CFR: collaborative feature ranking for improving the performance of credit scoring data classification

Credit scoring is a prominent research problem as its predictive performance is accountable for the viability of financial industry. Credit scoring datasets are high-dimensional which are related to customers’ credentials such as annual income, job status, residential status, etc. In high-dimensiona...

Full description

Saved in:
Bibliographic Details
Published in:Computing Vol. 104; no. 4; pp. 893 - 923
Main Authors: Tripathi, Diwakar, Reddy, B. Ramachandra, Shukla, Alok Kumar
Format: Journal Article
Language:English
Published: Vienna Springer Vienna 01-04-2022
Springer Nature B.V
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Credit scoring is a prominent research problem as its predictive performance is accountable for the viability of financial industry. Credit scoring datasets are high-dimensional which are related to customers’ credentials such as annual income, job status, residential status, etc. In high-dimensional data, many of the features may be irrelevant or redundant which leads to problems such as over-fitting and high computational overhead. So, effective feature selection approaches may overcome both the problems related to high-dimensional data. Generally, a features set selected by a feature selection approach is appropriate with a classifier not with all classifiers, and improves the classification performances. In this article, we have proposed a collaborative feature ranking approach with consideration of various measures which can improve the classification performance of most of the classifiers. Further, it is applied in five credit scoring datasets, results of the proposed approach are compared with various existing feature ranking approaches in terms of similarities between features selected by each pair of approaches and classification performances with respect to these sets of features.
AbstractList Credit scoring is a prominent research problem as its predictive performance is accountable for the viability of financial industry. Credit scoring datasets are high-dimensional which are related to customers’ credentials such as annual income, job status, residential status, etc. In high-dimensional data, many of the features may be irrelevant or redundant which leads to problems such as over-fitting and high computational overhead. So, effective feature selection approaches may overcome both the problems related to high-dimensional data. Generally, a features set selected by a feature selection approach is appropriate with a classifier not with all classifiers, and improves the classification performances. In this article, we have proposed a collaborative feature ranking approach with consideration of various measures which can improve the classification performance of most of the classifiers. Further, it is applied in five credit scoring datasets, results of the proposed approach are compared with various existing feature ranking approaches in terms of similarities between features selected by each pair of approaches and classification performances with respect to these sets of features.
Author Tripathi, Diwakar
Shukla, Alok Kumar
Reddy, B. Ramachandra
Author_xml – sequence: 1
  givenname: Diwakar
  surname: Tripathi
  fullname: Tripathi, Diwakar
  email: diwakarnitgoa@gmail.com
  organization: Thapar Institute of Engineering and Technology Patiala
– sequence: 2
  givenname: B. Ramachandra
  surname: Reddy
  fullname: Reddy, B. Ramachandra
  organization: SRM University AP-Andhra Pradesh
– sequence: 3
  givenname: Alok Kumar
  surname: Shukla
  fullname: Shukla, Alok Kumar
  organization: VIT-AP University Andhra Pradesh
BookMark eNp9kFFLwzAUhYNMcJv-AZ8CPldv0qZNfZPhVBgIouBbSNMb7eyamXQb_ntTK_jm0yWHc869-WZk0rkOCTlncMkAiqsAkEORAGcJREEkhyMyZVmaJwJEMSFTiHKSSfF6QmYhrAGAp7KcErtYPl1T49pWV87rvtkjtaj7nUfqdffRdG_UOk-bzda7_fDq35Fu0UdxozuD1FlqPNZNT4NxfnDUutfUtDqExjYmdrrulBxb3QY8-51z8rK8fV7cJ6vHu4fFzSoxKSv7xBgBpbBMlpZlHCpbcFkWWDIuZCZ4xmvNrdWi4jKvZF0hywoDhZQ5YlpzTOfkYuyN137uMPRq7Xa-iysVzzORy6JMs-jio8t4F4JHq7a-2Wj_pRiogacaearIU_3wVIcYSsdQ2A6_RP9X_U_qG3g9e6M
