problems related to high-dimensional data. Generally, a features set selected by a feature selection approach is appropriate with a classifier not with all classifiers, and improves the classification performances. In this article, we have proposed a collaborative feature ranking approach with consideration of various measures which can improve the classification performance of most of the classifiers. Further, it is applied in five credit scoring datasets, results of the proposed approach are compared with various existing feature ranking approaches in terms of similarities between features selected by each pair of approaches and classification performances with respect to these sets of features. |
---|---|
AbstractList | Credit scoring is a prominent research problem as its predictive performance is accountable for the viability of financial industry. Credit scoring datasets are high-dimensional which are related to customers’ credentials such as annual income, job status, residential status, etc. In high-dimensional data, many of the features may be irrelevant or redundant which leads to problems such as over-fitting and high computational overhead. So, effective feature selection approaches may overcome both the problems related to high-dimensional data. Generally, a features set selected by a feature selection approach is appropriate with a classifier not with all classifiers, and improves the classification performances. In this article, we have proposed a collaborative feature ranking approach with consideration of various measures which can improve the classification performance of most of the classifiers. Further, it is applied in five credit scoring datasets, results of the proposed approach are compared with various existing feature ranking approaches in terms of similarities between features selected by each pair of approaches and classification performances with respect to these sets of features. |
Author | Tripathi, Diwakar Shukla, Alok Kumar Reddy, B. Ramachandra |
Author_xml | – sequence: 1 givenname: Diwakar surname: Tripathi fullname: Tripathi, Diwakar email: diwakarnitgoa@gmail.com organization: Thapar Institute of Engineering and Technology Patiala – sequence: 2 givenname: B. Ramachandra surname: Reddy fullname: Reddy, B. Ramachandra organization: SRM University AP-Andhra Pradesh – sequence: 3 givenname: Alok Kumar surname: Shukla fullname: Shukla, Alok Kumar organization: VIT-AP University Andhra Pradesh |
BookMark | eNp9kFFLwzAUhYNMcJv-AZ8CPldv0qZNfZPhVBgIouBbSNMb7eyamXQb_ntTK_jm0yWHc869-WZk0rkOCTlncMkAiqsAkEORAGcJREEkhyMyZVmaJwJEMSFTiHKSSfF6QmYhrAGAp7KcErtYPl1T49pWV87rvtkjtaj7nUfqdffRdG_UOk-bzda7_fDq35Fu0UdxozuD1FlqPNZNT4NxfnDUutfUtDqExjYmdrrulBxb3QY8-51z8rK8fV7cJ6vHu4fFzSoxKSv7xBgBpbBMlpZlHCpbcFkWWDIuZCZ4xmvNrdWi4jKvZF0hywoDhZQ5YlpzTOfkYuyN137uMPRq7Xa-iysVzzORy6JMs-jio8t4F4JHq7a-2Wj_pRiogacaearIU_3wVIcYSsdQ2A6_RP9X_U_qG3g9e6M |
CitedBy_id | crossref_primary_10_1016_j_eswa_2022_118864 |
Cites_doi | 10.1023/A:1012487302797 10.1016/j.procs.2018.05.055 10.1023/A:1008280620621 10.1016/j.eswa.2004.12.031 10.1145/2464576.2466738 10.1016/j.ins.2010.08.047 10.1016/j.eswa.2011.11.011 10.1016/B978-1-55860-247-2.50037-1 10.1016/j.mbs.2019.108230 10.1016/j.engappai.2020.103980 10.7551/mitpress/4057.001.0001 10.1007/978-3-540-87481-2_21 10.1080/01621459.1937.10503522 10.1016/j.procs.2010.04.273 10.1007/s13258-020-00916-w 10.1016/j.engappai.2014.12.014 10.1111/coin.12242 10.1016/j.chemolab.2018.10.009 10.1016/j.eswa.2017.10.022 10.1007/s11042-020-09538-6 10.1109/72.788640 10.1109/ACCESS.2019.2922676 10.1016/j.asoc.2007.10.007 10.1016/j.eswa.2011.02.179 10.1007/978-3-319-49944-4_20 10.1111/coin.12200 10.1109/ISCIS.2008.4717949 10.1007/s11634-017-0285-y 10.1016/j.eswa.2018.12.020 10.1016/j.eswa.2017.05.050 10.1023/A:1010933404324 10.1016/j.eswa.2011.12.057 10.1016/j.eswa.2013.09.004 10.1145/2124295.2124314 10.1214/aoms/1177731944 10.1016/j.knosys.2014.10.010 10.1016/j.ejor.2009.03.008 10.1016/S0305-0548(99)00149-5 10.1109/SAI.2014.6918227 10.1007/s13369-017-2905-4 10.1007/978-3-319-19222-2_3 10.1109/ECTICon.2017.8096254 10.1016/j.ins.2008.05.024 10.1109/ICCV.2017.156 10.5220/0006066701110120 10.1016/j.eswa.2011.08.120 10.1007/s10115-006-0040-8 10.1016/j.eswa.2008.09.054 10.1002/ijfe.1698 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2021 The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2021. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2021 – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2021. |
DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M2O MBDVC P5Z P62 PQBIZ PQBZA PQEST PQQKQ PQUKI Q9U |
DOI | 10.1007/s00607-021-01005-w |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) Research Library (Alumni Edition) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central ProQuest Business Premium Collection Technology Collection ProQuest One Community College ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student Research Library Prep SciTech Premium Collection (Proquest) (PQ_SDU_P3) ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global (ProQuest) Computing Database ProQuest research library Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic |
DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest Central Korea ProQuest Research Library Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | ABI/INFORM Global (Corporate) |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics Computer Science |
EISSN | 1436-5057 |
EndPage | 923 |
ExternalDocumentID | 10_1007_s00607_021_01005_w |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C -~X .4S .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29F 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 6TJ 78A 7WY 8AO 8FE 8FG 8FL 8G5 8TC 8UJ 8VB 95- 95. 95~ 96X AAAVM AABHQ AABYN AAFGU AAHNG AAIAL AAJKR AANZL AAOBN AAPBV AARHV AARTL AATNV AATVU AAUYE AAWCG AAWWR AAYFA AAYIU AAYQN AAYTO ABBBX ABBXA ABDBF ABDZT ABECU ABFGW ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKAS ABKCH ABKTR ABMNI ABMQK ABNWP ABPTK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACBMV ACBRV ACBXY ACBYP ACGFS ACHSB ACHXU ACIGE ACIPQ ACKNC ACMDZ ACMLO ACOKC ACOMO ACTTH ACVWB ACWMK ADGRI ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEEQQ AEFIE AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AEMOZ AENEX AEOHA AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AEYWE AFEXP AFFNX AFGCZ AFKRA AFLOW AFNRJ AFQWF AFWTZ AFZKB AGAYW AGDGC AGGBP AGGDS AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKQUC AKVCP ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. B0M BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BKOMP BPHCQ CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DWQXO EAD EAP EBA EBLON EBR EBS EBU ECS EDO EIOEI EJD EMK EPL ESBYG EST ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K1G K60 K6V K6~ K7- KDC KOV KOW LAS LLZTM M0C M0N M2O M4Y MA- MK~ ML~ N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9O PF0 PQBIZ PQQKQ PROAC PT4 PT5 Q2X QOK QOS QWB R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TH9 TN5 TSG TSK TSV TUC TUS U2A UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7X Z7Z Z81 Z83 Z88 Z8M Z8N Z8R Z8T Z8U Z8W Z92 ZL0 ZMTXR ~8M ~EX AACDK AAEOY AAGNY AAJBT AASML AAYXX AAYZH ABAKF ACAOD ACDTI ACZOJ AEFQL AEMSY AFBBN AGQEE AGRTI AIGIU CITATION H13 PQBZA 7SC 7XB 8AL 8FD 8FK JQ2 L.- L7M L~C L~D MBDVC PQEST PQUKI Q9U |
ID | FETCH-LOGICAL-c319t-cc5095f189f1420bf72897e9125845242da2ffa5b286b8dbe147c07886ee3d2e3 |
IEDL.DBID | AEJHL |
ISSN | 0010-485X |
