Sampling-based visual assessment computing techniques for an efficient social data clustering

Visual methods were used for pre-cluster assessment and useful cluster partitions. Existing visual methods, such as visual assessment tendency (VAT), spectral VAT (SpecVAT), cosine-based VAT (cVAT), and multi-viewpoints cosine-based similarity VAT (MVS-VAT), effectively assess the knowledge about th...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of supercomputing Vol. 77; no. 8; pp. 8013 - 8037
Main Authors: Basha, M. Suleman, Mouleeswaran, S. K., Prasad, K. Rajendra
Format: Journal Article
Language:English
Published: New York Springer US 01-08-2021
Springer Nature B.V
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Visual methods were used for pre-cluster assessment and useful cluster partitions. Existing visual methods, such as visual assessment tendency (VAT), spectral VAT (SpecVAT), cosine-based VAT (cVAT), and multi-viewpoints cosine-based similarity VAT (MVS-VAT), effectively assess the knowledge about the number of clusters or cluster tendency. Tweets data partitioning is underlying the problem of social data clustering. Cosine-based visual methods succeeded widely in text data clustering. Thus, cVAT and MVS-VAT are the best suited methods for the derivation of social data clusters. However, MVS-VAT is facing the problem of scalability issues in terms of computational time and memory allocation. Therefore, this paper presents the sampling-based MVS-VAT computing technique to overcome the scalability problem in social data clustering to select sample inter-cluster viewpoints. Standard health keywords and benchmarked TREC2017 and TREC2018 health keywords are taken to extract health tweets in the experiment for illustrating the performance comparison between existing and proposed visual methods.
AbstractList Visual methods were used for pre-cluster assessment and useful cluster partitions. Existing visual methods, such as visual assessment tendency (VAT), spectral VAT (SpecVAT), cosine-based VAT (cVAT), and multi-viewpoints cosine-based similarity VAT (MVS-VAT), effectively assess the knowledge about the number of clusters or cluster tendency. Tweets data partitioning is underlying the problem of social data clustering. Cosine-based visual methods succeeded widely in text data clustering. Thus, cVAT and MVS-VAT are the best suited methods for the derivation of social data clusters. However, MVS-VAT is facing the problem of scalability issues in terms of computational time and memory allocation. Therefore, this paper presents the sampling-based MVS-VAT computing technique to overcome the scalability problem in social data clustering to select sample inter-cluster viewpoints. Standard health keywords and benchmarked TREC2017 and TREC2018 health keywords are taken to extract health tweets in the experiment for illustrating the performance comparison between existing and proposed visual methods.
Author Basha, M. Suleman
Mouleeswaran, S. K.
Prasad, K. Rajendra
Author_xml – sequence: 1
  givenname: M. Suleman
  orcidid: 0000-0002-0519-089X
  surname: Basha
  fullname: Basha, M. Suleman
  email: suleman.ndl@gmail.com
  organization: Department of Computer Science and Engineering, Dayananda Sagar University
– sequence: 2
  givenname: S. K.
  surname: Mouleeswaran
  fullname: Mouleeswaran, S. K.
