Sampling-based visual assessment computing techniques for an efficient social data clustering
Visual methods were used for pre-cluster assessment and useful cluster partitions. Existing visual methods, such as visual assessment tendency (VAT), spectral VAT (SpecVAT), cosine-based VAT (cVAT), and multi-viewpoints cosine-based similarity VAT (MVS-VAT), effectively assess the knowledge about th...
Saved in:
Published in: | The Journal of supercomputing Vol. 77; no. 8; pp. 8013 - 8037 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
New York
Springer US
01-08-2021
Springer Nature B.V |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Visual methods were used for pre-cluster assessment and useful cluster partitions. Existing visual methods, such as visual assessment tendency (VAT), spectral VAT (SpecVAT), cosine-based VAT (cVAT), and multi-viewpoints cosine-based similarity VAT (MVS-VAT), effectively assess the knowledge about the number of clusters or cluster tendency. Tweets data partitioning is underlying the problem of social data clustering. Cosine-based visual methods succeeded widely in text data clustering. Thus, cVAT and MVS-VAT are the best suited methods for the derivation of social data clusters. However, MVS-VAT is facing the problem of scalability issues in terms of computational time and memory allocation. Therefore, this paper presents the sampling-based MVS-VAT computing technique to overcome the scalability problem in social data clustering to select sample inter-cluster viewpoints. Standard health keywords and benchmarked TREC2017 and TREC2018 health keywords are taken to extract health tweets in the experiment for illustrating the performance comparison between existing and proposed visual methods. |
---|---|
AbstractList | Visual methods were used for pre-cluster assessment and useful cluster partitions. Existing visual methods, such as visual assessment tendency (VAT), spectral VAT (SpecVAT), cosine-based VAT (cVAT), and multi-viewpoints cosine-based similarity VAT (MVS-VAT), effectively assess the knowledge about the number of clusters or cluster tendency. Tweets data partitioning is underlying the problem of social data clustering. Cosine-based visual methods succeeded widely in text data clustering. Thus, cVAT and MVS-VAT are the best suited methods for the derivation of social data clusters. However, MVS-VAT is facing the problem of scalability issues in terms of computational time and memory allocation. Therefore, this paper presents the sampling-based MVS-VAT computing technique to overcome the scalability problem in social data clustering to select sample inter-cluster viewpoints. Standard health keywords and benchmarked TREC2017 and TREC2018 health keywords are taken to extract health tweets in the experiment for illustrating the performance comparison between existing and proposed visual methods. |
Author | Basha, M. Suleman Mouleeswaran, S. K. Prasad, K. Rajendra |
Author_xml | – sequence: 1 givenname: M. Suleman orcidid: 0000-0002-0519-089X surname: Basha fullname: Basha, M. Suleman email: suleman.ndl@gmail.com organization: Department of Computer Science and Engineering, Dayananda Sagar University – sequence: 2 givenname: S. K. surname: Mouleeswaran fullname: Mouleeswaran, S. K. organization: Department of Computer Science and Engineering, Dayananda Sagar University – sequence: 3 givenname: K. Rajendra surname: Prasad fullname: Prasad, K. Rajendra organization: Department of Computer Science and Engineering, Rajeev Gandhi Memorial College of Engineering and Technology |
