Reusable unit process life cycle inventory (UPLCI) for manufacturing: laser powder bed fusion (L-PBF)

In many industrial applications, laser powder bed fusion (L-PBF) has been recognized for its flexibility in Net Shape Manufacturing. During the process, the feedstock is deposited and selectively fused with a thermal joining via laser power. In this work, the unit process life cycle inventory method...

Full description

Saved in:
Bibliographic Details
Published in:Production engineering (Berlin, Germany) Vol. 15; no. 5; pp. 701 - 716
Main Authors: Ramirez-Cedillo, Erick, García-López, Erika, Ruiz-Huerta, Leopoldo, Rodriguez, Ciro A., Siller, Hector R.
Format: Journal Article
Language:English
Published: Berlin/Heidelberg Springer Berlin Heidelberg 01-10-2021
Springer Nature B.V
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In many industrial applications, laser powder bed fusion (L-PBF) has been recognized for its flexibility in Net Shape Manufacturing. During the process, the feedstock is deposited and selectively fused with a thermal joining via laser power. In this work, the unit process life cycle inventory methodology (UPLCI) was used to discretize energy consumption and material losses for modeling the L-PBF process. A reusable approach in terms of materials, parameters, and calculation tools is presented, to estimate the energy consumption and mass loss in practical evaluations of production lines. Calculations of energy were obtained and classified as basic, idle, and active energy. Theoretical equations were also shown to relate the most important parameters of the process with its energy consumption. Finally, a case study is presented to analyze the UPLCI capacity to improve energy consumption in the manufacturing of medical devices.
AbstractList In many industrial applications, laser powder bed fusion (L-PBF) has been recognized for its flexibility in Net Shape Manufacturing. During the process, the feedstock is deposited and selectively fused with a thermal joining via laser power. In this work, the unit process life cycle inventory methodology (UPLCI) was used to discretize energy consumption and material losses for modeling the L-PBF process. A reusable approach in terms of materials, parameters, and calculation tools is presented, to estimate the energy consumption and mass loss in practical evaluations of production lines. Calculations of energy were obtained and classified as basic, idle, and active energy. Theoretical equations were also shown to relate the most important parameters of the process with its energy consumption. Finally, a case study is presented to analyze the UPLCI capacity to improve energy consumption in the manufacturing of medical devices.
Author Siller, Hector R.
Ramirez-Cedillo, Erick
Rodriguez, Ciro A.
García-López, Erika
Ruiz-Huerta, Leopoldo
Author_xml – sequence: 1
  givenname: Erick
  surname: Ramirez-Cedillo
  fullname: Ramirez-Cedillo, Erick
  organization: Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, National Laboratory for Additive and Digital Manufacturing (MADiT), Department of Mechanical Engineering, University of North Texas
– sequence: 2
  givenname: Erika
  surname: García-López
  fullname: García-López, Erika
  organization: Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, National Laboratory for Additive and Digital Manufacturing (MADiT)
– sequence: 3
  givenname: Leopoldo
  surname: Ruiz-Huerta
  fullname: Ruiz-Huerta, Leopoldo
  organization: Instituto de Ciencias Aplicadas y Tecnología (ICAT), Universidad Nacional Autónoma de México (UNAM), National Laboratory for Additive and Digital Manufacturing (MADiT)
– sequence: 4
  givenname: Ciro A.
  surname: Rodriguez
  fullname: Rodriguez, Ciro A.
  organization: Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, National Laboratory for Additive and Digital Manufacturing (MADiT)
– sequence: 5
  givenname: Hector R.
  orcidid: 0000-0002-0782-1974
  surname: Siller
  fullname: Siller, Hector R.