IngestDate | Thu Nov 14 06:56:40 EST 2024 Thu Nov 21 21:47:49 EST 2024 Sat Dec 16 12:07:24 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Collaborative feature ranking Feature selection Credit scoring Classification 68Uxx : Computing methodologies and applications |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-cc5095f189f1420bf72897e9125845242da2ffa5b286b8dbe147c07886ee3d2e3 |
PQID | 2645687934 |
PQPubID | 48322 |
PageCount | 31 |
ParticipantIDs | proquest_journals_2645687934 crossref_primary_10_1007_s00607_021_01005_w springer_journals_10_1007_s00607_021_01005_w |
PublicationCentury | 2000 |
PublicationDate | 2022-04-01 |
PublicationDateYYYYMMDD | 2022-04-01 |
PublicationDate_xml | – month: 04 year: 2022 text: 2022-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Vienna |
PublicationPlace_xml | – name: Vienna – name: Wien |
PublicationTitle | Computing |
PublicationTitleAbbrev | Computing |
PublicationYear | 2022 |
Publisher | Springer Vienna Springer Nature B.V |
Publisher_xml | – name: Springer Vienna – name: Springer Nature B.V |
References | WangJGuoKWangSRough set and Tabu search based feature selection for credit scoringProcedia Comput Sci20101124252432 GuyonIWestonJBarnhillSVapnikVGene selection for cancer classification using support vector machinesMach Learn2002461–33894220998.68111 BequéALessmannSExtreme learning machines for credit scoring: an empirical evaluationExpert Syst Appl2017864253 ChakravarthyHBachanPRoshiniPChRKBio inspired approach as a problem solving techniqueNetw Complex Syst201221421 ChenWMaCMaLMining the customer credit using hybrid support vector machine techniqueExpert Syst Appl200936476117616 HuZBaoYXiongTChiongRHybrid filter-wrapper feature selection for short-term load forecastingEng Appl Artif Intell2015401727 HuangCLDunJFA distributed PSO–SVM hybrid system with feature selection and parameter optimizationAppl Soft Comput20088413811391 WittenIHFrankEHallMAPalCJData mining: practical machine learning tools and techniques2016BurlingtonMorgan Kaufmann VapnikVNAn overview of statistical learning theoryIEEE Trans Neural Netw1999105988999 OreskiSOreskiGGenetic algorithm-based heuristic for feature selection in credit risk assessmentExpert Syst Appl201441420522064 FriedmanMThe use of ranks to avoid the assumption of normality implicit in the analysis of varianceJ Am Stat Assoc19373220067570163.1098.02 He X, Cai D, Niyogi P (2005) Laplacian score for feature selection. Adv Neural Inform Process Syst 18 BradleyPSMangasarianOLFeature selection via concave minimization and support vector machinesICML1998988290 FriedmanJHastieTTibshiraniRThe elements of statistical learning2001New YorkSpringer0973.62007 ZhangWHeHZhangSA novel multi-stage hybrid model with enhanced multi-population niche genetic algorithm: an application in credit scoringExpert Syst Appl2019121221232 ChangCCLinCJLibsvm: a library for support vector machinesACM Trans Intell Syst Technol (TIST)20112327 FriedmanMA comparison of alternative tests of significance for the problem of m rankingsAnn Math Stat1940111869220850063.01455 Neumann F, Witt C (2013) Bioinspired computation in combinatorial optimization-algorithms and their computational complexity. In Proceedings of the 15th annual conference companion on Genetic and evolutionary computation, pp 567–590 TripathiDEdlaDRKuppiliVBablaniAEvolutionary extreme learning machine with novel activation function for credit scoringEng Appl Artif Intell202096103980 WangJHedarARWangSMaJRough set and scatter search metaheuristic based feature selection for credit scoringExpert Syst Appl201239661236128 XuDZhangXFengHGeneralized fuzzy soft sets theory-based novel hybrid ensemble credit scoring modelInt J Finance Econ2019242903921 ChiBWHsuCCA hybrid approach to integrate genetic algorithm into dual scoring model in enhancing the performance of credit scoring modelExpert Syst Appl201239326502661 KononenkoIŠimecERobnik-ŠikonjaMOvercoming the myopia of inductive learning algorithms with RELIEFFAppl Intell1997713955 ShuklaAKTripathiDIdentification