Ion Mobility in Triple Sodium Molybdates and Tungstates with a NASICON Structure

Research data for the diffusion mechanisms of Na + ions in Na 1 – x Mg 1 – x Al 1 + x (XO 4 ) 3 (X = Mo, W) compounds with the NASICON-type structure (space group R c , Z = 6) are reported. Solid solutions in the homogeneity range 0.1 ≤ x ≤ 0.5 for X = Mo and 0.4 ≤ x ≤ 0.6 for X = W have been prepar...

Full description

Saved in:
Bibliographic Details
Published in:Journal of experimental and theoretical physics Vol. 134; no. 1; pp. 42 - 50
Main Authors: Buzlukov, A. L., Fedorov, D. S., Serdtsev, A. V., Kotova, I. Yu, Tyutyunnik, A. P., Korona, D. V., Baklanova, Ya. V., Ogloblichev, V. V., Kozhevnikova, N. M., Denisova, T. A., Medvedeva, N. I.
Format: Journal Article
Language:English
Published: Moscow Pleiades Publishing 2022
Springer
Springer Nature B.V
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Research data for the diffusion mechanisms of Na + ions in Na 1 – x Mg 1 – x Al 1 + x (XO 4 ) 3 (X = Mo, W) compounds with the NASICON-type structure (space group R c , Z = 6) are reported. Solid solutions in the homogeneity range 0.1 ≤ x ≤ 0.5 for X = Mo and 0.4 ≤ x ≤ 0.6 for X = W have been prepared by solid-state synthesis. Conductivity measurements and NMR spectroscopy data indicate fast sodium diffusion in the studied samples: the ionic conductivity reaches the values of about 10 –3 S/cm at T > 800 K. The frequency of elementary ionic jumps is on the order of 10 4 s –1 at T ≈ 500 K, and the activation energy is equal to 0.8–0.9 eV. The results have shown that the ionic conductivity in molybdates is higher than in tungstates. The growth of magnesium concentration increases the concentration of local coordinations Mg 2+ –Na + –Mg 2+ , acting as traps for moving sodium ions. The above conclusions are supported by ab initio calculations according to which the barrier for sodium diffusion from the Mg 2+ –Na + –Mg 2+ position is expected to be higher than those for the Mg 2+ –Na + –Al 3+ and Al 3+ –Na + –Al 3+ ones.
AbstractList Research data for the diffusion mechanisms of Na+ ions in Na1 –xMg1 –xAl1 +x(XO4)3 (X = Mo, W) compounds with the NASICON-type structure (space group Rc, Z = 6) are reported. Solid solutions in the homogeneity range 0.1 ≤ x ≤ 0.5 for X = Mo and 0.4 ≤ x ≤ 0.6 for X = W have been prepared by solid-state synthesis. Conductivity measurements and NMR spectroscopy data indicate fast sodium diffusion in the studied samples: the ionic conductivity reaches the values of about 10–3 S/cm at T > 800 K. The frequency of elementary ionic jumps is on the order of 104 s–1 at T ≈ 500 K, and the activation energy is equal to 0.8–0.9 eV. The results have shown that the ionic conductivity in molybdates is higher than in tungstates. The growth of magnesium concentration increases the concentration of local coordinations Mg2+–Na+–Mg2+, acting as traps for moving sodium ions. The above conclusions are supported by ab initio calculations according to which the barrier for sodium diffusion from the Mg2+–Na+–Mg2+ position is expected to be higher than those for the Mg2+–Na+–Al3+ and Al3+–Na+–Al3+ ones.