  organization: Department of Computer Science and Engineering, Dayananda Sagar University
– sequence: 3
  givenname: K. Rajendra
  surname: Prasad
  fullname: Prasad, K. Rajendra
  organization: Department of Computer Science and Engineering, Rajeev Gandhi Memorial College of Engineering and Technology
BookMark eNp9kE1LxDAQhoOs4O7qH_AU8BydTNqmPcriFyx4UI8S0jTVLv0y0wr-e1srePM0l-d5Z-bdsFXbtZ6xcwmXEkBfkZSIWgBKASqRqUiO2FrGWgmI0mjF1pAhiDSO8IRtiA4AECmt1uz1yTZ9XbVvIrfkC_5Z0Whrbok8UePbgbuu6cdhIvjg3XtbfYyeeNkFblvuy7Jy1UxR56rJK-xguatHGnyYlFN2XNqa_Nnv3LKX25vn3b3YP9497K73wimZDSKTcQJW6zxNoihTCmOUqVZSRzFmmKLOM4uJT3QKhSwUQAk5OHRS5WBVmagtu1hy-9DN9w3m0I2hnVYajGPENAMFE4UL5UJHFHxp-lA1NnwZCWau0Sw1mqlG81OjmaPVIlE_f-TDX_Q_1jdjbHZb
CitedBy_id crossref_primary_10_1007_s41204_022_00222_8
crossref_primary_10_1007_s00500_022_07092_x
crossref_primary_10_1007_s10619_021_07330_5
crossref_primary_10_1007_s11227_021_04243_z
crossref_primary_10_26634_jmat_12_2_19803
crossref_primary_10_3390_a16010005
crossref_primary_10_46632_daai_2_1_10
crossref_primary_10_1007_s00500_023_08273_y
crossref_primary_10_1007_s11227_021_04300_7
crossref_primary_10_1016_j_micpro_2022_104690
crossref_primary_10_1109_ACCESS_2022_3160826
Cites_doi 10.1371/journal.pone.0144059
10.1109/TCYB.2015.2477416
10.1109/BigData.2013.6691561
10.1145/2808797.2809344
10.1007/s13369-017-2788-4
10.1007/s13369-019-04017-z
10.1007/s10586-012-0202-2
10.1109/TNN.2005.845141
10.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO;2-9
10.1007/s13369-017-2770-1
10.1145/312624.312649
10.1109/ISCO.2016.7726878
10.35940/ijitee.K2285.0981119
10.1109/ACDT.2016.7437660
10.1109/TKDE.2013.19
10.1007/s12065-019-00300-y
10.1109/ACCESS.2020.2973207
10.1109/ACCESS.2019.2914097
10.1007/s10115-007-0114-2
10.1145/1143844.1143967
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021
The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021.
DBID AAYXX
CITATION
DOI 10.1007/s11227-021-03618-6
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-0484
EndPage 8037
ExternalDocumentID 10_1007_s11227_021_03618_6
GrantInformation_xml – fundername: Science and Engineering Research Board
  grantid: ECR/2016/001556
  funderid: http://dx.doi.org/10.13039/501100001843
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
199
1N0
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AABYN
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AAOBN
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAWWR
AAYFA
AAYIU
AAYOK
AAYQN
AAYTO
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFGW
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPTK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACTTH
ACVWB
ACWMK
ADGRI
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADQRH
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEEQQ
AEFIE
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AEYWE
AFEXP
AFGCZ
AFLOW
AFNRJ
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGGDS
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AI.
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BGNMA
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EAS
EBD
EBLON
EBS
EDO
EIOEI
EJD
EMK
EPL
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G8K
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WH7
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~8M
~EX
AACDK
AAEOY
AAGNY
AAJBT
AASML
AAYXX
AAYZH
ABAKF
ABDPE
ACAOD
ACDTI
ACZOJ
AEFQL
AEMSY
AFBBN
AGQEE
AGRTI
AIGIU
CITATION
H13
ID FETCH-LOGICAL-c319t-91560a77b864493325218731745292827b9a26e6780d1d300f0b0c2c13b0a3f63
IEDL.DBID AEJHL
ISSN 0920-8542
IngestDate Tue Nov 19 04:30:14 EST 2024
Thu Nov 21 23:13:15 EST 2024
Sat Dec 16 12:09:41 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Feature extraction
Cluster tendency
Social data clustering
Scalability
Visual methods
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-91560a77b864493325218731745292827b9a26e6780d1d300f0b0c2c13b0a3f63
ORCID 0000-0002-0519-089X
PQID 2552289030
PQPubID 2043774
PageCount 25
ParticipantIDs proquest_journals_2552289030
crossref_primary_10_1007_s11227_021_03618_6
springer_journals_10_1007_s11227_021_03618_6
PublicationCentury 2000
PublicationDate 2021-08-01
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationSubtitle An International Journal of High-Performance Computer Design, Analysis, and Use
PublicationTitle The Journal of supercomputing
PublicationTitleAbbrev J Supercomput
PublicationYear 2021
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Pattanodom et al. (2016) Clustering data with the presence of missing values by ensemble approach. In: Second Asian Conference on Defense Technology.
Rajendra Prasad K, Mohammed M, Noorullah RM (2019) Visual topic models for healthcare data clustering. Evolutionary Intelligence.
https://www.webmd.com
Lin YS, Jiang JY, Lee SJ (2014) A similarity measure for text classification and clustering. IEEE Trans Knowledge Data Eng (2014)
Rajendra Prasad K, Suleman Basha M (2016) Improving the performance of speech clustering method. In: IEEE 10th International Conference on Intelligent Systems and Control (ISCO).