of potential biomarkers on microarray data using distributed gene selection approachMath Biosci201931510823039830721425.92082 Broomhead DS, Lowe D (1988) Radial basis functions, multi-variable functional interpolation and adaptive networks. Tech. rep, Royal Signals and Radar Establishment Malvern (United Kingdom) Saeys Y, Abeel T, Van de Peer Y (2008) Robust feature selection using ensemble feature selection techniques. In: Joint European conference on machine learning and knowledge discovery in databases. Springer, pp 313–325 MaldonadoSWeberRBasakJSimultaneous feature selection and classification using kernel-penalized support vector machinesInf Sci20111811115128 EdlaDRTripathiDCherukuRKuppiliVAn efficient multi-layer ensemble framework with BPSOGSA-based feature selection for credit scoring data analysisArab J Sci Eng2018431269096928 ShuklaAKSinghPVardhanMA two-stage gene selection method for biomarker discovery from microarray data for cancer classificationChemom Intell Lab Syst20181834758 Wongchinsri P, Kuratach W (2017) Sr-based binary classification in credit scoring. In: 2017 14th International conference on electrical engineering/electronics, computer, telecommunications and information technology (ECTI-CON). IEEE, pp. 385–388 GuoSHeHHuangXA multi-stage self-adaptive classifier ensemble model with application in credit scoringIEEE Access201977854978559 Roffo G, Melzi S, Castellani U, Vinciarelli A (2017) Infinite latent feature selection: a probabilistic latent graph-based ranking approach. In Proceedings of the IEEE International Conference on Computer Vision, pp 1398–1406 TripathiDEdlaDRKuppiliVBablaniADharavathRCredit scoring model based on weighted voting and cluster based feature selectionProcedia Comput Sci20181322231 Balakrishnan S, Chopra S (2012) Collaborative ranking. In: Proceedings of the fifth ACM international conference on Web search and data mining. pp 143–152 John GH, Langley P (1995) Estimating continuous distributions in Bayesian classifiers. In: Proceedings of the eleventh conference on uncertainty in artificial intelligence. Morgan Kaufmann Publishers Inc, pp 338–345 Chen Z, Ji H (2011) Collaborative ranking: a case study on entity linking. In: Proceedings of the conference on empirical methods in natural language processing. Association for Computational Linguistics, pp 771–781 PingYYonghengLNeighborhood rough set and SVM based hybrid credit scoring classifierExpert Syst Appl20113891130011304 Lichman M (2013) UCI machine learning repository. http://archive.ics.uci.edu/ml Saia R, Carta S (2016) An entropy based algorithm for credit scoring. In: International conference on research and practical issues of enterprise information systems. Springer, pp 263–276 Seijo-Pardo B, Bolón-Canedo V, Porto-Díaz I, Alonso-Betanzos A (2015) Ensemble feature selection for rankings of features. In: International work-conference on artificial neural networks. Springer, pp 29–42 KuppiliVTripathiDReddy EdlaDCredit score classification using spiking extreme learning machineComput Intell2020362402426 PaleologoGElisseeffAAntoniniGSubagging for credit scoring modelsEur J Oper Res20102012490499 Frank E, Witten IH (1998) Generating accurate rule sets without global optimization. University of Waikato, Department of Computer Science, pp 1–15 BrahimABLimamMEnsemble feature selection for high dimensional data: a new method and a comparative studyAdv Data Anal Classif201812493795238789701416.62141 ShuklaAKTripathiDDetecting biomarkers from microarray data using distributed correlation based gene selectionGenes Genom202042449465 LiangDTsaiCFWuHTThe effect of feature selection on financial distress predictionKnowl Based Syst201573289297 MesterLJWhats the point of credit scoring?Bus Rev19973316 BreimanLRandom forestsMach Learn20014515321007.68152 HensABTiwariMKComputational time reduction