Research data for the diffusion mechanisms of Na + ions in Na 1 – x Mg 1 – x Al 1 + x (XO 4 ) 3 (X = Mo, W) compounds with the NASICON-type structure (space group R c , Z = 6) are reported. Solid solutions in the homogeneity range 0.1 ≤ x ≤ 0.5 for X = Mo and 0.4 ≤ x ≤ 0.6 for X = W have been prepared by solid-state synthesis. Conductivity measurements and NMR spectroscopy data indicate fast sodium diffusion in the studied samples: the ionic conductivity reaches the values of about 10 –3 S/cm at T > 800 K. The frequency of elementary ionic jumps is on the order of 10 4 s –1 at T ≈ 500 K, and the activation energy is equal to 0.8–0.9 eV. The results have shown that the ionic conductivity in molybdates is higher than in tungstates. The growth of magnesium concentration increases the concentration of local coordinations Mg 2+ –Na + –Mg 2+ , acting as traps for moving sodium ions. The above conclusions are supported by ab initio calculations according to which the barrier for sodium diffusion from the Mg 2+ –Na + –Mg 2+ position is expected to be higher than those for the Mg 2+ –Na + –Al 3+ and Al 3+ –Na + –Al 3+ ones.
Research data for the diffusion mechanisms of Na.sup.+ ions in Na.sub.1 -.sub.xMg.sub.1 -.sub.xAl.sub.1 +.sub.x(XO.sub.4).sub.3 (X = Mo, W) compounds with the NASICON-type structure (space group R [Formula omitted]c, Z = 6) are reported. Solid solutions in the homogeneity range 0.1 [less than or equal to] x [less than or equal to] 0.5 for X = Mo and 0.4 [less than or equal to] x [less than or equal to] 0.6 for X = W have been prepared by solid-state synthesis. Conductivity measurements and NMR spectroscopy data indicate fast sodium diffusion in the studied samples: the ionic conductivity reaches the values of about 10.sup.-3 S/cm at T > 800 K. The frequency of elementary ionic jumps is on the order of 10.sup.4 s.sup.-1 at T [almost equal to] 500 K, and the activation energy is equal to 0.8-0.9 eV. The results have shown that the ionic conductivity in molybdates is higher than in tungstates. The growth of magnesium concentration increases the concentration of local coordinations Mg.sup.2+-Na.sup.+-Mg.sup.2+, acting as traps for moving sodium ions. The above conclusions are supported by ab initio calculations according to which the barrier for sodium diffusion from the Mg.sup.2+-Na.sup.+-Mg.sup.2+ position is expected to be higher than those for the Mg.sup.2+-Na.sup.+-Al.sup.3+ and Al.sup.3+-Na.sup.+-Al.sup.3+ ones.
Audience Academic
Author Kozhevnikova, N. M.
Serdtsev, A. V.
Medvedeva, N. I.
Korona, D. V.
Tyutyunnik, A. P.
Ogloblichev, V. V.
Buzlukov, A. L.
Baklanova, Ya. V.
Denisova, T. A.
Fedorov, D. S.
Kotova, I. Yu
Author_xml – sequence: 1
  givenname: A. L.
  surname: Buzlukov
  fullname: Buzlukov, A. L.
  email: buzlukov@imp.uran.ru
  organization: Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences
– sequence: 2
  givenname: D. S.
  surname: Fedorov
  fullname: Fedorov, D. S.
  organization: Institute of Solid State Chemistry, Ural Branch, Russian Academy of Sciences
– sequence: 3
  givenname: A. V.
  surname: Serdtsev
  fullname: Serdtsev, A. V.
  organization: Institute of Solid State Chemistry, Ural Branch, Russian Academy of Sciences
– sequence: 4
  givenname: I. Yu
  surname: Kotova
  fullname: Kotova, I. Yu
  organization: Baikal Institute of Nature Management, Siberian Branch
– sequence: 5
  givenname: A. P.
  surname: Tyutyunnik
  fullname: Tyutyunnik, A. P.
  organization: Institute of Solid State Chemistry, Ural Branch, Russian Academy of Sciences
– sequence: 6
  givenname: D. V.
  surname: Korona
  fullname: Korona, D. V.
  organization: Ural Federal University
– sequence: 7
  givenname: Ya. V.
  surname: Baklanova
  fullname: Baklanova, Ya. V.
  organization: Institute of Solid State Chemistry, Ural Branch, Russian Academy of Sciences
– sequence: 8
  givenname: V. V.
  surname: Ogloblichev
  fullname: Ogloblichev, V. V.