  email: hector.siller@unt.edu
  organization: Department of Mechanical Engineering, University of North Texas, Center for Agile and Adaptive Additive Manufacturing, University of North Texas
BookMark eNp9kEtLxDAUhYMoOOr8AVcBN7qI3jRN2rjTwRcMKOKsQx63UhnTMWmV-fd2HMGdqwOXc87lfAdkN3YRCTnmcM4BqovMeVUCg4Iz4CCBqR0y4bUSrBJS7JIJ6LJkShblPpnm3DoAqYELVU4IPuOQrVsiHWLb01XqPOZMl22D1K_9eG_jJ8a-S2t6uniazx7OaNMl-m7j0FjfD6mNr5d0aTMmuuq-wigOA22G3HaRns7Z0_Xt2RHZa-wy4_RXD8ni9uZlds_mj3cPs6s584LrnlmstXM6oEYdeMAaGld79Ohc8OCx8F5WTV3poOrgEEsrvJRBFSgrq0snDsnJtnfc8TFg7s1bN6Q4vjSFVBqUAK1GV7F1-dTlnLAxq9S-27Q2HMyGqNkSNSNR80PUbEJiG8qrzWRMf9X_pL4Bd3R7wQ
CitedBy_id crossref_primary_10_1016_j_jclepro_2024_141390
crossref_primary_10_1007_s11740_023_01197_4
crossref_primary_10_1115_1_4054487
Cites_doi 10.1111/jiec.12528
10.1007/s11740-017-0768-x
10.3390/met7120521
10.1111/j.1530-9290.2012.00512.x
10.1088/1757-899X/269/1/012026
10.1111/jiec.12618
10.1108/13552540710776142
10.1007/s11740-018-0869-1
10.1016/j.jmatprotec.2017.12.043
10.1007/s40684-017-0037-7
10.17973/MMSJ.2018_12_2018110
10.1108/13552540510573365
10.1007/s40684-018-0006-9
10.1016/j.matdes.2016.05.083
10.1016/j.promfg.2018.07.125
10.1016/j.matdes.2016.05.070
10.1016/j.jclepro.2019.119068
10.4324/9780203931875
10.1007/978-981-10-0606-7
10.1002/mawe.200800327
10.1108/13552541211272018
10.1115/MSEC2019-3032
10.1016/j.jclepro.2015.04.109
10.1007/s00170-014-6297-2
10.1016/j.promfg.2018.07.104
10.1108/RPJ-12-2015-0193
10.1108/13552541311312201
10.1080/17452759.2016.1142215
10.1108/RPJ-07-2013-0065
10.3390/technologies5010009
10.1016/j.matdes.2014.09.044
10.3390/ma10040348
10.3390/met7020064
10.1007/s11740-019-00916-0
ContentType Journal Article
Copyright German Academic Society for Production Engineering (WGP) 2021
German Academic Society for Production Engineering (WGP) 2021.
Copyright_xml – notice: German Academic Society for Production Engineering (WGP) 2021
– notice: German Academic Society for Production Engineering (WGP) 2021.
DBID AAYXX
CITATION
DOI 10.1007/s11740-021-01050-6
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1863-7353
EndPage 716
ExternalDocumentID 10_1007_s11740_021_01050_6
GrantInformation_xml – fundername: Consejo Nacional de Ciencia y Tecnología
  funderid: http://dx.doi.org/10.13039/501100003141
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.VR
06D
0R~
0VY
1N0
203
29P
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AAPBV
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
ABBXA
ABDZT
ABECU
ABFGW
ABFTD
ABFTV
ABHQN
ABJNI
ABJOX
ABKAS
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACSNA
ACTTH
ACVWB
ACWMK
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFGCZ
AFLOW
AFNRJ
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
AXYYD
AYJHY
B-.