for credit scoring: an integrated approach based on support vector machine and stratified sampling methodExpert Syst Appl201239867746781 KalaRVaziraniHKhanwalkarNBhattacharyaMEvolutionary radial basis function network for classificatory problemsIJCSA2010743449 Saia R, Carta S (2016) A linear-dependence-based approach to design proactive credit scoring models. In: KDIR. pp 111–120 XiaYLiuCDaBXieFA novel heterogeneous ensemble credit scoring model based on bstacking approachExpert Syst Appl201893182199 Boucheham A, Batouche M (2014) Robust biomarker discovery for cancer diagnosis based on meta-ensemble feature selection. In: 2014 Science and information conference. IEEE, pp 452–560 Hall MA (1999) Correlation-based feature selection for machine learning. University of Waikato Hamilton LeeTSChenIFA two-stage hybrid credit scoring model using artificial neural networks and multivariate adaptive regression splinesExpert Syst Appl2005284743752 Kira K, Rendell LA (1992) A practical approach to feature selection. In: Machine learning proceedings. Elsevier, pp 249–256 TripathiDEdlaDRKuppiliVDharavathRBinary bat algorithm and RBFN based hybrid credit scoring modelMultimedia Tools Appl202079433188931912 KalousisAPradosJHilarioMStability of feature selection algorithms: a study on high-dimensional spacesKnowl Inf Syst200712195116 KiraKRendellLAThe feature selection problem: traditional methods and a new algorithmAaai19922129134 Senliol B, Gulgezen G, Yu L, Cataltepe Z (2008) Fast correlation based filter (FCBF) with a different search strategy. In: 23rd international symposium on computer and information Sciences, 2008. ISCIS’08. IEEE, pp 1–4 Yasser EM (2005) Wlsvm. URL http://www.cs.iastate.edu/~yasser/wlsvm Neumann F, Witt C (2013) Bioinspired computation in combinatorial optimization: algorithms and their computational complexity. In: Proceedings of the 15th annual conference companion on genetic and evolutionary computation. pp 567–590 HuQYuDLiuJWuCNeighborhood rough set based heterogeneous feature subset selectionInf Sci2008178183577359424380951154.68466 SchölkopfBTsudaKVertJPIstrailDSPevznerPAWatermanMSKernel methods in computational biology2004CambridgeMIT Press WestDNeural network credit scoring modelsComput Oper Res20002711113111520962.90004 TripathiDEdlaDRCherukuRKuppiliVA novel hybrid credit scoring model based on ensemble feature selection and multilayer ensemble classificationComput Intell20193523713943953895 1005_CR11 IH Witten (1005_CR61) 2016 1005_CR1 G Paleologo (1005_CR41) 2010; 201 AK Shukla (1005_CR52) 2020; 42 J Friedman (1005_CR15) 2001 W Zhang (1005_CR66) 2019; 121 1005_CR14 D Xu (1005_CR64) 2019; 24 1005_CR7 1005_CR3 S Oreski (1005_CR40) 2014; 41 Y Ping (1005_CR42) 2011; 38 LJ Mester (1005_CR37) 1997; 3 AB Brahim (1005_CR5) 2018; 12 I Guyon (1005_CR19) 2002; 46 1005_CR20 AK Shukla (1005_CR50) 2018; 183 M Friedman (1005_CR17) 1940; 11 1005_CR21 1005_CR65 TS Lee (1005_CR33) 2005; 28 1005_CR26 AK Shukla (1005_CR51) 2019; 315 A Kalousis (1005_CR28) 2007; 12 L Breiman (1005_CR6) 2001; 45 1005_CR62 DR Edla (1005_CR13) 2018; 43 Q Hu (1005_CR23) 2008; 178 D Tripathi (1005_CR55) 2018; 132 V Kuppili (1005_CR32) 2020; 36 S Guo (1005_CR18) 2019; 7 J Wang (1005_CR59) 2012; 39 I Kononenko (1005_CR31) 1997; 7 D Tripathi (1005_CR53) 2019; 35 AB Hens (1005_CR22) 2012; 39 D West (1005_CR60) 2000; 27 1005_CR35 1005_CR38 H Chakravarthy (1005_CR8) 2012; 2 1005_CR30 Z Hu (1005_CR24) 2015; 40 K Kira (1005_CR29) 1992; 2 CC Chang (1005_CR9) 2011; 2 1005_CR39 VN Vapnik (1005_CR57) 1999; 10 BW Chi (1005_CR12) 2012; 39 1005_CR43 1005_CR44 A Bequé (1005_CR2) 2017; 86 1005_CR45 1005_CR46 1005_CR48 1005_CR49 PS Bradley (1005_CR4) 1998; 98 S Maldonado (1005_CR36) 2011; 181 D Tripathi (1005_CR54) 2020; 96 CL Huang (1005_CR25) 2008; 8 J Wang (1005_CR58) 2010; 1 W Chen (1005_CR10) 2009; 36 R Kala (1005_CR27) 2010; 7 B Schölkopf (1005_CR47) 2004 D Liang (1005_CR34) 2015; 73 Y Xia (1005_CR63) 2018; 93 M Friedman (1005_CR16) 1937; 32 D Tripathi (1005_CR56) 2020; 79 |