  organization: Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences
– sequence: 9
  givenname: N. M.
  surname: Kozhevnikova
  fullname: Kozhevnikova, N. M.
  organization: Baikal Institute of Nature Management, Siberian Branch
– sequence: 10
  givenname: T. A.
  surname: Denisova
  fullname: Denisova, T. A.
  organization: Institute of Solid State Chemistry, Ural Branch, Russian Academy of Sciences
– sequence: 11
  givenname: N. I.
  surname: Medvedeva
  fullname: Medvedeva, N. I.
  organization: Institute of Solid State Chemistry, Ural Branch, Russian Academy of Sciences
BookMark eNp1kUlLAzEUgIMouP4AbwFPHqa-zJLlWIpLwQ2nnockzdTINFOTDNp_b2oFEZEcsrzvS_LeO0S7rncGoVMCI0KK8qImQAvGKMlzIACM7KADAgIyWoHY3axpkW3i--gwhFcA4DmIA_Q47R2-65XtbFxj6_DM21VncN3P7bBMkW6t5jKagKWb49ngFiF-bd9tfMES34_r6eThHtfRDzoO3hyjvVZ2wZx8z0fo-epyNrnJbh-up5PxbaYLImLGW0pV27KCCq25FqXJZVWpQrGCV1wrrkvFwORcasW0likp0VZCUcUF1VIVR-hse-_K92-DCbF57Qfv0pNNnnIuGResTNRoSy1kZxrr2j56qdOYm6XVqYStTedjBqk8wIEn4fyXkJhoPuJCDiE00_rpN0u2rPZ9CN60zcrbpfTrhkCz6UrzpyvJybdOSKxbGP_z7f-lT3PLjf0
CitedBy_id crossref_primary_10_1016_j_ceramint_2023_10_033
crossref_primary_10_3390_ma16030965
crossref_primary_10_1134_S0022476622070071
crossref_primary_10_1016_j_solidstatesciences_2024_107528
crossref_primary_10_3390_ma16030990
crossref_primary_10_1016_j_solidstatesciences_2024_107482
Cites_doi 10.1134/S0036023611080122
10.1371/journal.pone.0035961
10.1103/PhysRevB.59.1758
10.1107/S0021889801002242
10.1103/PhysRevB.57.14690
10.1007/s11581-015-1439-6
10.1016/0927-0256(96)00008-0
10.1002/aenm.202000093
10.1016/j.ssi.2020.115328
10.1103/PhysRevB.13.5188
10.1107/S2056989018003031
10.1088/1755-1315/140/1/012156
10.1016/j.electacta.2012.11.038
10.1103/PhysRevB.42.1394
10.1016/j.ssi.2004.05.001
10.1134/S1063783409060079
10.1007/s10853-011-5302-5
10.1134/S1023193518020076
10.1038/s41467-018-03257-1
10.1039/C9TA11729F
10.1002/adma.201601925
10.1007/s10008-015-3086-2
10.1039/c2ee02781j
10.1134/S0036023615040087
10.1103/PhysRevLett.77.3865
10.1016/j.jallcom.2008.11.079
10.1002/mrc.984
10.1103/PhysRevB.50.17953
10.1021/acs.chemmater.6b01806
10.1070/RC2012v081n07ABEH004243
10.1039/c2ce25190f
10.1039/C5EE01941A
10.1021/acs.jpcc.6b06029
10.1039/C6RA28580E
10.1039/C7DT01044C
10.1107/S2052520619015270
10.1134/S003602360604005X
10.1134/S0036023609040238
10.1134/S0036023614080142
10.1103/PhysRev.74.1168
10.1103/PhysRevB.49.14251
10.1002/adma.201700431
10.1016/j.ssi.2016.06.005
10.1039/C8TA07782G
ContentType Journal Article
Copyright Pleiades Publishing, Inc. 2022. ISSN 1063-7761, Journal of Experimental and Theoretical Physics, 2022, Vol. 134, No. 1, pp. 42–50. © Pleiades Publishing, Inc., 2022. Russian Text © The Author(s), 2022, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2022, Vol. 161, No. 1, pp. 53–64.