BA0
BDATZ
BGNMA
CAG
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KOV
LLZTM
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P9P
PF0
PT4
QOS
R89
R9I
RIG
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDH
SEG
SHX
SISQX
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7V
Z7X
Z7Y
Z7Z
Z83
Z85
Z88
ZMTXR
~A9
AACDK
AAJBT
AASML
AAYXX
AAYZH
ABAKF
ACAOD
ACDTI
ACZOJ
AEFQL
AEMSY
AFBBN
AGQEE
AGRTI
AIGIU
CITATION
H13
SJYHP
ID FETCH-LOGICAL-c319t-ae89bb9de9e9d1de80fb8cecebbdc0ce2cc57f879d68dbee4a3c55d62e57a94b3
IEDL.DBID AEJHL
ISSN 0944-6524
IngestDate Wed Oct 30 03:06:23 EDT 2024
Thu Nov 21 21:48:28 EST 2024
Sat Dec 16 12:09:02 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Unit process life cycle inventory
Laser powder bed fusion
Energy consumption
Additive manufacturing
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-ae89bb9de9e9d1de80fb8cecebbdc0ce2cc57f879d68dbee4a3c55d62e57a94b3
ORCID 0000-0002-0782-1974
PQID 2569063096
PQPubID 2044456
PageCount 16
ParticipantIDs proquest_journals_2569063096
crossref_primary_10_1007_s11740_021_01050_6
springer_journals_10_1007_s11740_021_01050_6
PublicationCentury 2000
PublicationDate 2021-10-01
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle Research and Development
PublicationTitle Production engineering (Berlin, Germany)
PublicationTitleAbbrev Prod. Eng. Res. Devel
PublicationYear 2021
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References TelenkoCSeepersadCCA comparison of the energy efficiency of selective laser sintering and injection molding of nylon partsRapid Prototyp J20121847248110.1108/13552541211272018
KhorasaniAMGibsonIAwanUSGhaderiAThe effect of SLM process parameters on density, hardness, tensile strength and surface quality of Ti-6Al-4VAddit Manuf201825176186
Kellens K, Yasa E, Renaldi R, et al (2011) Energy and resource efficiency of SLS/SLM processes (keynote paper). In: SFF Symposium 2011. pp 1–16
LinkeBOvercashMReusable unit process life cycle inventory for manufacturing: grindingProd Eng20171164365310.1007/s11740-017-0768-x
Torres-CarrilloSSillerHRVilaCLopezCRodríguezCAEnvironmental analysis of selective laser melting in the manufacturingof aeronautical turbine bladesJ Clean Prod202024610.1016/j.jclepro.2019.119068
HanJYangJYuHMicrostructure and mechanical property of selective laser melted Ti6Al4V dependence on laser energy densityRapid Prototyp J20172321722610.1108/RPJ-12-2015-0193
CherryJADaviesHMMehmoodSInvestigation into the effect of process parameters on microstructural and physical properties of 316L stainless steel parts by selective laser meltingInt J Adv Manuf Technol20157686987910.1007/s00170-014-6297-2
ASTM International (2015) ASTM52900–15. Standard terminology for additive manufacturing—general principles—terminology. West Conshohocken, PA
Ramirez-CedilloESandoval-RoblesJARuiz-HuertaLProcess planning guidelines in selective laser melting for the manufacturing of stainless steel partsProcedia Manuf20182697398210.1016/j.promfg.2018.07.125
Baumers M, Tuck C, Wildman R, et al (2011) Energy inputs to additive manufacturing: does capacity utilization matter. In: Proceedings of the solid freeform fabrication (SFF) symposium. University of Texas, pp 30–40
LiuZYLiCFangXYGuoYBEnergy consumption in additive manufacturing of metal partsProcedia Manuf20182683484510.1016/j.promfg.2018.07.104