CitedBy_id crossref_primary_10_1016_j_eswa_2022_118864
Cites_doi 10.1023/A:1012487302797
10.1016/j.procs.2018.05.055
10.1023/A:1008280620621
10.1016/j.eswa.2004.12.031
10.1145/2464576.2466738
10.1016/j.ins.2010.08.047
10.1016/j.eswa.2011.11.011
10.1016/B978-1-55860-247-2.50037-1
10.1016/j.mbs.2019.108230
10.1016/j.engappai.2020.103980
10.7551/mitpress/4057.001.0001
10.1007/978-3-540-87481-2_21
10.1080/01621459.1937.10503522
10.1016/j.procs.2010.04.273
10.1007/s13258-020-00916-w
10.1016/j.engappai.2014.12.014
10.1111/coin.12242
10.1016/j.chemolab.2018.10.009
10.1016/j.eswa.2017.10.022
10.1007/s11042-020-09538-6
10.1109/72.788640
10.1109/ACCESS.2019.2922676
10.1016/j.asoc.2007.10.007
10.1016/j.eswa.2011.02.179
10.1007/978-3-319-49944-4_20
10.1111/coin.12200
10.1109/ISCIS.2008.4717949
10.1007/s11634-017-0285-y
10.1016/j.eswa.2018.12.020
10.1016/j.eswa.2017.05.050
10.1023/A:1010933404324
10.1016/j.eswa.2011.12.057
10.1016/j.eswa.2013.09.004
10.1145/2124295.2124314
10.1214/aoms/1177731944
10.1016/j.knosys.2014.10.010
10.1016/j.ejor.2009.03.008
10.1016/S0305-0548(99)00149-5
10.1109/SAI.2014.6918227
10.1007/s13369-017-2905-4
10.1007/978-3-319-19222-2_3
10.1109/ECTICon.2017.8096254
10.1016/j.ins.2008.05.024
10.1109/ICCV.2017.156
10.5220/0006066701110120
10.1016/j.eswa.2011.08.120
10.1007/s10115-006-0040-8
10.1016/j.eswa.2008.09.054
10.1002/ijfe.1698
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2021
The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2021.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PQBIZ
PQBZA
PQEST
PQQKQ
PQUKI
Q9U
DOI 10.1007/s00607-021-01005-w
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
Research Library (Alumni Edition)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global (ProQuest)
Computing Database
ProQuest research library
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Central Korea
ProQuest Research Library
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ABI/INFORM Global (Corporate)

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISSN 1436-5057
EndPage 923
ExternalDocumentID 10_1007_s00607_021_01005_w
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29F
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
7WY
8AO
8FE
8FG
8FL
8G5
8TC
8UJ
8VB
95-
95.
95~
96X
AAAVM
AABHQ
AABYN
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AAOBN
AAPBV
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAWWR
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFGW
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPTK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACTTH
ACVWB
ACWMK
ADGRI
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEEQQ
AEFIE
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMOZ
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AEYWE
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFNRJ
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGGDS
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BKOMP
BPHCQ
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EAD
EAP
EBA
EBLON
EBR
EBS
EBU
ECS
EDO
EIOEI
EJD
EMK
EPL
ESBYG
EST
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K1G
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAS
LLZTM
M0C
M0N
M2O
M4Y
MA-
MK~
ML~
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PQBIZ
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
QWB
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TH9
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7X
Z7Z
Z81
Z83
Z88
Z8M
Z8N
Z8R
Z8T
Z8U
Z8W
Z92
ZL0
ZMTXR
~8M
~EX
AACDK
AAEOY
AAGNY
AAJBT
AASML
AAYXX
AAYZH
ABAKF
ACAOD
ACDTI
ACZOJ
AEFQL
AEMSY
AFBBN
AGQEE
AGRTI
AIGIU
CITATION
H13
PQBZA
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
MBDVC
PQEST
PQUKI
Q9U
ID FETCH-LOGICAL-c319t-cc5095f189f1420bf72897e9125845242da2ffa5b286b8dbe147c07886ee3d2e3