BookMark | eNp9kE1LxDAQhoOs4O7qH_AU8BydTNqmPcriFyx4UI8S0jTVLv0y0wr-e1srePM0l-d5Z-bdsFXbtZ6xcwmXEkBfkZSIWgBKASqRqUiO2FrGWgmI0mjF1pAhiDSO8IRtiA4AECmt1uz1yTZ9XbVvIrfkC_5Z0Whrbok8UePbgbuu6cdhIvjg3XtbfYyeeNkFblvuy7Jy1UxR56rJK-xguatHGnyYlFN2XNqa_Nnv3LKX25vn3b3YP9497K73wimZDSKTcQJW6zxNoihTCmOUqVZSRzFmmKLOM4uJT3QKhSwUQAk5OHRS5WBVmagtu1hy-9DN9w3m0I2hnVYajGPENAMFE4UL5UJHFHxp-lA1NnwZCWau0Sw1mqlG81OjmaPVIlE_f-TDX_Q_1jdjbHZb |
CitedBy_id | crossref_primary_10_1007_s41204_022_00222_8 crossref_primary_10_1007_s00500_022_07092_x crossref_primary_10_1007_s10619_021_07330_5 crossref_primary_10_1007_s11227_021_04243_z crossref_primary_10_26634_jmat_12_2_19803 crossref_primary_10_3390_a16010005 crossref_primary_10_46632_daai_2_1_10 crossref_primary_10_1007_s00500_023_08273_y crossref_primary_10_1007_s11227_021_04300_7 crossref_primary_10_1016_j_micpro_2022_104690 crossref_primary_10_1109_ACCESS_2022_3160826 |
Cites_doi | 10.1371/journal.pone.0144059 10.1109/TCYB.2015.2477416 10.1109/BigData.2013.6691561 10.1145/2808797.2809344 10.1007/s13369-017-2788-4 10.1007/s13369-019-04017-z 10.1007/s10586-012-0202-2 10.1109/TNN.2005.845141 10.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO;2-9 10.1007/s13369-017-2770-1 10.1145/312624.312649 10.1109/ISCO.2016.7726878 10.35940/ijitee.K2285.0981119 10.1109/ACDT.2016.7437660 10.1109/TKDE.2013.19 10.1007/s12065-019-00300-y 10.1109/ACCESS.2020.2973207 10.1109/ACCESS.2019.2914097 10.1007/s10115-007-0114-2 10.1145/1143844.1143967 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021 The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021 – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021. |
DBID | AAYXX CITATION |
DOI | 10.1007/s11227-021-03618-6 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1573-0484 |
EndPage | 8037 |
ExternalDocumentID | 10_1007_s11227_021_03618_6 |
GrantInformation_xml | – fundername: Science and Engineering Research Board grantid: ECR/2016/001556 funderid: http://dx.doi.org/10.13039/501100001843 |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 199 1N0 1SB 2.D 203 28- 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AABYN AAFGU AAHNG AAIAL AAJKR AANZL AAOBN AARHV AARTL AATNV AATVU AAUYE AAWCG AAWWR AAYFA AAYIU AAYOK AAYQN AAYTO ABBBX ABBXA ABDBF ABDZT ABECU ABFGW ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKAS ABKCH ABKTR ABMNI ABMQK ABNWP ABPTK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACBMV ACBRV ACBXY ACBYP ACGFS ACHSB ACHXU ACIGE ACIPQ ACKNC ACMDZ ACMLO ACOKC ACOMO ACTTH ACVWB ACWMK ADGRI ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMDM ADOXG ADQRH ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEEQQ AEFIE AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AEYWE AFEXP AFGCZ AFLOW AFNRJ AFQWF AFWTZ AFZKB AGAYW AGDGC AGGBP AGGDS AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AI. AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BGNMA CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EAS EBD EBLON EBS EDO EIOEI EJD EMK EPL ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G8K GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RNI ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WH7 WK8 YLTOR Z45 Z5O Z7R Z7S Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~8M ~EX AACDK AAEOY AAGNY AAJBT AASML AAYXX AAYZH ABAKF ABDPE ACAOD ACDTI ACZOJ AEFQL AEMSY AFBBN AGQEE AGRTI AIGIU CITATION H13 |
ID | FETCH-LOGICAL-c319t-91560a77b864493325218731745292827b9a26e6780d1d300f0b0c2c13b0a3f63 |
IEDL.DBID | AEJHL |
ISSN | 0920-8542 |
IngestDate | Tue Nov 19 04:30:14 EST 2024 Thu Nov 21 23:13:15 EST 2024 Sat Dec 16 12:09:41 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | Feature extraction Cluster tendency Social data clustering Scalability Visual methods |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-91560a77b864493325218731745292827b9a26e6780d1d300f0b0c2c13b0a3f63 |