IlieAAliHMumtazKIn-built customised mechanical failure of 316L components fabricated using selective laser meltingTechnologies2017592110.3390/technologies5010009
KruthJMercelisPVaerenberghJVBinding mechanisms in selective laser sintering and selective laser meltingRapid Prototyp J200511263610.1108/13552540510573365
TanchevLVirtual and rapid manufacturing: advanced research in virtual and rapid prototyping2007LondonCRC Press10.4324/9780203931875
KasperovichGHaubrichJGussoneJRequenaGCorrelation between porosity and processing parameters in TiAl6V4 produced by selective laser meltingMater Des201610516017010.1016/j.matdes.2016.05.070
YusufSChenYBoardmanRInvestigation on porosity and microhardness of 316L stainless steel fabricated by selective laser meltingMetals201776410.3390/met7020064
HuangRRiddleMGrazianoDEnergy and emissions saving potential of additive manufacturing: the case of lightweight aircraft componentsJ Clean Prod20161351559157010.1016/j.jclepro.2015.04.109
PaulRAnandSA combined energy and error optimization method for metal powder based additive manufacturing processesRapid Prototyp J20152130131210.1108/RPJ-07-2013-0065
Baumers M, Tuck C, Hague R, et al (2010) A comparative study of metallic additive manufacturing power consumption. In: Solid freeform fabrication proceedings. University of Texas, pp 278–288
ReadNWangWEssaKAttallahMMSelective laser melting of AlSi10Mg alloy: process optimisation and mechanical properties developmentMater Des20156541742410.1016/j.matdes.2014.09.044
CerdasFJuraschekMThiedeSHerrmannCLife cycle assessment of 3D printed products in a distributed manufacturing systemJ Ind Ecol201721S80S9310.1111/jiec.12618
PengTChenCInfluence of energy density on energy demand and porosity of 316L stainless steel fabricated by selective laser meltingInt J Precis Eng Manuf Green Technol20185556210.1007/s40684-018-0006-9
MishurovaTCabezaSArtztKAn assessment of subsurface residual stress analysis in SLM Ti-6Al-4VMaterials20171034836210.3390/ma10040348
Raman AS, Harper D, Haapala KR, et al (2019) Challenges in representing manufacturing processes for systematic sustainability assessments: workshop on June 21, 2018. In: ASME 2019 14th international manufacturing science and engineering conference. American Society of Mechanical Engineers Digital Collection
LeeHLimCHJLowMJLasers in additive manufacturing: a reviewInt J Precis Eng Manuf Green Technol2017430732210.1007/s40684-017-0037-7
SimonTYangYLeeWJReusable unit process life cycle inventory for manufacturing: stereolithographyProd Eng20191367568410.1007/s11740-019-00916-0
Segura-CardenasERamirez-CedilloEGSandoval-RoblesJAPermeability study of austenitic stainless steel surfaces produced by selective laser meltingMetals2017752110.3390/met7120521
KoutiriIPessardEPeyrePInfluence of SLM process parameters on the surface finish, porosity rate and fatigue behavior of as-built Inconel 625 partsJ Mater Process Technol201825553654610.1016/j.jmatprotec.2017.12.043
CampbellIDiegelOKowenJWohlersTWohlers report 2018: 3D printing and additive manufacturing state of the industry: Annual worldwide progress report2018Wohlers Associates
ZhangHZhaoFReusable unit process life cycle inventory for manufacturing: gas metal arc weldingProd Eng201913899710.1007/s11740-018-0869-1
RickenbacherLSpieringsAWegenerKAn integrated cost-model for selective laser melting (SLM)Rapid Prototyp J20131920821410.1108/13552541311312201
BaumersMTuckCWildmanRTransparency built-in: energy consumption and cost estimation for additive manufacturingJ Ind Ecol20131741843110.1111/j.1530-9290.2012.00512.x