COPYRIGHT 2022 Springer
Copyright_xml – notice: Pleiades Publishing, Inc. 2022. ISSN 1063-7761, Journal of Experimental and Theoretical Physics, 2022, Vol. 134, No. 1, pp. 42–50. © Pleiades Publishing, Inc., 2022. Russian Text © The Author(s), 2022, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2022, Vol. 161, No. 1, pp. 53–64.
– notice: COPYRIGHT 2022 Springer
DBID AAYXX
CITATION
ISR
DOI 10.1134/S1063776122010071
DatabaseName CrossRef
Gale in Context: Science
DatabaseTitle CrossRef
DatabaseTitleList


DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1090-6509
EndPage 50
ExternalDocumentID A700630808
10_1134_S1063776122010071
GroupedDBID -5F
-5G
-BR
-DZ
-EM
-Y2
-~C
-~X
06D
0R~
0VY
1N0
29K
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
408
40D
40E
5GY
5VS
6NX
78A
7HS
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AAFGU
AAGAY
AAHNG
AAIAL
AAJKR
AANZL
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYJJ
AAYQN
AAYTO
ABBBX
ABCQX
ABDBF
ABDZT
ABECU
ABEFU
ABFGW
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPTK
ABQBU
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACTTH
ACVWB
ACWMK
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFFNX
AFGCZ
AFLOW
AFNRJ
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
B0M
BA0
BDATZ
BGNMA
CAG
COF
CS3
CSCUP
D-I
DDRTE
DNIVK
DPUIP
DU5
EAD
EAP
EAS
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
EST
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRP
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
HF~
HG6
HMJXF
HRMNR
HVGLF
HZ~
H~9
I-F
IAO
IGS
IJ-
IKXTQ
ISR
ITM
IWAJR
IXC
I~X
I~Z
J-C
JBSCW
JZLTJ
KOV
L7B
LLZTM
M4Y
MA-
MQGED
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OK1
P9T
PF0
PT4
QOS
R89
R9I
RNS
ROL
RSV
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TN5
TSG
TSV
TUC
TUS
TWZ
UG4
UNUBA
UOJIU
UPT
UTJUX
UZXMN
VC2
VFIZW
VOH
W23
W48
WK8
XJT
XU3
YLTOR
YQT
Z7R
Z7X
Z7Y
Z83
Z88
ZCG
ZMTXR
ZY4
~8M
AACDK
AAJBT
AASML
AAYXX
AAYZH
ABAKF
ACDTI
ACZOJ
AEFQL
AEMSY
AFBBN
AGRTI
AIGIU
CITATION
H13
ID FETCH-LOGICAL-c319t-8f66bff7369cc8c94e2a55b3b73858cb8c4b70e28acb7cca0109f59b6b896cab3
IEDL.DBID AEJHL
ISSN 1063-7761
IngestDate Thu Oct 10 19:05:49 EDT 2024
Tue Nov 12 22:46:29 EST 2024
Thu Aug 01 19:38:34 EDT 2024
Thu Nov 21 22:23:04 EST 2024
Sat Dec 16 12:08:12 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-8f66bff7369cc8c94e2a55b3b73858cb8c4b70e28acb7cca0109f59b6b896cab3
PQID 2650478974
PQPubID 2043679
PageCount 9
ParticipantIDs proquest_journals_2650478974
gale_infotracacademiconefile_A700630808
gale_incontextgauss_ISR_A700630808
crossref_primary_10_1134_S1063776122010071
springer_journals_10_1134_S1063776122010071
PublicationCentury 2000
PublicationDate 1-2022
2022-01-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 1-2022
PublicationDecade 2020
PublicationPlace Moscow
PublicationPlace_xml – name: Moscow
– name: New York
PublicationTitle Journal of experimental and theoretical physics
PublicationTitleAbbrev J. Exp. Theor. Phys
PublicationYear 2022
Publisher Pleiades Publishing
Springer
Springer Nature B.V
Publisher_xml – name: Pleiades Publishing
– name: Springer
– name: Springer Nature B.V
References TobyB. H.J. Appl. Crystallogr.20013421010.1107/S0021889801002242
MonkhorstH. J.PackJ. D.Phys. Rev. B19761351881976PhRvB..13.5188M41880110.1103/PhysRevB.13.5188
PerdewJ. P.BurkeK.ErnzerhofM.Phys. Rev. Lett.19967738651996PhRvL..77.3865P10.1103/PhysRevLett.77.3865
Dzh. Uo and E. I. Fedin, Sov. Phys. Solid State 4, 1633 (1962).