AsgharMZRIFT: a rule induction framework for twitter sentiment analysisArab J Sci Eng20184385787710.1007/s13369-017-2770-1
Wu X, Kumar V, Quinlan JR et al (2008) Top 10 algorithms in data mining, knowledge information system, vol 14. Springer, Heidelberg, pp 1–37.
Feng Yi, Bo Jiang, Jianjun Wu (2020) Topic modeling for short texts via word embedding and document correlation. IEEE Access 8:30692–30705
BhatnagarVMajhiRJenaPRComparative performance evaluation of clustering algorithms for grouping manufacturing firmsArab J Sci Eng2018434071408310.1007/s13369-017-2788-4
Sik-Lanyi et al (2019) Accessibility testing of European health-related websites. Arab J Sci Eng 44:9171–9190
Bezdek JC, Hathaway RJ (2002) VAT: a tool for visual assessment of (cluster) tendency. In: Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02, 2002, pp 2225–2230
BleiDMNgAYJordanMILatent Dirichlet allocationJ Mach Learn Res2003399310221112.68379
Wuhan (2018) TF-IDF based feature words extraction and topic modeling for short text. In: ICMSS2018.
Vijeya Kaveri V, Maheswari V (2019) A framework for recommending health-related topics based on topic modeling in conversational data (Twitter). Cluster Computing.
Kumar D, Palaniswami M, Rajasegarar S, Leckie C, Bezdek JC, Havens TC (2013) clusiVAT: A mixed visual/numerical clustering algorithm for big data. 2013 IEEE International Conference on Big Data, Silicon Valley, CA, 2013, pp 112–117.
XuGMengYChenZQiuXWangCYaoHResearch on topic detection and tracking for online news textsIEEE Access20197584075841810.1109/ACCESS.2019.2914097
Suleman Basha M, Mouleeswaran SK, Rajendra Prasad K (2019) Cluster tendency methods for visualizing the data partitions. Int J Innovative Technol Explor Eng.
Wallach, Hanna M (2006) Topic modeling: beyond bag-of-words, ACM International Conference Proceeding Series, 2006
DeerwesterSDumaisSTFurnasGWLandauerTKHarshmanRIndexing by latent semantic analysisJ Am Soc Inf Sci199041639140710.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO;2-9
Ali Seyed Shirkhorshidi, Saeed Aghabozorgi, Teh Ying Wah (2015) A comparison study on similarity and dissimilarity measures in clustering continuous data. PLoS 10(12):1–20
Bodjanova S (2006) Crisp partitions Induced by a fuzzy set. In: Batagelj V, Bock HH, Ferligoj A., Žiberna A (eds) Data science and classification. Studies in classification, data analysis, and knowledge organization. Springer, Berlin (2006)
Rui XWunsch DSurvey of clustering algorithmsIEEE Trans Neural Netw200516364567810.1109/TNN.2005.845141
KumarDBezdekJCPalaniswamiMRajasegararSLeckieCHavensTCA hybrid approach to clustering in big dataIEEE Trans Cybern201646102372238510.1109/TCYB.2015.2477416
Alessia Amelio, Clara Pizzuti (2015) Is normalized mutual information a fair measure for comparing community detection methods?. IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, 2015.