References_xml | – volume: 46 start-page: 389 issue: 1–3 year: 2002 ident: 1005_CR19 publication-title: Mach Learn doi: 10.1023/A:1012487302797 contributor: fullname: I Guyon – ident: 1005_CR21 – volume: 132 start-page: 22 year: 2018 ident: 1005_CR55 publication-title: Procedia Comput Sci doi: 10.1016/j.procs.2018.05.055 contributor: fullname: D Tripathi – volume-title: The elements of statistical learning year: 2001 ident: 1005_CR15 contributor: fullname: J Friedman – volume: 7 start-page: 39 issue: 1 year: 1997 ident: 1005_CR31 publication-title: Appl Intell doi: 10.1023/A:1008280620621 contributor: fullname: I Kononenko – volume-title: Data mining: practical machine learning tools and techniques year: 2016 ident: 1005_CR61 contributor: fullname: IH Witten – volume: 98 start-page: 82 year: 1998 ident: 1005_CR4 publication-title: ICML contributor: fullname: PS Bradley – volume: 28 start-page: 743 issue: 4 year: 2005 ident: 1005_CR33 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2004.12.031 contributor: fullname: TS Lee – volume: 3 start-page: 3 year: 1997 ident: 1005_CR37 publication-title: Bus Rev contributor: fullname: LJ Mester – ident: 1005_CR39 doi: 10.1145/2464576.2466738 – ident: 1005_CR38 doi: 10.1145/2464576.2466738 – ident: 1005_CR35 – volume: 181 start-page: 115 issue: 1 year: 2011 ident: 1005_CR36 publication-title: Inf Sci doi: 10.1016/j.ins.2010.08.047 contributor: fullname: S Maldonado – volume: 39 start-page: 6123 issue: 6 year: 2012 ident: 1005_CR59 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2011.11.011 contributor: fullname: J Wang – ident: 1005_CR30 doi: 10.1016/B978-1-55860-247-2.50037-1 – volume: 315 start-page: 108230 year: 2019 ident: 1005_CR51 publication-title: Math Biosci doi: 10.1016/j.mbs.2019.108230 contributor: fullname: AK Shukla – volume: 96 start-page: 103980 year: 2020 ident: 1005_CR54 publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2020.103980 contributor: fullname: D Tripathi – volume: 2 start-page: 27 issue: 3 year: 2011 ident: 1005_CR9 publication-title: ACM Trans Intell Syst Technol (TIST) contributor: fullname: CC Chang – volume-title: Kernel methods in computational biology year: 2004 ident: 1005_CR47 doi: 10.7551/mitpress/4057.001.0001 contributor: fullname: B Schölkopf – volume: 2 start-page: 129 year: 1992 ident: 1005_CR29 publication-title: Aaai contributor: fullname: K Kira – ident: 1005_CR44 doi: 10.1007/978-3-540-87481-2_21 – volume: 32 start-page: 675 issue: 200 year: 1937 ident: 1005_CR16 publication-title: J Am Stat Assoc doi: 10.1080/01621459.1937.10503522 contributor: fullname: M Friedman – ident: 1005_CR26 – volume: 1 start-page: 2425 issue: 1 year: 2010 ident: 1005_CR58 publication-title: Procedia Comput Sci doi: 10.1016/j.procs.2010.04.273 contributor: fullname: J Wang – volume: 7 start-page: 34 issue: 4 year: 2010 ident: 1005_CR27 publication-title: IJCSA contributor: fullname: R Kala – volume: 42 start-page: 449 year: 2020 ident: 1005_CR52 publication-title: Genes Genom doi: 10.1007/s13258-020-00916-w contributor: fullname: AK Shukla – volume: 40 start-page: 17 year: 2015 ident: 1005_CR24 publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2014.12.014 contributor: fullname: Z Hu – volume: 36 start-page: 402 issue: 2 year: 2020 ident: 1005_CR32 publication-title: Comput Intell doi: 10.1111/coin.12242 contributor: fullname: V Kuppili – ident: 1005_CR11 – volume: 183 start-page: 47 year: 2018 ident: 1005_CR50 publication-title: Chemom Intell Lab Syst doi: 10.1016/j.chemolab.2018.10.009 contributor: fullname: AK Shukla – volume: 93 start-page: 182 year: 2018 ident: 1005_CR63 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2017.10.022 contributor: fullname: Y Xia – volume: 79 start-page: 31889 issue: 43 year: 2020 ident: 1005_CR56 publication-title: Multimedia Tools Appl doi: 10.1007/s11042-020-09538-6 contributor: fullname: D Tripathi – volume: 10 start-page: 988 issue: 5 year: 1999 ident: 1005_CR57 publication-title: IEEE Trans Neural Netw doi: 10.1109/72.788640 contributor: fullname: VN Vapnik – volume: 7 start-page: 78549 year: 2019 ident: 1005_CR18 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2922676 contributor: fullname: S Guo – volume: 8 start-page: 1381 issue: 4 year: 2008 ident: 1005_CR25 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2007.10.007 contributor: fullname: CL Huang – volume: 38 start-page: 11300 issue: 9 year: 2011 ident: 1005_CR42 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2011.02.179 contributor: fullname: Y Ping – ident: 1005_CR45 doi: 10.1007/978-3-319-49944-4_20 – volume: 35 start-page: 371 issue: 2 year: 2019 ident: 1005_CR53 publication-title: Comput Intell doi: 10.1111/coin.12200 contributor: fullname: D Tripathi – ident: 1005_CR65 – ident: 1005_CR49 doi: 10.1109/ISCIS.2008.4717949 – volume: 12 start-page: 937 issue: 4 year: 2018 ident: 1005_CR5 publication-title: Adv Data Anal Classif doi: 10.1007/s11634-017-0285-y contributor: fullname: AB Brahim – volume: 121 start-page: 221 year: 2019 ident: 1005_CR66 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2018.12.020 contributor: fullname: W Zhang – volume: 86 start-page: 42 year: 2017 ident: 1005_CR2 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2017.05.050 contributor: fullname: A Bequé – volume: 45 start-page: 5 issue: 1 year: 2001 ident: 1005_CR6 publication-title: Mach Learn doi: 10.1023/A:1010933404324 contributor: fullname: L Breiman – volume: 39 start-page: 6774 issue: 8 year: 2012 ident: 1005_CR22 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2011.12.057 contributor: fullname: AB Hens – volume: 41 start-page: 2052 issue: 4 year: 2014 ident: 1005_CR40 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2013.09.004 contributor: fullname: S Oreski – ident: 1005_CR1 doi: 10.1145/2124295.2124314 – volume: 11 start-page: 86 issue: 1 year: 1940 ident: 1005_CR17 publication-title: Ann Math Stat doi: 10.1214/aoms/1177731944 contributor: fullname: M Friedman – volume: 73 start-page: 289 year: 2015 ident: 1005_CR34 publication-title: Knowl Based Syst doi: 10.1016/j.knosys.2014.10.010 contributor: fullname: D Liang – volume: 201 start-page: 490 issue: 2 year: 2010 ident: 1005_CR41 publication-title: Eur J Oper Res doi: 10.1016/j.ejor.2009.03.008 contributor: fullname: G Paleologo – volume: 27 start-page: 1131 issue: 11 year: 2000 ident: 1005_CR60 publication-title: Comput Oper Res doi: 10.1016/S0305-0548(99)00149-5 contributor: fullname: D West – ident: 1005_CR3 doi: 10.1109/SAI.2014.6918227 – volume: 43 start-page: 6909 issue: 12 year: 2018 ident: 1005_CR13 publication-title: Arab J Sci Eng doi: 10.1007/s13369-017-2905-4 contributor: fullname: DR Edla – ident: 1005_CR20 – ident: 1005_CR48 doi: 10.1007/978-3-319-19222-2_3 – ident: 1005_CR62 doi: 10.1109/ECTICon.2017.8096254 – ident: 1005_CR14 – volume: 178 start-page: 3577 issue: 18 year: 2008 ident: 1005_CR23 publication-title: Inf Sci doi: 10.1016/j.ins.2008.05.024 contributor: fullname: Q Hu – ident: 1005_CR7 – volume: 2 start-page: 14 year: 2012 ident: 1005_CR8 publication-title: Netw Complex Syst contributor: fullname: H Chakravarthy – ident: 1005_CR43 doi: 10.1109/ICCV.2017.156 – ident: 1005_CR46 doi: 10.5220/0006066701110120 – volume: 39 start-page: 2650 issue: 3 year: 2012 ident: 1005_CR12 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2011.08.120 contributor: fullname: BW Chi – volume: 12 start-page: 95 issue: 1 year: 2007 ident: 1005_CR28 publication-title: Knowl Inf Syst doi: 10.1007/s10115-006-0040-8 contributor: fullname: A Kalousis – volume: 36 start-page: 7611 issue: 4 year: 2009 ident: 1005_CR10 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2008.09.054 contributor: fullname: W Chen – volume: 24 start-page: 903 issue: 2 year: 2019 ident: 1005_CR64 publication-title: Int J Finance Econ doi: 10.1002/ijfe.1698 contributor: fullname: D Xu |