KotovaI. Yu.BelovD. A.StefanovichS. Yu.Russ. J. Inorg. Chem.201156118910.1134/S0036023611080122
KulovaT. L.SkundinA. M.Elektrokhim. Energet.201616122
BlöchlP. E.Phys. Rev. B199450179531994PhRvB..5017953B10.1103/PhysRevB.50.17953
JaschinP. W.GaoY.LiY.BoS.J. Mater. Chem. A20208287510.1039/C9TA11729F
S. Chen, C. Wu, L. Shen, et al., Adv. Mater. 29, 1700431 (2017).
Russ. J. Inorg. Chem. 59, 992 (2014).
MassiotD.FayonF.CapronM.Magn. Reson. Chem.2002407010.1002/mrc.984
KresseG.HafnerJ.Phys. Rev. B199449142511994PhRvB..4914251K10.1103/PhysRevB.49.14251
SkundinA. M.KulovaT. L.YaroslavtsevA. B.Russ. J. Electrochem.20185411310.1134/S1023193518020076
BylanderD. M.KleinmanL.LeeS.Phys. Rev. B19904213941990PhRvB..42.1394B10.1103/PhysRevB.42.1394
KozhevnikovaN. M.KotovaI. Yu.Russ. J. Inorg. Chem.20004596
AnantharamuluN.KoteswaraR. K.RambabuG.J. Mater. Sci.20114628212011JMatS..46.2821A10.1007/s10853-011-5302-5
AbragamA.The Principles of Nuclear Magnetism1961OxfordClarendon
A. L. Buzlukov, N. I. Medvedeva, Y. V. Baklanova, et al., Solid State Ionics 351, 115328 (2020).
FirouziR.Nat. Commun.201898612018NatCo...9..861F10.1038/s41467-018-03257-1
PetrilliH. M.BlöchlP. E.BlahaP.SchwarzK.Phys. Rev. B199857146901998PhRvB..5714690P10.1103/PhysRevB.57.14690
JonssonH.MillsG.JacobsenK. W.Classical and Quantum Dynamics in Condensed Phase Simulations1998SingaporeWorld Scientific
KozhevnikovaN. M.Russ. J. Inorg. Chem.20145983810.1134/S0036023614080142
PalomaresV.SerrasP.VillaluengaI.Energy Environ. Sci.20125588410.1039/c2ee02781j
WangG. Q.GongX. H.ChenY. J.Dalton Trans.201746677610.1039/C7DT01044C
MhiriM.BadriB.LopezM. L.Ionics201521251110.1007/s11581-015-1439-6
FengK.WangF.ZhangH.J. Mater. Chem. A201861910710.1039/C8TA07782G
SlichterC. P.Principles of Magnetic Resonance1992LondonHarper and Row
Pet’kovV. I.Russ. Chem. Rev.2012816062012RuCRv..81..606P10.1070/RC2012v081n07ABEH004243
G. G. Eshetu, G. A. Elia, M. Armand, et al., Adv. Energy Mater. 10, 2000093 (2020).
LiH.ZhangL.WangG.J. Alloys Compd.200947848410.1016/j.jallcom.2008.11.079
A. C. Larson and R. B. von Dreele, Los Alamos Natl. Labor. Rep. LAUR 86-748 (Los Alamos, NM, 2004).
BuzlukovA. L.ArapovaI. Yu.BaklanovaY. V.J. Phys. Chem. C20161202391110.1021/acs.jpcc.6b06029
KozhevnikovaN. M.ImekhenovaA. V.Russ. J. Inorg. Chem.20065153710.1134/S003602360604005X
ZhouS.BarimG.MorganB. J.Chem. Mater.201628449210.1021/acs.chemmater.6b01806
KozhevnikovaN. M.MokhosoevM. V.Triple Molybdates2000Ulan-UdeBuryat. Gos. Univ.