IEDL.DBID AEJHL
ISSN 0010-485X
IngestDate Thu Nov 14 06:56:40 EST 2024
Thu Nov 21 21:47:49 EST 2024
Sat Dec 16 12:07:24 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Collaborative feature ranking
Feature selection
Credit scoring
Classification
68Uxx : Computing methodologies and applications
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-cc5095f189f1420bf72897e9125845242da2ffa5b286b8dbe147c07886ee3d2e3
PQID 2645687934
PQPubID 48322
PageCount 31
ParticipantIDs proquest_journals_2645687934
crossref_primary_10_1007_s00607_021_01005_w
springer_journals_10_1007_s00607_021_01005_w
PublicationCentury 2000
PublicationDate 2022-04-01
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Vienna
PublicationPlace_xml – name: Vienna
– name: Wien
PublicationTitle Computing
PublicationTitleAbbrev Computing
PublicationYear 2022
Publisher Springer Vienna
Springer Nature B.V
Publisher_xml – name: Springer Vienna
– name: Springer Nature B.V
References WangJGuoKWangSRough set and Tabu search based feature selection for credit scoringProcedia Comput Sci20101124252432
GuyonIWestonJBarnhillSVapnikVGene selection for cancer classification using support vector machinesMach Learn2002461–33894220998.68111
BequéALessmannSExtreme learning machines for credit scoring: an empirical evaluationExpert Syst Appl2017864253
ChakravarthyHBachanPRoshiniPChRKBio inspired approach as a problem solving techniqueNetw Complex Syst201221421
ChenWMaCMaLMining the customer credit using hybrid support vector machine techniqueExpert Syst Appl200936476117616
HuZBaoYXiongTChiongRHybrid filter-wrapper feature selection for short-term load forecastingEng Appl Artif Intell2015401727
HuangCLDunJFA distributed PSO–SVM hybrid system with feature selection and parameter optimizationAppl Soft Comput20088413811391
WittenIHFrankEHallMAPalCJData mining: practical machine learning tools and techniques2016BurlingtonMorgan Kaufmann
VapnikVNAn overview of statistical learning theoryIEEE Trans Neural Netw1999105988999
OreskiSOreskiGGenetic algorithm-based heuristic for feature selection in credit risk assessmentExpert Syst Appl201441420522064
FriedmanMThe use of ranks to avoid the assumption of normality implicit in the analysis of varianceJ Am Stat Assoc19373220067570163.1098.02
He X, Cai D, Niyogi P (2005) Laplacian score for feature selection. Adv Neural Inform Process Syst 18
BradleyPSMangasarianOLFeature selection via concave minimization and support vector machinesICML1998988290
FriedmanJHastieTTibshiraniRThe elements of statistical learning2001New YorkSpringer0973.62007
ZhangWHeHZhangSA novel multi-stage hybrid model with enhanced multi-population niche genetic algorithm: an application in credit scoringExpert Syst Appl2019121221232
ChangCCLinCJLibsvm: a library for support vector machinesACM Trans Intell Syst Technol (TIST)20112327
FriedmanMA comparison of alternative tests of significance for the problem of m rankingsAnn Math Stat1940111869220850063.01455
Neumann F, Witt C (2013) Bioinspired computation in combinatorial optimization-algorithms and their computational complexity. In Proceedings of the 15th annual conference companion on Genetic and evolutionary computation, pp 567–590
TripathiDEdlaDRKuppiliVBablaniAEvolutionary extreme learning machine with novel activation function for credit scoringEng Appl Artif Intell202096103980
WangJHedarARWangSMaJRough set and scatter search metaheuristic based feature selection for credit scoringExpert Syst Appl201239661236128
XuDZhangXFengHGeneralized fuzzy soft sets theory-based novel hybrid ensemble credit scoring modelInt J Finance Econ2019242903921
ChiBWHsuCCA hybrid approach to integrate genetic algorithm into dual scoring model in enhancing the performance of credit scoring modelExpert Syst Appl201239326502661
KononenkoIŠimecERobnik-ŠikonjaMOvercoming the myopia of inductive learning algorithms with RELIEFFAppl Intell1997713955