MuthuSSSavalaniMMHandbook of sustainability in additive manufacturing2016SingaporeSpringer10.1007/978-981-10-0606-7
FaludiJBaumersMMaskeryIHagueREnvironmental impacts of selective laser melting: do printer, powder, or power dominate?J Ind Ecol201721S144S15610.1111/jiec.12528
LiveraniEFortunatoALeardiniAFabrication of Co–Cr–Mo endoprosthetic ankle devices by means of selective laser melting (SLM)Mater Des2016106606810.1016/j.matdes.2016.05.083
VandenbrouckeBKruthJSelective laser melting of biocompatible metals for rapid manufacturing of medical partsRapid Prototyp J20071319620310.1108/13552540710776142
JunfengLZhengyingWProcess optimization and microstructure characterization of Ti6Al4V manufactured by selective laser meltingIOP Conf Ser Mater Sci Eng.201726901202610.1088/1757-899X/269/1/012026
MeierHHaberlandCExperimental studies on selective laser melting of metallic partsMat-wiss u Werkstofftech20083966567010.1002/mawe.200800327
DoDKLiPThe effect of laser energy input on the microstructure, physical and mechanical properties of Ti-6Al-4V alloys by selective laser meltingVirtual Phys Prototyp201611414710.1080/17452759.2016.1142215
SůkalJPaloušekDKoutnyDThe effect of recycling powder steel on porosity and surface roughness of SLM partsMM Sci J2018122643264710.17973/MMSJ.2018_12_2018110
M Baumers (1050_CR13) 2013; 17
L Tanchev (1050_CR3) 2007
1050_CR19
T Simon (1050_CR18) 2019; 13
I Campbell (1050_CR2) 2018
B Linke (1050_CR16) 2017; 11
1050_CR12
SS Muthu (1050_CR15) 2016
S Yusuf (1050_CR38) 2017; 7
1050_CR10
B Vandenbroucke (1050_CR34) 2007; 13
J Faludi (1050_CR4) 2017; 21
E Liverani (1050_CR35) 2016; 106
H Zhang (1050_CR17) 2019; 13
C Telenko (1050_CR7) 2012; 18
J Sůkal (1050_CR39) 2018; 12
DK Do (1050_CR30) 2016; 11
1050_CR1
JA Cherry (1050_CR24) 2015; 76
1050_CR9
L Junfeng (1050_CR29) 2017; 269
G Kasperovich (1050_CR32) 2016; 105
AM Khorasani (1050_CR23) 2018; 25
T Mishurova (1050_CR33) 2017; 10
J Kruth (1050_CR40) 2005; 11
A Ilie (1050_CR26) 2017; 5
H Meier (1050_CR28) 2008; 39
R Huang (1050_CR14) 2016; 135
J Han (1050_CR31) 2017; 23
I Koutiri (1050_CR37) 2018; 255
R Paul (1050_CR11) 2015; 21
N Read (1050_CR36) 2015; 65
H Lee (1050_CR20) 2017; 4
ZY Liu (1050_CR5) 2018; 26
E Ramirez-Cedillo (1050_CR27) 2018; 26
T Peng (1050_CR25) 2018; 5
F Cerdas (1050_CR6) 2017; 21
S Torres-Carrillo (1050_CR8) 2020; 246
E Segura-Cardenas (1050_CR21) 2017; 7
L Rickenbacher (1050_CR22) 2013; 19
References_xml – volume: 21
  start-page: S144
  year: 2017
  ident: 1050_CR4
  publication-title: J Ind Ecol
  doi: 10.1111/jiec.12528
  contributor:
    fullname: J Faludi
– volume: 25
  start-page: 176
  year: 2018
  ident: 1050_CR23
  publication-title: Addit Manuf
  contributor:
    fullname: AM Khorasani
– volume: 11
  start-page: 643
  year: 2017
  ident: 1050_CR16
  publication-title: Prod Eng
  doi: 10.1007/s11740-017-0768-x
  contributor:
    fullname: B Linke
– volume: 7
  start-page: 521
  year: 2017
  ident: 1050_CR21
  publication-title: Metals
  doi: 10.3390/met7120521
  contributor:
    fullname: E Segura-Cardenas
– volume: 17
  start-page: 418
  year: 2013
  ident: 1050_CR13
  publication-title: J Ind Ecol
  doi: 10.1111/j.1530-9290.2012.00512.x
  contributor:
    fullname: M Baumers
– volume: 269
  start-page: 012026
  year: 2017
  ident: 1050_CR29
  publication-title: IOP Conf Ser Mater Sci Eng.