NoguchiY.KobayashiE.PlashnitsaL. S.Electrochim. Acta20131015910.1016/j.electacta.2012.11.038
SonniM.JendoubiI.ZidM. F.Acta Crystallogr., E20187440610.1107/S2056989018003031
SorokinN. I.Phys. Solid State20095111282009PhSS...51.1128S10.1134/S1063783409060079
KresseG.JoubertD.Phys. Rev. B19995917581999PhRvB..59.1758K10.1103/PhysRevB.59.1758
Z. Jian, Y. S. Hu, X. Ji, and W. Chen, Adv. Mater. 29, 1601925 (2017).
M. I. Kimpa, M. Z. H. Mayzan, J. A. Yabagi etal., IOP Conf. Ser. Earth Environ Sci. 140, 012156 (2018).
DuD.LanR.XieK.RSC Adv.20177133042017RSCAd...713304D10.1039/C6RA28580E
BuzlukovA. L.ArapovaI. Yu.VerkhovskiiS. V.J. Solid State Electrochem.20162060910.1007/s10008-015-3086-2
KimJ. K.LimY. J.KimH.Energy Environ. Sci.20158358910.1039/C5EE01941A
SpiridonovaT. S.SolodovnikovS. F.SavinaA. A.Acta Crystallogr., B2020762810.1107/S2052520619015270
I.Yu. Kotova, S. F. Solodovnikov, Z. A. Solodovnikova, and E. G. Khaikina, Nauch. Obozren., No. 5, 143 (2016).
KozhevnikovaN. M.ImekhenovaA. V.Russ. J. Inorg. Chem.20095463810.1134/S0036023609040238
HuJ.GongX.HuangJ.Opt. Mater. Express201661902016OMExp...6..181H
KozhevnikovaN. M.TsyretarovaS. Yu.Russ. J. Inorg. Chem.20156052010.1134/S0036023615040087
I. Yu. Kotova, Cand. Sci. (Chem.) Dissertation (Ulan-Ude, 2001).
B. Xiao, Z. Lin, L. Zhang, et al., PLoS One 7, e40631 (2012).
van VleckJ. H.Phys. Rev.19487411681948PhRv...74.1168V10.1103/PhysRev.74.1168
LazoryakB. I.EfremovV. A.Zh. Neorg. Khim.198732652
KresseG.FurthmullerJ.Comput. Mater. Sci.199661510.1016/0927-0256(96)00008-0
GuinM.TietzF.GuillonO.Solid State Ionics20162931810.1016/j.ssi.2016.06.005
PrabaharanS. R. S.FauziA.MichaelM. S.BegamK. M.Solid State Ionics200417115710.1016/j.ssi.2004.05.001
PanY.ChenY.LinY.Cryst. Eng. Commun.201214393010.1039/c2ce25190f
N. M. Kozhevnikova (2667_CR25) 2009; 54
J. H. van Vleck (2667_CR54) 1948; 74
J. K. Kim (2667_CR2) 2015; 8
2667_CR6
V. I. Pet’kov (2667_CR13) 2012; 81
M. Guin (2667_CR1) 2016; 293
G. Kresse (2667_CR41) 1994; 49
2667_CR49
A. L. Buzlukov (2667_CR55) 2016; 20
G. Kresse (2667_CR40) 1999; 59
G. Kresse (2667_CR42) 1996; 6
D. Massiot (2667_CR48) 2002; 40
N. M. Kozhevnikova (2667_CR16) 2000; 45
M. Mhiri (2667_CR9) 2015; 21
P. E. Blöchl (2667_CR39) 1994; 50
C. P. Slichter (2667_CR52) 1992
R. Firouzi (2667_CR4) 2018; 9
A. L. Buzlukov (2667_CR56) 2016; 120
H. J. Monkhorst (2667_CR44) 1976; 13
2667_CR32
D. M. Bylander (2667_CR45) 1990; 42
2667_CR38
T. L. Kulova (2667_CR3) 2016; 16
M. Sonni (2667_CR20) 2018; 74
N. M. Kozhevnikova (2667_CR29) 2015; 60
P. W. Jaschin (2667_CR57) 2020; 8
N. M. Kozhevnikova (2667_CR27) 2014; 59
A. Abragam (2667_CR51) 1961
A. M. Skundin (2667_CR5) 2018; 54
I. Yu. Kotova (2667_CR50) 2011; 56
Y. Pan (2667_CR33) 2012; 14
V. Palomares (2667_CR14) 2012; 5
B. H. Toby (2667_CR37) 2001; 34
N. M. Kozhevnikova (2667_CR21) 2000
N. Anantharamulu (2667_CR7) 2011; 46
2667_CR23
N. I. Sorokin (2667_CR30) 2009; 51
Y. Noguchi (2667_CR8) 2013; 101