ORCID | 0000-0002-0519-089X |
PQID | 2552289030 |
PQPubID | 2043774 |
PageCount | 25 |
ParticipantIDs | proquest_journals_2552289030 crossref_primary_10_1007_s11227_021_03618_6 springer_journals_10_1007_s11227_021_03618_6 |
PublicationCentury | 2000 |
PublicationDate | 2021-08-01 |
PublicationDateYYYYMMDD | 2021-08-01 |
PublicationDate_xml | – month: 08 year: 2021 text: 2021-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationSubtitle | An International Journal of High-Performance Computer Design, Analysis, and Use |
PublicationTitle | The Journal of supercomputing |
PublicationTitleAbbrev | J Supercomput |
PublicationYear | 2021 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Pattanodom et al. (2016) Clustering data with the presence of missing values by ensemble approach. In: Second Asian Conference on Defense Technology. Rajendra Prasad K, Mohammed M, Noorullah RM (2019) Visual topic models for healthcare data clustering. Evolutionary Intelligence. https://www.webmd.com Lin YS, Jiang JY, Lee SJ (2014) A similarity measure for text classification and clustering. IEEE Trans Knowledge Data Eng (2014) Rajendra Prasad K, Suleman Basha M (2016) Improving the performance of speech clustering method. In: IEEE 10th International Conference on Intelligent Systems and Control (ISCO). AsgharMZRIFT: a rule induction framework for twitter sentiment analysisArab J Sci Eng20184385787710.1007/s13369-017-2770-1 Wu X, Kumar V, Quinlan JR et al (2008) Top 10 algorithms in data mining, knowledge information system, vol 14. Springer, Heidelberg, pp 1–37. Feng Yi, Bo Jiang, Jianjun Wu (2020) Topic modeling for short texts via word embedding and document correlation. IEEE Access 8:30692–30705 BhatnagarVMajhiRJenaPRComparative performance evaluation of clustering algorithms for grouping manufacturing firmsArab J Sci Eng2018434071408310.1007/s13369-017-2788-4 Sik-Lanyi et al (2019) Accessibility testing of European health-related websites. Arab J Sci Eng 44:9171–9190 Bezdek JC, Hathaway RJ (2002) VAT: a tool for visual assessment of (cluster) tendency. In: Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02, 2002, pp 2225–2230 BleiDMNgAYJordanMILatent Dirichlet allocationJ Mach Learn Res2003399310221112.68379 Wuhan (2018) TF-IDF based feature words extraction and topic modeling for short text. In: ICMSS2018. Vijeya Kaveri V, Maheswari V (2019) A framework for recommending health-related topics based on topic modeling in conversational data (Twitter). Cluster Computing. Kumar D, Palaniswami M, Rajasegarar S, Leckie C, Bezdek JC, Havens TC (2013) clusiVAT: A mixed visual/numerical clustering algorithm for big data. 2013 IEEE International Conference on Big Data, Silicon Valley, CA, 2013, pp 112–117. XuGMengYChenZQiuXWangCYaoHResearch on topic detection and tracking for online news textsIEEE Access20197584075841810.1109/ACCESS.2019.2914097 Suleman Basha M, Mouleeswaran SK, Rajendra Prasad K (2019) Cluster tendency methods for visualizing the data partitions. Int J Innovative Technol Explor Eng. Wallach, Hanna M (2006) Topic modeling: beyond bag-of-words, ACM International Conference Proceeding Series, 2006 DeerwesterSDumaisSTFurnasGWLandauerTKHarshmanRIndexing by latent semantic analysisJ Am Soc Inf Sci199041639140710.