T Hofmann (1999) Probabilistic latent semantic indexing. SIGIR. ACM, New York, pp 50–57
https://trec.nist.gov/data/web2014.html
https://trec.nist.gov/data/microblog2015.html
Rajendra PrasadKMohammedMNoorullahRMHybrid topic cluster models for social healthcare dataInt J Adv Comput Sci Appl20191011490506
Ramathilagam S, Devi R, Kannan SR (2013) Extended fuzzy c-means: an analyzing data clustering problems. Cluster Comput
Bezdek, James Leckie (2008) SpecVAT: enhanced visual cluster analysis. IEEE Int Conf Data Mining, ICDM
Lee D, Seung H (2000) Algorithms for non-negative matrix factorization. Advances in neural information processing systems 13, NIPS 2000. Denver, CO, USA, pp 556–562
D Kumar (3618_CR21) 2016; 46
V Bhatnagar (3618_CR31) 2018; 43
3618_CR26
3618_CR27
K Rajendra Prasad (3618_CR16) 2019; 10
3618_CR28
3618_CR29
3618_CR22
3618_CR23
3618_CR24
3618_CR25
X Rui (3618_CR2) 2005; 16
G Xu (3618_CR12) 2019; 7
3618_CR3
3618_CR1
3618_CR19
3618_CR15
3618_CR17
S Deerwester (3618_CR10) 1990; 41
3618_CR18
3618_CR7
3618_CR11
3618_CR6
3618_CR5
3618_CR13
MZ Asghar (3618_CR20) 2018; 43
3618_CR4
3618_CR14
DM Blei (3618_CR9) 2003; 3
3618_CR30
3618_CR8
References_xml – ident: 3618_CR17
  doi: 10.1371/journal.pone.0144059
– volume: 46
  start-page: 2372
  issue: 10
  year: 2016
  ident: 3618_CR21
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2015.2477416
  contributor:
    fullname: D Kumar
– ident: 3618_CR22
  doi: 10.1109/BigData.2013.6691561
– ident: 3618_CR25
  doi: 10.1145/2808797.2809344
– ident: 3618_CR27
– ident: 3618_CR29
– volume: 43
  start-page: 4071
  year: 2018
  ident: 3618_CR31
  publication-title: Arab J Sci Eng
  doi: 10.1007/s13369-017-2788-4
  contributor:
    fullname: V Bhatnagar
– ident: 3618_CR5
  doi: 10.1007/s13369-019-04017-z
– volume: 10
  start-page: 490
  issue: 11
  year: 2019
  ident: 3618_CR16
  publication-title: Int J Adv Comput Sci Appl
  contributor:
    fullname: K Rajendra Prasad
– ident: 3618_CR6
  doi: 10.1007/s10586-012-0202-2
– volume: 16
  start-page: 645
  issue: 3
  year: 2005
  ident: 3618_CR2
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2005.845141
  contributor:
    fullname: X Rui
– volume: 3
  start-page: 993
  year: 2003
  ident: 3618_CR9
  publication-title: J Mach Learn Res
  contributor:
    fullname: DM Blei
– ident: 3618_CR23
– volume: 41
  start-page: 391
  issue: 6
  year: 1990
  ident: 3618_CR10
  publication-title: J Am Soc Inf Sci
  doi: 10.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO;2-9
  contributor:
    fullname: S Deerwester
– volume: 43
  start-page: 857
  year: 2018
  ident: 3618_CR20
  publication-title: Arab J Sci Eng
  doi: 10.1007/s13369-017-2770-1
  contributor:
    fullname: MZ Asghar
– ident: 3618_CR11
  doi: 10.1145/312624.312649
– ident: 3618_CR14
– ident: 3618_CR3
  doi: 10.1109/ISCO.2016.7726878
– ident: 3618_CR18
  doi: 10.35940/ijitee.K2285.0981119
– ident: 3618_CR30
  doi: 10.1109/ACDT.2016.7437660
– ident: 3618_CR1
  doi: 10.1109/TKDE.2013.19
– ident: 3618_CR15
  doi: 10.1007/s12065-019-00300-y
– ident: 3618_CR7
  doi: 10.1109/ACCESS.2020.2973207
– volume: 7
  start-page: 58407
  year: 2019
  ident: 3618_CR12
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2914097
  contributor:
    fullname: G Xu
– ident: 3618_CR26
– ident: 3618_CR8
– ident: 3618_CR28
– ident: 3618_CR19
– ident: 3618_CR13
– ident: 3618_CR4