  doi: 10.1088/1757-899X/269/1/012026
  contributor:
    fullname: L Junfeng
– volume: 21
  start-page: S80
  year: 2017
  ident: 1050_CR6
  publication-title: J Ind Ecol
  doi: 10.1111/jiec.12618
  contributor:
    fullname: F Cerdas
– volume: 13
  start-page: 196
  year: 2007
  ident: 1050_CR34
  publication-title: Rapid Prototyp J
  doi: 10.1108/13552540710776142
  contributor:
    fullname: B Vandenbroucke
– volume: 13
  start-page: 89
  year: 2019
  ident: 1050_CR17
  publication-title: Prod Eng
  doi: 10.1007/s11740-018-0869-1
  contributor:
    fullname: H Zhang
– volume: 255
  start-page: 536
  year: 2018
  ident: 1050_CR37
  publication-title: J Mater Process Technol
  doi: 10.1016/j.jmatprotec.2017.12.043
  contributor:
    fullname: I Koutiri
– ident: 1050_CR10
– volume: 4
  start-page: 307
  year: 2017
  ident: 1050_CR20
  publication-title: Int J Precis Eng Manuf Green Technol
  doi: 10.1007/s40684-017-0037-7
  contributor:
    fullname: H Lee
– volume: 12
  start-page: 2643
  year: 2018
  ident: 1050_CR39
  publication-title: MM Sci J
  doi: 10.17973/MMSJ.2018_12_2018110
  contributor:
    fullname: J Sůkal
– volume: 11
  start-page: 26
  year: 2005
  ident: 1050_CR40
  publication-title: Rapid Prototyp J
  doi: 10.1108/13552540510573365
  contributor:
    fullname: J Kruth
– ident: 1050_CR12
– volume: 5
  start-page: 55
  year: 2018
  ident: 1050_CR25
  publication-title: Int J Precis Eng Manuf Green Technol
  doi: 10.1007/s40684-018-0006-9
  contributor:
    fullname: T Peng
– volume: 106
  start-page: 60
  year: 2016
  ident: 1050_CR35
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2016.05.083
  contributor:
    fullname: E Liverani
– volume: 26
  start-page: 973
  year: 2018
  ident: 1050_CR27
  publication-title: Procedia Manuf
  doi: 10.1016/j.promfg.2018.07.125
  contributor:
    fullname: E Ramirez-Cedillo
– volume: 105
  start-page: 160
  year: 2016
  ident: 1050_CR32
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2016.05.070
  contributor:
    fullname: G Kasperovich
– volume: 246
  year: 2020
  ident: 1050_CR8
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2019.119068
  contributor:
    fullname: S Torres-Carrillo
– volume-title: Virtual and rapid manufacturing: advanced research in virtual and rapid prototyping
  year: 2007
  ident: 1050_CR3
  doi: 10.4324/9780203931875
  contributor:
    fullname: L Tanchev
– volume-title: Handbook of sustainability in additive manufacturing
  year: 2016
  ident: 1050_CR15
  doi: 10.1007/978-981-10-0606-7
  contributor:
    fullname: SS Muthu
– volume: 39
  start-page: 665
  year: 2008
  ident: 1050_CR28
  publication-title: Mat-wiss u Werkstofftech
  doi: 10.1002/mawe.200800327
  contributor:
    fullname: H Meier
– volume: 18
  start-page: 472
  year: 2012
  ident: 1050_CR7
  publication-title: Rapid Prototyp J
  doi: 10.1108/13552541211272018
  contributor:
    fullname: C Telenko
– ident: 1050_CR1
– ident: 1050_CR19