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO;2-9 Ali Seyed Shirkhorshidi, Saeed Aghabozorgi, Teh Ying Wah (2015) A comparison study on similarity and dissimilarity measures in clustering continuous data. PLoS 10(12):1–20 Bodjanova S (2006) Crisp partitions Induced by a fuzzy set. In: Batagelj V, Bock HH, Ferligoj A., Žiberna A (eds) Data science and classification. Studies in classification, data analysis, and knowledge organization. Springer, Berlin (2006) Rui XWunsch DSurvey of clustering algorithmsIEEE Trans Neural Netw200516364567810.1109/TNN.2005.845141 KumarDBezdekJCPalaniswamiMRajasegararSLeckieCHavensTCA hybrid approach to clustering in big dataIEEE Trans Cybern201646102372238510.1109/TCYB.2015.2477416 Alessia Amelio, Clara Pizzuti (2015) Is normalized mutual information a fair measure for comparing community detection methods?. IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, 2015. T Hofmann (1999) Probabilistic latent semantic indexing. SIGIR. ACM, New York, pp 50–57 https://trec.nist.gov/data/web2014.html https://trec.nist.gov/data/microblog2015.html Rajendra PrasadKMohammedMNoorullahRMHybrid topic cluster models for social healthcare dataInt J Adv Comput Sci Appl20191011490506 Ramathilagam S, Devi R, Kannan SR (2013) Extended fuzzy c-means: an analyzing data clustering problems. Cluster Comput Bezdek, James Leckie (2008) SpecVAT: enhanced visual cluster analysis. IEEE Int Conf Data Mining, ICDM Lee D, Seung H (2000) Algorithms for non-negative matrix factorization. Advances in neural information processing systems 13, NIPS 2000. Denver, CO, USA, pp 556–562 D Kumar (3618_CR21) 2016; 46 V Bhatnagar (3618_CR31) 2018; 43 3618_CR26 3618_CR27 K Rajendra Prasad (3618_CR16) 2019; 10 3618_CR28 3618_CR29 3618_CR22 3618_CR23 3618_CR24 3618_CR25 X Rui (3618_CR2) 2005; 16 G Xu (3618_CR12) 2019; 7 3618_CR3 3618_CR1 3618_CR19 3618_CR15 3618_CR17 S Deerwester (3618_CR10) 1990; 41 3618_CR18 3618_CR7 3618_CR11 3618_CR6 3618_CR5 3618_CR13 MZ Asghar (3618_CR20) 2018; 43 3618_CR4 3618_CR14 DM Blei (3618_CR9) 2003; 3 3618_CR30 3618_CR8 |
References_xml | – ident: 3618_CR17 doi: 10.1371/journal.pone.0144059 – volume: 46 start-page: 2372 issue: 10 year: 2016 ident: 3618_CR21 publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2015.2477416 contributor: fullname: D Kumar – ident: 3618_CR22 doi: 10.1109/BigData.2013.6691561 – ident: 3618_CR25 doi: 10.1145/2808797.2809344 – ident: 3618_CR27 – ident: 3618_CR29 – volume: 43 start-page: 4071 year: 2018 ident: 3618_CR31 publication-title: Arab J Sci Eng doi: 10.1007/s13369-017-2788-4 contributor: fullname: V Bhatnagar – ident: 3618_CR5 doi: 10.1007/s13369-019-04017-z – volume: 10 start-page: 490 issue: 11 year: 2019 ident: 3618_CR16 publication-title: Int J Adv Comput Sci Appl contributor: fullname: K Rajendra Prasad – ident: 3618_CR6 doi: 10.1007/s10586-012-0202-2 – volume: 16 start-page: 645 issue: 3 year: 2005 ident: 3618_CR2 publication-title: IEEE Trans Neural Netw doi: 10.1109/TNN.2005.845141 contributor: fullname: X Rui – volume: 3 start-page: 993 year: 2003 ident: 3618_CR9 publication-title: J Mach Learn Res contributor: fullname: DM Blei – ident: 3618_CR23 – volume: 41 start-page: 391 issue: 6 year: 1990 ident: 3618_CR10 publication-title: J Am Soc Inf Sci doi: 10.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO;2-9 contributor: fullname: S Deerwester – volume: 43 start-page: 857 year: 2018 ident: 3618_CR20 publication-title: Arab J Sci Eng doi: 10.1007/s13369-017-2770-1 contributor: fullname: MZ Asghar – ident: 3618_CR11 doi: 10.1145/312624.312649 – ident: 3618_CR14 – ident: 3618_CR3 doi: 10.1109/ISCO.2016.7726878 – ident: 3618_CR18 doi: 10.35940/ijitee.K2285.0981119 – ident: 3618_CR30 doi: 10.1109/ACDT.2016.7437660 – ident: 3618_CR1 doi: 10.1109/TKDE.2013.19 – ident: 3618_CR15 doi: 10.1007/s12065-019-00300-y – ident: 3618_CR7 doi: 10.1109/ACCESS.2020.2973207 – volume: 7 start-page: 58407 year: 2019 ident: 3618_CR12 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2914097 contributor: fullname: G Xu – ident: 3618_CR26 – ident: 3618_CR8 – ident: 3618_CR28 – ident: 3618_CR19 – ident: 3618_CR13 – ident: 3618_CR4 doi: 10.1007/s10115-007-0114-2 – ident: 3618_CR24 doi: 10.1145/1143844.1143967 |