  doi: 10.1007/s10115-007-0114-2
– ident: 3618_CR24
  doi: 10.1145/1143844.1143967
SSID ssj0004373
Score 2.4002278
Snippet Visual methods were used for pre-cluster assessment and useful cluster partitions. Existing visual methods, such as visual assessment tendency (VAT), spectral...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Publisher
StartPage 8013
SubjectTerms Clustering
Compilers
Computer Science
Computing time
Interpreters
Memory management
Mobile and Intelligent Sensing on High Performance Computing
Processor Architectures
Programming Languages
Sampling
Title Sampling-based visual assessment computing techniques for an efficient social data clustering
URI https://link.springer.com/article/10.1007/s11227-021-03618-6
https://www.proquest.com/docview/2552289030
Volume 77
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED7RdmGhPEWhIA9sEOQHeY0VtBSEWFokFhQ5joMQKCDS8Pu5y6MRCAaYMsSOojv77vt8DwMc8dhKbRG52STwqCQH7aAR1gm1MLFrRMotHWVPZ_7tfXAxpjY5anl0kT2fNhHJ0lC3tW5CSt-hjAI0uiJwvA700Pe4uLh7o_H19KYth1RVYDlEZhS4Z7Kulfn5K1_9UQsyv8VFS3cz6f_rR9dhrUaXbFQthw1Ysdkm9JubG1i9kbfgYaYpkzx7dMiLJezjKS9wnl626WSmnIMj2LLLa84Q4DKdMVu2naBR1Yk7ozRTZl4KarqAU7bhbjKen0-d-qIFx-AOXKDBQ9yjfT8OEB2FSkmUa-AjsqCoLHIyPw619Cz6NZ6IRHGe8pgbaYSKuVapp3agm71mdheYz70gRNcXa2SeXCObS5GBclI5MpdEDOC4EXf0VvXTiNrOySS5CCUXlZKLvAEMG41E9d7KIyRBksKjig_gpFFB-_r3r-39bfg-rMpSi5TtN4Tu4r2wB9DJk-KwXnH0vJpfTj4BL-TOzA
link.rule.ids 315,782,786,27933,27934,41073,42142,48344,48347,49649,49652,52153
linkProvider Springer Nature
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgO8CF8RSDATlwg0p5bH0cJ7ZpiLHLhrQdUJSmKUJCBdGV34_TxyoQHODcJKrsxP4c218ALmlouDKI3Ezku7YlB-2gZsYJFNNhT7OYGnuVPZ5504U_GFqanG7VC5NXu1cpydxS181ujHPPsSUFaHWZ77ib0LRs57wBzf5iuRzU_ZCiyCwHGBr5vS4vm2V-XuWrQ6pR5rfEaO5vRq3__eku7JT4kvSLDbEHGybZh1b1dgMpj_IBPM6UrSVPnhzrxyLy8ZxmOE-tiTqJzufgCLLmeU0JQlyiEmJy4gk7qrhzJ7bQlOiXzNIu4JRDeBgN5zdjp3xqwdF4Bldo8hD5KM8LfcRHgRAcvbrvIbaweVmMyrwwUNw16NloxCJBaUxDqrlmIqRKxK44gkbymphjIB51_QCdX6gw9qQK47kYY1BqlY6xS8TacFXJW74VjBqy5k62kpMoOZlLTrpt6FQqkeXpSiWGQdwmSAVtw3Wlgvrz76ud_G34BWyN5_cTObmd3p3CNs81amv_OtBYvWfmDDbTKDsvt98negnRcA
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5sC-LF-sRq1T1409B9tHkci21sUYrQCl4kbDYbESQW0_j7nc2jQdGDeM7uEmYf8307M98CXNBQc6kRuenItU1JDp6DimnLk0yFA8Viqs1V9mTuzB7d0djI5Kyr-PNs9yokWdQ0GJWmZNVbRnGvLnxjnDuWSS_AE5i5lt2AlrkW6zehNZwubvy6NlIUUWYPaZI76POycObnUb46pxpxfguS5r7Hb___r3dgu8SdZFgslF3Y0MketKs3HUi5xffhaS5NjnnybBn_FpGPlzTDfnIt4ElU3gdbkLX-a0oQ-hKZEJ0LUphWxV08MQmoRL1mRo4BuxzAgz9eXE-s8gkGS-HeXOFRiIhIOk7oIm7yhODo7V0HMYeJ1yJbc0JPclujx6MRiwSlMQ2p4oqJkEoR2-IQmslboo-AONR2PXSKoUROSiXyvBi5KTWLATlNxDpwWdk-WBZKG0GtqWwsF6Dlgtxygd2BbjU9Qbnr0gDpETeBU0E7cFVNR_3599GO_9b8HDbvR35wN53dnsAWzyfUpAR2obl6z_QpNNIoOytX4icqeNoH
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sampling-based+visual+assessment+computing+techniques+for+an+efficient+social+data+clustering&rft.jtitle=The+Journal+of+supercomputing&rft.au=Basha%2C+M.+Suleman&rft.au=Mouleeswaran%2C+S.+K.&rft.au=Prasad%2C+K.+Rajendra&rft.date=2021-08-01&rft.pub=Springer+US&rft.issn=0920-8542&rft.eissn=1573-0484&rft.volume=77&rft.issue=8&rft.spage=8013&rft.epage=8037&rft_id=info:doi/10.1007%2Fs11227-021-03618-6&rft.externalDocID=10_1007_s11227_021_03618_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-8542&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-8542&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-8542&client=summon