ShuklaAKTripathiDIdentification of potential biomarkers on microarray data using distributed gene selection approachMath Biosci201931510823039830721425.92082
Broomhead DS, Lowe D (1988) Radial basis functions, multi-variable functional interpolation and adaptive networks. Tech. rep, Royal Signals and Radar Establishment Malvern (United Kingdom)
Saeys Y, Abeel T, Van de Peer Y (2008) Robust feature selection using ensemble feature selection techniques. In: Joint European conference on machine learning and knowledge discovery in databases. Springer, pp 313–325
MaldonadoSWeberRBasakJSimultaneous feature selection and classification using kernel-penalized support vector machinesInf Sci20111811115128
EdlaDRTripathiDCherukuRKuppiliVAn efficient multi-layer ensemble framework with BPSOGSA-based feature selection for credit scoring data analysisArab J Sci Eng2018431269096928
ShuklaAKSinghPVardhanMA two-stage gene selection method for biomarker discovery from microarray data for cancer classificationChemom Intell Lab Syst20181834758
Wongchinsri P, Kuratach W (2017) Sr-based binary classification in credit scoring. In: 2017 14th International conference on electrical engineering/electronics, computer, telecommunications and information technology (ECTI-CON). IEEE, pp. 385–388
GuoSHeHHuangXA multi-stage self-adaptive classifier ensemble model with application in credit scoringIEEE Access201977854978559
Roffo G, Melzi S, Castellani U, Vinciarelli A (2017) Infinite latent feature selection: a probabilistic latent graph-based ranking approach. In Proceedings of the IEEE International Conference on Computer Vision, pp 1398–1406
TripathiDEdlaDRKuppiliVBablaniADharavathRCredit scoring model based on weighted voting and cluster based feature selectionProcedia Comput Sci20181322231
Balakrishnan S, Chopra S (2012) Collaborative ranking. In: Proceedings of the fifth ACM international conference on Web search and data mining. pp 143–152
John GH, Langley P (1995) Estimating continuous distributions in Bayesian classifiers. In: Proceedings of the eleventh conference on uncertainty in artificial intelligence. Morgan Kaufmann Publishers Inc, pp 338–345
Chen Z, Ji H (2011) Collaborative ranking: a case study on entity linking. In: Proceedings of the conference on empirical methods in natural language processing. Association for Computational Linguistics, pp 771–781
PingYYonghengLNeighborhood rough set and SVM based hybrid credit scoring classifierExpert Syst Appl20113891130011304
Lichman M (2013) UCI machine learning repository. http://archive.ics.uci.edu/ml
Saia R, Carta S (2016) An entropy based algorithm for credit scoring. In: International conference on research and practical issues of enterprise information systems. Springer, pp 263–276
Seijo-Pardo B, Bolón-Canedo V, Porto-Díaz I, Alonso-Betanzos A (2015) Ensemble feature selection for rankings of features. In: International work-conference on artificial neural networks. Springer, pp 29–42
KuppiliVTripathiDReddy EdlaDCredit score classification using spiking extreme learning machineComput Intell2020362402426
PaleologoGElisseeffAAntoniniGSubagging for credit scoring modelsEur J Oper Res20102012490499
Frank E, Witten IH (1998) Generating accurate rule sets without global optimization. University of Waikato, Department of Computer Science, pp 1–15
BrahimABLimamMEnsemble feature selection for high dimensional data: a new method and a comparative studyAdv Data Anal Classif201812493795238789701416.62141
ShuklaAKTripathiDDetecting biomarkers from microarray data using distributed correlation based gene selectionGenes Genom202042449465
LiangDTsaiCFWuHTThe effect of feature selection on financial distress predictionKnowl Based Syst201573289297
MesterLJWhats the point of credit scoring?Bus Rev19973316
BreimanLRandom forestsMach Learn20014515321007.68152
HensABTiwariMKComputational time reduction for credit scoring: an integrated approach based on support vector machine and stratified sampling methodExpert Syst Appl201239867746781