S. R. S. Prabaharan (2667_CR12) 2004; 171
2667_CR22
2667_CR28
G. Q. Wang (2667_CR35) 2017; 46
K. Feng (2667_CR19) 2018; 6
H. Jonsson (2667_CR47) 1998
T. S. Spiridonova (2667_CR36) 2020; 76
B. I. Lazoryak (2667_CR26) 1987; 32
N. M. Kozhevnikova (2667_CR24) 2006; 51
2667_CR53
D. Du (2667_CR18) 2017; 7
S. Zhou (2667_CR17) 2016; 28
2667_CR10
2667_CR11
2667_CR15
J. Hu (2667_CR34) 2016; 6
H. M. Petrilli (2667_CR46) 1998; 57
J. P. Perdew (2667_CR43) 1996; 77
H. Li (2667_CR31) 2009; 478
References_xml – volume: 56
  start-page: 1189
  year: 2011
  ident: 2667_CR50
  publication-title: Russ. J. Inorg. Chem.
  doi: 10.1134/S0036023611080122
  contributor:
    fullname: I. Yu. Kotova
– ident: 2667_CR32
  doi: 10.1371/journal.pone.0035961
– volume: 59
  start-page: 1758
  year: 1999
  ident: 2667_CR40
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.59.1758
  contributor:
    fullname: G. Kresse
– volume: 34
  start-page: 210
  year: 2001
  ident: 2667_CR37
  publication-title: J. Appl. Crystallogr.
  doi: 10.1107/S0021889801002242
  contributor:
    fullname: B. H. Toby
– volume: 57
  start-page: 14690
  year: 1998
  ident: 2667_CR46
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.57.14690
  contributor:
    fullname: H. M. Petrilli
– volume: 21
  start-page: 2511
  year: 2015
  ident: 2667_CR9
  publication-title: Ionics
  doi: 10.1007/s11581-015-1439-6
  contributor:
    fullname: M. Mhiri
– volume: 6
  start-page: 15
  year: 1996
  ident: 2667_CR42
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/0927-0256(96)00008-0
  contributor:
    fullname: G. Kresse
– ident: 2667_CR6
  doi: 10.1002/aenm.202000093
– ident: 2667_CR49
  doi: 10.1016/j.ssi.2020.115328
– volume: 13
  start-page: 5188
  year: 1976
  ident: 2667_CR44
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.13.5188
  contributor:
    fullname: H. J. Monkhorst
– ident: 2667_CR28
– volume: 74
  start-page: 406
  year: 2018
  ident: 2667_CR20
  publication-title: Acta Crystallogr., E
  doi: 10.1107/S2056989018003031
  contributor:
    fullname: M. Sonni
– ident: 2667_CR11
  doi: 10.1088/1755-1315/140/1/012156
– volume: 101
  start-page: 59
  year: 2013
  ident: 2667_CR8
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2012.11.038
  contributor:
    fullname: Y. Noguchi
– volume: 42
  start-page: 1394
  year: 1990
  ident: 2667_CR45
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.42.1394
  contributor:
    fullname: D. M. Bylander
– volume: 171
  start-page: 157
  year: 2004
  ident: 2667_CR12
  publication-title: Solid State Ionics
  doi: 10.1016/j.ssi.2004.05.001
  contributor:
    fullname: S. R. S. Prabaharan
– volume: 51
  start-page: 1128
  year: 2009
  ident: 2667_CR30
  publication-title: Phys. Solid State
  doi: 10.1134/S1063783409060079
  contributor:
    fullname: N. I. Sorokin
– ident: 2667_CR53
– volume-title: Triple Molybdates
  year: 2000
  ident: 2667_CR21
  contributor:
