Improvement of dielectric properties of ZnO nanoparticles by Cu doping for tunable microwave devices

We report a facile chemical polyol method to synthesize Cu-doped ZnO nanoparticles with various levels of Cu. X-ray diffraction (XRD), transmission electron microscopy (TEM), and UV–Visible diffuse reflectance spectroscopy techniques were used to analyze the structural and optical properties of Zn 1...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials science. Materials in electronics Vol. 31; no. 21; pp. 18664 - 18672
Main Authors: Selmi, A., Fkiri, A., Bouslimi, J., Besbes, H.
Format: Journal Article
Language:English
Published: New York Springer US 01-11-2020
Springer Nature B.V
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We report a facile chemical polyol method to synthesize Cu-doped ZnO nanoparticles with various levels of Cu. X-ray diffraction (XRD), transmission electron microscopy (TEM), and UV–Visible diffuse reflectance spectroscopy techniques were used to analyze the structural and optical properties of Zn 1− x Cu x O nanoparticles. The crystallite size varies between 9.8 and 18.9 nm and decreased with the increase of Cu doping. The band energy gaps of pure and Cu-doped ZnO samples are in the range 2.5–3.1 eV. The dielectric properties, ac conductivity and impedance analysis of Zn 1− x Cu x O nanoparticles were systematically investigated. It was revealed that the doping of ZnO by Cu (with low Cu molar content) leads to obtain high dielectric constant and low tangent loss, which are very encouraging for microwave semiconductor devices.
ISSN:0957-4522
1573-482X
DOI:10.1007/s10854-020-04408-1