KalaRVaziraniHKhanwalkarNBhattacharyaMEvolutionary radial basis function network for classificatory problemsIJCSA2010743449
Saia R, Carta S (2016) A linear-dependence-based approach to design proactive credit scoring models. In: KDIR. pp 111–120
XiaYLiuCDaBXieFA novel heterogeneous ensemble credit scoring model based on bstacking approachExpert Syst Appl201893182199
Boucheham A, Batouche M (2014) Robust biomarker discovery for cancer diagnosis based on meta-ensemble feature selection. In: 2014 Science and information conference. IEEE, pp 452–560
Hall MA (1999) Correlation-based feature selection for machine learning. University of Waikato Hamilton
LeeTSChenIFA two-stage hybrid credit scoring model using artificial neural networks and multivariate adaptive regression splinesExpert Syst Appl2005284743752
Kira K, Rendell LA (1992) A practical approach to feature selection. In: Machine learning proceedings. Elsevier, pp 249–256
TripathiDEdlaDRKuppiliVDharavathRBinary bat algorithm and RBFN based hybrid credit scoring modelMultimedia Tools Appl202079433188931912
KalousisAPradosJHilarioMStability of feature selection algorithms: a study on high-dimensional spacesKnowl Inf Syst200712195116
KiraKRendellLAThe feature selection problem: traditional methods and a new algorithmAaai19922129134
Senliol B, Gulgezen G, Yu L, Cataltepe Z (2008) Fast correlation based filter (FCBF) with a different search strategy. In: 23rd international symposium on computer and information Sciences, 2008. ISCIS’08. IEEE, pp 1–4
Yasser EM (2005) Wlsvm. URL http://www.cs.iastate.edu/~yasser/wlsvm
Neumann F, Witt C (2013) Bioinspired computation in combinatorial optimization: algorithms and their computational complexity. In: Proceedings of the 15th annual conference companion on genetic and evolutionary computation. pp 567–590
HuQYuDLiuJWuCNeighborhood rough set based heterogeneous feature subset selectionInf Sci2008178183577359424380951154.68466
SchölkopfBTsudaKVertJPIstrailDSPevznerPAWatermanMSKernel methods in computational biology2004CambridgeMIT Press
WestDNeural network credit scoring modelsComput Oper Res20002711113111520962.90004
TripathiDEdlaDRCherukuRKuppiliVA novel hybrid credit scoring model based on ensemble feature selection and multilayer ensemble classificationComput Intell20193523713943953895
1005_CR11
IH Witten (1005_CR61) 2016
1005_CR1
G Paleologo (1005_CR41) 2010; 201
AK Shukla (1005_CR52) 2020; 42
J Friedman (1005_CR15) 2001
W Zhang (1005_CR66) 2019; 121
1005_CR14
D Xu (1005_CR64) 2019; 24
1005_CR7
1005_CR3
S Oreski (1005_CR40) 2014; 41
Y Ping (1005_CR42) 2011; 38
LJ Mester (1005_CR37) 1997; 3
AB Brahim (1005_CR5) 2018; 12
I Guyon (1005_CR19) 2002; 46
1005_CR20
AK Shukla (1005_CR50) 2018; 183
M Friedman (1005_CR17) 1940; 11
1005_CR21
1005_CR65
TS Lee (1005_CR33) 2005; 28
1005_CR26
AK Shukla (1005_CR51) 2019; 315
A Kalousis (1005_CR28) 2007; 12
L Breiman (1005_CR6) 2001; 45
1005_CR62
DR Edla (1005_CR13) 2018; 43
Q Hu (1005_CR23) 2008; 178
D Tripathi (1005_CR55) 2018; 132
V Kuppili (1005_CR32) 2020; 36
S Guo (1005_CR18) 2019; 7
J Wang (1005_CR59) 2012; 39
I Kononenko (1005_CR31) 1997; 7
D Tripathi (1005_CR53) 2019; 35
AB Hens (1005_CR22) 2012; 39
D West (1005_CR60) 2000; 27
1005_CR35
1005_CR38
H Chakravarthy (1005_CR8) 2012; 2
1005_CR30
Z Hu (1005_CR24) 2015; 40
K Kira (1005_CR29) 1992; 2
CC Chang (1005_CR9) 2011; 2
1005_CR39
VN Vapnik (1005_CR57) 1999; 10
BW Chi (1005_CR12) 2012; 39
1005_CR43
1005_CR44
A Bequé (1005_CR2) 2017; 86
1005_CR45
1005_CR46
1005_CR48
1005_CR49
PS Bradley (1005_CR4) 1998; 98
S Maldonado (1005_CR36) 2011; 181
D Tripathi (1005_CR54) 2020; 96
CL Huang (1005_CR25) 2008; 8
J Wang (1005_CR58) 2010; 1
W Chen (1005_CR10) 2009; 36
R Kala (1005_CR27) 2010; 7
B Schölkopf (1005_CR47) 2004
D Liang (1005_CR34) 2015; 73
Y Xia (1005_CR63) 2018; 93
M Friedman (1005_CR16) 1937; 32
D Tripathi (1005_CR56) 2020; 79
References_xml – volume: 46
  start-page: 389
  issue: 1–3
  year: 2002
  ident: 1005_CR19
  publication-title: Mach Learn