SSID | ssj0002389 |
Score | 2.339045 |
Snippet | Credit scoring is a prominent research problem as its predictive performance is accountable for the viability of financial industry. Credit scoring datasets... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Publisher |
StartPage | 893 |
SubjectTerms | Artificial Intelligence Classification Classifiers Collaboration Computer Appl. in Administrative Data Processing Computer Communication Networks Computer Science Credit scoring Datasets Feature selection Information Systems Applications (incl.Internet) Performance prediction Ranking Regular Paper Software Engineering |
Title | CFR: collaborative feature ranking for improving the performance of credit scoring data classification |
URI | https://link.springer.com/article/10.1007/s00607-021-01005-w https://www.proquest.com/docview/2645687934 |
Volume | 104 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwED3RdoGBQgFRKMgDGxjly4nDVpWWgoABitQtchJbqpDSirT073N2kxQQDDBlSOJEd-e7Z_vuHcCZr4-aPNehKfMF9bjwaShSj3LJEsVUYMeWaWL7HDyO-XVf0-S41dZF9npZnkgaR13VumnmkIDqjAJcQliMLmvQwNjD0Lgb3f7d8L5ywBiFVqgXXYzH2biolfl5lK_xaA0yv52LmnAzaP7rR3dgu0CXpLsyh13YkFkLmmXnBlJM5BZsPVRsrfkeqN7g6Yp8soh3SZQ0jJ9E93THrxPEtmRSbkAQfJnM1iUHZKqIZh6dzEmemIw-ojNPSaKhuc5FMurfh5dBf9Qb0qL_Ak1wYs5pkiCaYMrmobI9x4pVgKuzQIaIibjHMLanwlFKsNjhfszTWNpekCDk4L6UbupI9wDq2TSTh0AwPqKj0I2SEALZviPi0BV-IJVwLBlzqw3npRai2YpmI6oIlY1AIxRoZAQaLdvQKRUVFVMujxDZMZ-ju_HacFFqZn3799GO_vb4MWw6ugTCZO90oD5_W8gTqOXp4rQwRH29Hd0MPgAuqdlI |
link.rule.ids | 315,782,786,27933,27934,41073,42142,48344,48347,49649,49652,52153 |
linkProvider | Springer Nature |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT8IwFH8ROKgHUdSIovbgTZtso-06bwRBiMBBMeG27KNNuAARkH_f17KBGj3oeVu39H39uvfe7wHcCJNqYnWPplxElMlI0CBKGZWKJ5pr340dO8T2xR-M5EPL0OSwvBfGVrvnKUnrqTfNboY6xKempADPEA6nqwKUWCAY6nKp0R0-tjceGMPQGvaij2GSj7JmmZ9X-RqQtijzW2LUxpt2-X9feggHGb4kjbVCHMGOmlSgnM9uIJkpV2C_v-FrnR-Dbraf78knnXhXRCvL-UnMVHd8O0F0S8b5LwiCD5PZtumATDUx3KPjBZkntqaPmNpTkhhwbqqRrAKcwGu7NWx2aDaBgSZomguaJIgnuHZloF3mObH28XzmqwBRkWQco3saeVpHPPakiGUaK5f5CYIOKZSqp56qn0JxMp2oMyAYIdFVmFFJCIJc4UVxUI-Er3TkOSqWThVuczGEszXRRrihVLYbGuKGhnZDw1UVarmkwszo5iFiOy4kOhxWhbtcMtvLv692_rfbr2G3M-z3wl538HQBe55piLC1PDUoLt6W6hIK83R5lWnlB23d26o |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTwIxEJ4oJEYPoqgRRe3BmzbsLu1u8UZ4BBWJ8ZFw2-yjTbgsRED-vtPuAzV6MJ53t2mm8_hmO_MNwKWrr5pY06ExdwPKRODSVhAzKiSPFFeeHVpmiO2zNxqLbk_T5BRd_KbaPb-STHsaNEtTsmjMYtUoGt80jYhHdXkB5hMWp6tNKDPMZFDTy-3e3WBYeGMMSSkERn_DBB9njTM_r_I1OK0R57dLUhN7-pX_73oPdjPcSdqpouzDhkyqUMlnOpDMxKuw81DwuM4PQHX6Tzfkk668S6Kk4QIleto77oQg6iWT_NcEwY_JbN2MQKaKaE7SyYLMI1PrR3RNKok0aNdVSkYxDuG133vpDGg2mYFGaLILGkWIM7iyRUvZzLFC5WHe5skWoiXBOEb9OHCUCnjoCDcUcSht5kUIRoQrZTN2ZPMISsk0kcdAMHKiC9EjlBAc2a4ThK1m4HpSBY4lQ2HV4Co_En-WEnD4BdWyEaiPAvWNQP1VDer5qfmZMc59xHzcFeiIWA2u81NaP_59tZO_vX4BW4_dvj-8Hd2fwraj-yRMiU8dSou3pTyDzXm8PM8U9AMGN-Rt |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CFR%3A+collaborative+feature+ranking+for+improving+the+performance+of+credit+scoring+data+classification&rft.jtitle=Computing&rft.au=Tripathi%2C+Diwakar&rft.au=Reddy%2C+B.+Ramachandra&rft.au=Shukla%2C+Alok+Kumar&rft.date=2022-04-01&rft.pub=Springer+Vienna&rft.issn=0010-485X&rft.eissn=1436-5057&rft.volume=104&rft.issue=4&rft.spage=893&rft.epage=923&rft_id=info:doi/10.1007%2Fs00607-021-01005-w&rft.externalDocID=10_1007_s00607_021_01005_w |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-485X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-485X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-485X&client=summon |