  doi: 10.1115/MSEC2019-3032
– volume: 135
  start-page: 1559
  year: 2016
  ident: 1050_CR14
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2015.04.109
  contributor:
    fullname: R Huang
– volume: 76
  start-page: 869
  year: 2015
  ident: 1050_CR24
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-014-6297-2
  contributor:
    fullname: JA Cherry
– volume: 26
  start-page: 834
  year: 2018
  ident: 1050_CR5
  publication-title: Procedia Manuf
  doi: 10.1016/j.promfg.2018.07.104
  contributor:
    fullname: ZY Liu
– volume: 23
  start-page: 217
  year: 2017
  ident: 1050_CR31
  publication-title: Rapid Prototyp J
  doi: 10.1108/RPJ-12-2015-0193
  contributor:
    fullname: J Han
– volume: 19
  start-page: 208
  year: 2013
  ident: 1050_CR22
  publication-title: Rapid Prototyp J
  doi: 10.1108/13552541311312201
  contributor:
    fullname: L Rickenbacher
– volume: 11
  start-page: 41
  year: 2016
  ident: 1050_CR30
  publication-title: Virtual Phys Prototyp
  doi: 10.1080/17452759.2016.1142215
  contributor:
    fullname: DK Do
– volume: 21
  start-page: 301
  year: 2015
  ident: 1050_CR11
  publication-title: Rapid Prototyp J
  doi: 10.1108/RPJ-07-2013-0065
  contributor:
    fullname: R Paul
– volume: 5
  start-page: 9
  year: 2017
  ident: 1050_CR26
  publication-title: Technologies
  doi: 10.3390/technologies5010009
  contributor:
    fullname: A Ilie
– volume: 65
  start-page: 417
  year: 2015
  ident: 1050_CR36
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2014.09.044
  contributor:
    fullname: N Read
– ident: 1050_CR9
– volume: 10
  start-page: 348
  year: 2017
  ident: 1050_CR33
  publication-title: Materials
  doi: 10.3390/ma10040348
  contributor:
    fullname: T Mishurova
– volume-title: Wohlers report 2018: 3D printing and additive manufacturing state of the industry: Annual worldwide progress report
  year: 2018
  ident: 1050_CR2
  contributor:
    fullname: I Campbell
– volume: 7
  start-page: 64
  year: 2017
  ident: 1050_CR38
  publication-title: Metals
  doi: 10.3390/met7020064
  contributor:
    fullname: S Yusuf
– volume: 13
  start-page: 675
  year: 2019
  ident: 1050_CR18
  publication-title: Prod Eng
  doi: 10.1007/s11740-019-00916-0
  contributor:
    fullname: T Simon
SSID ssib005901364
ssib019758954
ssib007834189
ssj0000613697
Score 2.3313239
Snippet In many industrial applications, laser powder bed fusion (L-PBF) has been recognized for its flexibility in Net Shape Manufacturing. During the process, the...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Publisher
StartPage 701
SubjectTerms Energy consumption
Engineering
Industrial and Production Engineering
Industrial applications
Lasers
Manufacturing
Net shape
Powder beds
Process parameters
Production
Production lines
Production Process
Title Reusable unit process life cycle inventory (UPLCI) for manufacturing: laser powder bed fusion (L-PBF)
URI https://link.springer.com/article/10.1007/s11740-021-01050-6