  doi: 10.1023/A:1012487302797
  contributor:
    fullname: I Guyon
– ident: 1005_CR21
– volume: 132
  start-page: 22
  year: 2018
  ident: 1005_CR55
  publication-title: Procedia Comput Sci
  doi: 10.1016/j.procs.2018.05.055
  contributor:
    fullname: D Tripathi
– volume-title: The elements of statistical learning
  year: 2001
  ident: 1005_CR15
  contributor:
    fullname: J Friedman
– volume: 7
  start-page: 39
  issue: 1
  year: 1997
  ident: 1005_CR31
  publication-title: Appl Intell
  doi: 10.1023/A:1008280620621
  contributor:
    fullname: I Kononenko
– volume-title: Data mining: practical machine learning tools and techniques
  year: 2016
  ident: 1005_CR61
  contributor:
    fullname: IH Witten
– volume: 98
  start-page: 82
  year: 1998
  ident: 1005_CR4
  publication-title: ICML
  contributor:
    fullname: PS Bradley
– volume: 28
  start-page: 743
  issue: 4
  year: 2005
  ident: 1005_CR33
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2004.12.031
  contributor:
    fullname: TS Lee
– volume: 3
  start-page: 3
  year: 1997
  ident: 1005_CR37
  publication-title: Bus Rev
  contributor:
    fullname: LJ Mester
– ident: 1005_CR39
  doi: 10.1145/2464576.2466738
– ident: 1005_CR38
  doi: 10.1145/2464576.2466738
– ident: 1005_CR35
– volume: 181
  start-page: 115
  issue: 1
  year: 2011
  ident: 1005_CR36
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2010.08.047
  contributor:
    fullname: S Maldonado
– volume: 39
  start-page: 6123
  issue: 6
  year: 2012
  ident: 1005_CR59
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2011.11.011
  contributor:
    fullname: J Wang
– ident: 1005_CR30
  doi: 10.1016/B978-1-55860-247-2.50037-1
– volume: 315
  start-page: 108230
  year: 2019
  ident: 1005_CR51
  publication-title: Math Biosci
  doi: 10.1016/j.mbs.2019.108230
  contributor:
    fullname: AK Shukla
– volume: 96
  start-page: 103980
  year: 2020
  ident: 1005_CR54
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2020.103980
  contributor:
    fullname: D Tripathi
– volume: 2
  start-page: 27
  issue: 3
  year: 2011
  ident: 1005_CR9
  publication-title: ACM Trans Intell Syst Technol (TIST)
  contributor:
    fullname: CC Chang
– volume-title: Kernel methods in computational biology
  year: 2004
  ident: 1005_CR47
  doi: 10.7551/mitpress/4057.001.0001
  contributor:
    fullname: B Schölkopf
– volume: 2
  start-page: 129
  year: 1992
  ident: 1005_CR29
  publication-title: Aaai
  contributor:
    fullname: K Kira
– ident: 1005_CR44
  doi: 10.1007/978-3-540-87481-2_21
– volume: 32
  start-page: 675
  issue: 200
  year: 1937
  ident: 1005_CR16
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1937.10503522
  contributor:
    fullname: M Friedman
– ident: 1005_CR26
– volume: 1
  start-page: 2425
  issue: 1
  year: 2010
  ident: 1005_CR58
  publication-title: Procedia Comput Sci
  doi: 10.1016/j.procs.2010.04.273
  contributor:
    fullname: J Wang
– volume: 7
  start-page: 34
  issue: 4
  year: 2010
  ident: 1005_CR27
  publication-title: IJCSA
  contributor:
    fullname: R Kala
– volume: 42
  start-page: 449
  year: 2020
  ident: 1005_CR52
  publication-title: Genes Genom
  doi: 10.1007/s13258-020-00916-w
  contributor:
    fullname: AK Shukla
– volume: 40
  start-page: 17
  year: 2015
  ident: 1005_CR24
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2014.12.014
  contributor:
    fullname: Z Hu
– volume: 36
  start-page: 402
  issue: 2
  year: 2020
  ident: 1005_CR32
  publication-title: Comput Intell
  doi: 10.1111/coin.12242
  contributor:
    fullname: V Kuppili
– ident: 1005_CR11
– volume: 183
  start-page: 47
  year: 2018
  ident: 1005_CR50
  publication-title: Chemom Intell Lab Syst
  doi: 10.1016/j.chemolab.2018.10.009
  contributor:
    fullname: AK Shukla
– volume: 93
  start-page: 182
  year: 2018
  ident: 1005_CR63
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2017.10.022
  contributor:
    fullname: Y Xia
– volume: 79
  start-page: 31889
  issue: 43
  year: 2020