SSID | ssj0004373 |
Score | 2.4002278 |
Snippet | Visual methods were used for pre-cluster assessment and useful cluster partitions. Existing visual methods, such as visual assessment tendency (VAT), spectral... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Publisher |
StartPage | 8013 |
SubjectTerms | Clustering Compilers Computer Science Computing time Interpreters Memory management Mobile and Intelligent Sensing on High Performance Computing Processor Architectures Programming Languages Sampling |
Title | Sampling-based visual assessment computing techniques for an efficient social data clustering |
URI | https://link.springer.com/article/10.1007/s11227-021-03618-6 https://www.proquest.com/docview/2552289030 |
Volume | 77 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED7RdmGhPEWhIA9sEOQHeY0VtBSEWFokFhQ5joMQKCDS8Pu5y6MRCAaYMsSOojv77vt8DwMc8dhKbRG52STwqCQH7aAR1gm1MLFrRMotHWVPZ_7tfXAxpjY5anl0kT2fNhHJ0lC3tW5CSt-hjAI0uiJwvA700Pe4uLh7o_H19KYth1RVYDlEZhS4Z7Kulfn5K1_9UQsyv8VFS3cz6f_rR9dhrUaXbFQthw1Ysdkm9JubG1i9kbfgYaYpkzx7dMiLJezjKS9wnl626WSmnIMj2LLLa84Q4DKdMVu2naBR1Yk7ozRTZl4KarqAU7bhbjKen0-d-qIFx-AOXKDBQ9yjfT8OEB2FSkmUa-AjsqCoLHIyPw619Cz6NZ6IRHGe8pgbaYSKuVapp3agm71mdheYz70gRNcXa2SeXCObS5GBclI5MpdEDOC4EXf0VvXTiNrOySS5CCUXlZKLvAEMG41E9d7KIyRBksKjig_gpFFB-_r3r-39bfg-rMpSi5TtN4Tu4r2wB9DJk-KwXnH0vJpfTj4BL-TOzA |
link.rule.ids | 315,782,786,27933,27934,41073,42142,48344,48347,49649,49652,52153 |
linkProvider | Springer Nature |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgO8CF8RSDATlwg0p5bH0cJ7ZpiLHLhrQdUJSmKUJCBdGV34_TxyoQHODcJKrsxP4c218ALmlouDKI3Ezku7YlB-2gZsYJFNNhT7OYGnuVPZ5504U_GFqanG7VC5NXu1cpydxS181ujHPPsSUFaHWZ77ib0LRs57wBzf5iuRzU_ZCiyCwHGBr5vS4vm2V-XuWrQ6pR5rfEaO5vRq3__eku7JT4kvSLDbEHGybZh1b1dgMpj_IBPM6UrSVPnhzrxyLy8ZxmOE-tiTqJzufgCLLmeU0JQlyiEmJy4gk7qrhzJ7bQlOiXzNIu4JRDeBgN5zdjp3xqwdF4Bldo8hD5KM8LfcRHgRAcvbrvIbaweVmMyrwwUNw16NloxCJBaUxDqrlmIqRKxK44gkbymphjIB51_QCdX6gw9qQK47kYY1BqlY6xS8TacFXJW74VjBqy5k62kpMoOZlLTrpt6FQqkeXpSiWGQdwmSAVtw3Wlgvrz76ud_G34BWyN5_cTObmd3p3CNs81amv_OtBYvWfmDDbTKDsvt98negnRcA |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5sC-LF-sRq1T1409B9tHkci21sUYrQCl4kbDYbESQW0_j7nc2jQdGDeM7uEmYf8307M98CXNBQc6kRuenItU1JDp6DimnLk0yFA8Viqs1V9mTuzB7d0djI5Kyr-PNs9yokWdQ0GJWmZNVbRnGvLnxjnDuWSS_AE5i5lt2AlrkW6zehNZwubvy6NlIUUWYPaZI76POycObnUb46pxpxfguS5r7Hb___r3dgu8SdZFgslF3Y0MketKs3HUi5xffhaS5NjnnybBn_FpGPlzTDfnIt4ElU3gdbkLX-a0oQ-hKZEJ0LUphWxV08MQmoRL1mRo4BuxzAgz9eXE-s8gkGS-HeXOFRiIhIOk7oIm7yhODo7V0HMYeJ1yJbc0JPclujx6MRiwSlMQ2p4oqJkEoR2-IQmslboo-AONR2PXSKoUROSiXyvBi5KTWLATlNxDpwWdk-WBZKG0GtqWwsF6Dlgtxygd2BbjU9Qbnr0gDpETeBU0E7cFVNR_3599GO_9b8HDbvR35wN53dnsAWzyfUpAR2obl6z_QpNNIoOytX4icqeNoH |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sampling-based+visual+assessment+computing+techniques+for+an+efficient+social+data+clustering&rft.jtitle=The+Journal+of+supercomputing&rft.au=Basha%2C+M.+Suleman&rft.au=Mouleeswaran%2C+S.+K.&rft.au=Prasad%2C+K.+Rajendra&rft.date=2021-08-01&rft.pub=Springer+US&rft.issn=0920-8542&rft.eissn=1573-0484&rft.volume=77&rft.issue=8&rft.spage=8013&rft.epage=8037&rft_id=info:doi/10.1007%2Fs11227-021-03618-6&rft.externalDocID=10_1007_s11227_021_03618_6 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-8542&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-8542&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-8542&client=summon |