https://www.proquest.com/docview/2569063096
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagLDDwRhQK8sDQCoyad8xWSquCKlTxkNii2D5LFZBWbSPUf885TQggGGDKYDtRzp_tz_bdd4ScaMsOdCgEAwgFQ4RoJmSgmZZNBxlsjBsgc6Pbuw9un8KrjpHJcT6OLpLn8-JGMpuoy1g35M5NZjwKTFJH3PMskxVcezwE90qrc9Prl7DiRoishJnJJWGVouoWR45cqKAtJmysnqVhwb2Oy3zPdvPwmp8__HUJK3npt6vUbIXqbvzr3zbJek5IaWuBoC2yBMk2WfskU7hD4A7SqQmxoilOAHS8iC2gL0MNVM6xFR1mruujyZzWHwf99nWDIhemr3GSmsCJLBLygiJPhwkdj94UPgQoqlNzVEfrfTa47DZ2yWO389DusTw9A5M4bmcshpALwRVw4MpSEDa1CCVIEELJpgRbSg9xEHDlh0oAuLEjPU_5NnhBzF3h7JFKMkpg3_hXGdlBsLQvHdeQKN_kGUSyKrlvK2lXyWlh8Wi8UOGISr1lY7wIjRdlxov8KqkVnRLlI3IaIbXjRl-MY_FZ0Qtl8e9vO_hb9UOyapuOzPz9aqQym6RwRJanKj3OcfoO5eLbPQ
link.rule.ids 315,782,786,27933,27934,41073,42142,48344,48347,49649,49652,52153
linkProvider Springer Nature
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZoGYCBN-JRwAMDCCw1aZrEbIVSFVEQ4iG1UxTbZwkJ2qpthPrvuUsTBRAMMGWw4yjns_3Zvu87xo6s4wY2VEoAhEqgh1ihdGCF1dUaItgYN0B0o9t-DO66YfOKZHK8nAuTRrvnV5LpTF2Q3RA8VwWFFFBWR9z0lNg8qZ27ZTbf6PZ6zcKvJCmRFX5GySScQlXdkQiScxm02YyN1dM8LLjZ8QQ26WX8mp8__HUNK4Dpt7vUdIlqrfzv51bZcgZJeWPmQ2tsDvrrbOmTUOEGgwdIxkSy4glOAXw4Yxfw1xcLXE_xLf6SBq8PRlN-_Hzfubw-4YiG-VvcT4g6kXIhzzkidRjx4eDd4EOB4Tahwzp-3BH3F62TTfbcunq6bIssQYPQOHInIoZQKiUNSJDGMRBWrQo1aFDK6KoGV-s6ekIgjR8aBeDFNV2vG9-FehBLT9W2WLk_6MM2RViR8CA41tc1j2CUT5kGEa5q6btGuzvsNDd5NJzpcESF4jIZL0LjRanxIn-HVfJeibIxOY4Q3ElSGJNYfJb3QlH8e2u7f6t-yBbaT7edqHN9d7PHFl3q1DT6r8LKk1EC-6w0NslB5rQfeIHfbw
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwELaWIiE4wPISz8WHPYDAapPmZW68AhUVqnhI3KLYHktIkFZtI8S_ZyYPsiD2sNpTDrYTZTy2P9vzfcPYb-u4oY2UEgCREughVigdWmF1p4sINsUNEN3oXt2FN4_R-QXJ5Hyw-Ito9_pKsuQ0kEpTNm2PjG03xDcE0h1B4QWU4RE3QDNslo7FvBabPendX8aNj0lSJWt8jhJLOI3CuiMRMNeSaOXsjdWLnCy48fFE4LtexbX5_sOf17MGpH65Vy2Wq3jp_3_0J1usoCo_KX1rmf2AbIUt_CFguMrgFvIJka94jlMDH5WsA_78ZIHrN2zFn4qg9uH4je8_DPpnvQOOKJm_pFlOlIqCI3nMEcHDmI-GrwYfCgy3OR3i8f2-GJzGB2vsIb64P7sSVeIGoXFET0UKkVRKGpAgjWMg6lgVadCglNEdDa7WPnpIKE0QGQXgpV3t-yZwwQ9T6anuOmtlwww2KPKKBAnBsYHuegSvAspAiDBWy8A12t1kh7X5k1Gpz5E0SsxkvASNlxTGS4JNtlP3UFKN1UmCoE-S8pjE4qO6R5riv79t69-q77G5wXmc9Hs319ts3qU-LYICd1hrOs5hl81MTP6r8t93pDLoBg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reusable+unit+process+life+cycle+inventory+%28UPLCI%29+for+manufacturing%3A+laser+powder+bed+fusion+%28L-PBF%29&rft.jtitle=Production+engineering+%28Berlin%2C+Germany%29&rft.au=Ramirez-Cedillo%2C+Erick&rft.au=Garc%C3%ADa-L%C3%B3pez%2C+Erika&rft.au=Ruiz-Huerta%2C+Leopoldo&rft.au=Rodriguez%2C+Ciro+A.&rft.date=2021-10-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=0944-6524&rft.eissn=1863-7353&rft.volume=15&rft.issue=5&rft.spage=701&rft.epage=716&rft_id=info:doi/10.1007%2Fs11740-021-01050-6&rft.externalDocID=10_1007_s11740_021_01050_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0944-6524&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0944-6524&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0944-6524&client=summon