  ident: 1005_CR56
  publication-title: Multimedia Tools Appl
  doi: 10.1007/s11042-020-09538-6
  contributor:
    fullname: D Tripathi
– volume: 10
  start-page: 988
  issue: 5
  year: 1999
  ident: 1005_CR57
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/72.788640
  contributor:
    fullname: VN Vapnik
– volume: 7
  start-page: 78549
  year: 2019
  ident: 1005_CR18
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2922676
  contributor:
    fullname: S Guo
– volume: 8
  start-page: 1381
  issue: 4
  year: 2008
  ident: 1005_CR25
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2007.10.007
  contributor:
    fullname: CL Huang
– volume: 38
  start-page: 11300
  issue: 9
  year: 2011
  ident: 1005_CR42
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2011.02.179
  contributor:
    fullname: Y Ping
– ident: 1005_CR45
  doi: 10.1007/978-3-319-49944-4_20
– volume: 35
  start-page: 371
  issue: 2
  year: 2019
  ident: 1005_CR53
  publication-title: Comput Intell
  doi: 10.1111/coin.12200
  contributor:
    fullname: D Tripathi
– ident: 1005_CR65
– ident: 1005_CR49
  doi: 10.1109/ISCIS.2008.4717949
– volume: 12
  start-page: 937
  issue: 4
  year: 2018
  ident: 1005_CR5
  publication-title: Adv Data Anal Classif
  doi: 10.1007/s11634-017-0285-y
  contributor:
    fullname: AB Brahim
– volume: 121
  start-page: 221
  year: 2019
  ident: 1005_CR66
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2018.12.020
  contributor:
    fullname: W Zhang
– volume: 86
  start-page: 42
  year: 2017
  ident: 1005_CR2
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2017.05.050
  contributor:
    fullname: A Bequé
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: 1005_CR6
  publication-title: Mach Learn
  doi: 10.1023/A:1010933404324
  contributor:
    fullname: L Breiman
– volume: 39
  start-page: 6774
  issue: 8
  year: 2012
  ident: 1005_CR22
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2011.12.057
  contributor:
    fullname: AB Hens
– volume: 41
  start-page: 2052
  issue: 4
  year: 2014
  ident: 1005_CR40
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2013.09.004
  contributor:
    fullname: S Oreski
– ident: 1005_CR1
  doi: 10.1145/2124295.2124314
– volume: 11
  start-page: 86
  issue: 1
  year: 1940
  ident: 1005_CR17
  publication-title: Ann Math Stat
  doi: 10.1214/aoms/1177731944
  contributor:
    fullname: M Friedman
– volume: 73
  start-page: 289
  year: 2015
  ident: 1005_CR34
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2014.10.010
  contributor:
    fullname: D Liang
– volume: 201
  start-page: 490
  issue: 2
  year: 2010
  ident: 1005_CR41
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2009.03.008
  contributor:
    fullname: G Paleologo
– volume: 27
  start-page: 1131
  issue: 11
  year: 2000
  ident: 1005_CR60
  publication-title: Comput Oper Res
  doi: 10.1016/S0305-0548(99)00149-5
  contributor:
    fullname: D West
– ident: 1005_CR3
  doi: 10.1109/SAI.2014.6918227
– volume: 43
  start-page: 6909
  issue: 12
  year: 2018
  ident: 1005_CR13
  publication-title: Arab J Sci Eng
  doi: 10.1007/s13369-017-2905-4
  contributor:
    fullname: DR Edla
– ident: 1005_CR20
– ident: 1005_CR48
  doi: 10.1007/978-3-319-19222-2_3
– ident: 1005_CR62
  doi: 10.1109/ECTICon.2017.8096254
– ident: 1005_CR14
– volume: 178
  start-page: 3577
  issue: 18
  year: 2008
  ident: 1005_CR23
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2008.05.024
  contributor:
    fullname: Q Hu
– ident: 1005_CR7
– volume: 2
  start-page: 14
  year: 2012
  ident: 1005_CR8
  publication-title: Netw Complex Syst
  contributor:
    fullname: H Chakravarthy
– ident: 1005_CR43
  doi: 10.1109/ICCV.2017.156
– ident: 1005_CR46
  doi: 10.5220/0006066701110120
– volume: 39
  start-page: 2650
  issue: 3
  year: 2012
  ident: 1005_CR12
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2011.08.120
  contributor:
    fullname: BW Chi
– volume: 12
  start-page: 95
  issue: 1
  year: 2007
  ident: 1005_CR28
  publication-title: Knowl Inf Syst
  doi: 10.1007/s10115-006-0040-8
  contributor:
    fullname: A Kalousis
– volume: 36
  start-page: 7611
  issue: 4
  year: 2009
  ident: 1005_CR10
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2008.09.054
  contributor:
    fullname: W Chen
– volume: 24
  start-page: 903
  issue: 2
  year: 2019
  ident: 1005_CR64
  publication-title: Int J Finance Econ
  doi: 10.1002/ijfe.1698
  contributor:
    fullname: D Xu
SSID ssj0002389
Score 2.339045
Snippet Credit scoring is a prominent research problem as its predictive performance is accountable for the viability of financial industry. Credit scoring datasets...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Publisher
StartPage 893
SubjectTerms Artificial Intelligence
Classification
Classifiers
Collaboration
Computer Appl. in Administrative Data Processing
Computer Communication Networks
Computer Science
Credit scoring
Datasets
Feature selection
Information Systems Applications (incl.Internet)
Performance prediction
Ranking
Regular Paper
Software Engineering
Title CFR: collaborative feature ranking for improving the performance of credit scoring data classification
URI https://link.springer.com/article/10.1007/s00607-021-01005-w
https://www.proquest.com/docview/2645687934
Volume 104
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwED3RdoGBQgFRKMgDGxjly4nDVpWWgoABitQtchJbqpDSirT073N2kxQQDDBlSOJEd-e7Z_vuHcCZr4-aPNehKfMF9bjwaShSj3LJEsVUYMeWaWL7HDyO-XVf0-S41dZF9npZnkgaR13VumnmkIDqjAJcQliMLmvQwNjD0Lgb3f7d8L5ywBiFVqgXXYzH2biolfl5lK_xaA0yv52LmnAzaP7rR3dgu0CXpLsyh13YkFkLmmXnBlJM5BZsPVRsrfkeqN7g6Yp8soh3SZQ0jJ9E93THrxPEtmRSbkAQfJnM1iUHZKqIZh6dzEmemIw-ojNPSaKhuc5FMurfh5dBf9Qb0qL_Ak1wYs5pkiCaYMrmobI9x4pVgKuzQIaIibjHMLanwlFKsNjhfszTWNpekCDk4L6UbupI9wDq2TSTh0AwPqKj0I2SEALZviPi0BV-IJVwLBlzqw3npRai2YpmI6oIlY1AIxRoZAQaLdvQKRUVFVMujxDZMZ-ju_HacFFqZn3799GO_vb4MWw6ugTCZO90oD5_W8gTqOXp4rQwRH29Hd0MPgAuqdlI
link.rule.ids 315,782,786,27933,27934,41073,42142,48344,48347,49649,49652,52153
linkProvider Springer Nature
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT8IwFH8ROKgHUdSIovbgTZtso-06bwRBiMBBMeG27KNNuAARkH_f17KBGj3oeVu39H39uvfe7wHcCJNqYnWPplxElMlI0CBKGZWKJ5pr340dO8T2xR-M5EPL0OSwvBfGVrvnKUnrqTfNboY6xKempADPEA6nqwKUWCAY6nKp0R0-tjceGMPQGvaij2GSj7JmmZ9X-RqQtijzW2LUxpt2-X9feggHGb4kjbVCHMGOmlSgnM9uIJkpV2C_v-FrnR-Dbraf78knnXhXRCvL-UnMVHd8O0F0S8b5LwiCD5PZtumATDUx3KPjBZkntqaPmNpTkhhwbqqRrAKcwGu7NWx2aDaBgSZomguaJIgnuHZloF3mObH28XzmqwBRkWQco3saeVpHPPakiGUaK5f5CYIOKZSqp56qn0JxMp2oMyAYIdFVmFFJCIJc4UVxUI-Er3TkOSqWThVuczGEszXRRrihVLYbGuKGhnZDw1UVarmkwszo5iFiOy4kOhxWhbtcMtvLv692_rfbr2G3M-z3wl538HQBe55piLC1PDUoLt6W6hIK83R5lWnlB23d26o
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTwIxEJ4oJEYPoqgRRe3BmzbsLu1u8UZ4BBWJ8ZFw2-yjTbgsRED-vtPuAzV6MJ53t2mm8_hmO_MNwKWrr5pY06ExdwPKRODSVhAzKiSPFFeeHVpmiO2zNxqLbk_T5BRd_KbaPb-STHsaNEtTsmjMYtUoGt80jYhHdXkB5hMWp6tNKDPMZFDTy-3e3WBYeGMMSSkERn_DBB9njTM_r_I1OK0R57dLUhN7-pX_73oPdjPcSdqpouzDhkyqUMlnOpDMxKuw81DwuM4PQHX6Tzfkk668S6Kk4QIleto77oQg6iWT_NcEwY_JbN2MQKaKaE7SyYLMI1PrR3RNKok0aNdVSkYxDuG133vpDGg2mYFGaLILGkWIM7iyRUvZzLFC5WHe5skWoiXBOEb9OHCUCnjoCDcUcSht5kUIRoQrZTN2ZPMISsk0kcdAMHKiC9EjlBAc2a4ThK1m4HpSBY4lQ2HV4Co_En-WEnD4BdWyEaiPAvWNQP1VDer5qfmZMc59xHzcFeiIWA2u81NaP_59tZO_vX4BW4_dvj-8Hd2fwraj-yRMiU8dSou3pTyDzXm8PM8U9AMGN-Rt
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CFR%3A+collaborative+feature+ranking+for+improving+the+performance+of+credit+scoring+data+classification&rft.jtitle=Computing&rft.au=Tripathi%2C+Diwakar&rft.au=Reddy%2C+B.+Ramachandra&rft.au=Shukla%2C+Alok+Kumar&rft.date=2022-04-01&rft.pub=Springer+Vienna&rft.issn=0010-485X&rft.eissn=1436-5057&rft.volume=104&rft.issue=4&rft.spage=893&rft.epage=923&rft_id=info:doi/10.1007%2Fs00607-021-01005-w&rft.externalDocID=10_1007_s00607_021_01005_w
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-485X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-485X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-485X&client=summon