    fullname: N. M. Kozhevnikova
– volume: 46
  start-page: 2821
  year: 2011
  ident: 2667_CR7
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-011-5302-5
  contributor:
    fullname: N. Anantharamulu
– volume-title: The Principles of Nuclear Magnetism
  year: 1961
  ident: 2667_CR51
  contributor:
    fullname: A. Abragam
– volume: 54
  start-page: 113
  year: 2018
  ident: 2667_CR5
  publication-title: Russ. J. Electrochem.
  doi: 10.1134/S1023193518020076
  contributor:
    fullname: A. M. Skundin
– volume: 9
  start-page: 861
  year: 2018
  ident: 2667_CR4
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03257-1
  contributor:
    fullname: R. Firouzi
– volume: 8
  start-page: 2875
  year: 2020
  ident: 2667_CR57
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA11729F
  contributor:
    fullname: P. W. Jaschin
– volume: 6
  start-page: 190
  year: 2016
  ident: 2667_CR34
  publication-title: Opt. Mater. Express
  contributor:
    fullname: J. Hu
– ident: 2667_CR10
  doi: 10.1002/adma.201601925
– volume: 20
  start-page: 609
  year: 2016
  ident: 2667_CR55
  publication-title: J. Solid State Electrochem.
  doi: 10.1007/s10008-015-3086-2
  contributor:
    fullname: A. L. Buzlukov
– volume: 5
  start-page: 5884
  year: 2012
  ident: 2667_CR14
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c2ee02781j
  contributor:
    fullname: V. Palomares
– volume: 60
  start-page: 520
  year: 2015
  ident: 2667_CR29
  publication-title: Russ. J. Inorg. Chem.
  doi: 10.1134/S0036023615040087
  contributor:
    fullname: N. M. Kozhevnikova
– volume: 77
  start-page: 3865
  year: 1996
  ident: 2667_CR43
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
  contributor:
    fullname: J. P. Perdew
– volume: 478
  start-page: 484
  year: 2009
  ident: 2667_CR31
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2008.11.079
  contributor:
    fullname: H. Li
– volume: 40
  start-page: 70
  year: 2002
  ident: 2667_CR48
  publication-title: Magn. Reson. Chem.
  doi: 10.1002/mrc.984
  contributor:
    fullname: D. Massiot
– volume-title: Classical and Quantum Dynamics in Condensed Phase Simulations
  year: 1998
  ident: 2667_CR47
  contributor:
    fullname: H. Jonsson
– ident: 2667_CR22
– volume: 50
  start-page: 17953
  year: 1994
  ident: 2667_CR39
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.50.17953
  contributor:
    fullname: P. E. Blöchl
– volume-title: Principles of Magnetic Resonance
  year: 1992
  ident: 2667_CR52
  contributor:
    fullname: C. P. Slichter
– volume: 28
  start-page: 4492
  year: 2016
  ident: 2667_CR17
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.6b01806
  contributor:
    fullname: S. Zhou
– volume: 32
  start-page: 652
  year: 1987
  ident: 2667_CR26
  publication-title: Zh. Neorg. Khim.
  contributor:
    fullname: B. I. Lazoryak
– volume: 81
  start-page: 606
  year: 2012
  ident: 2667_CR13
  publication-title: Russ. Chem. Rev.
  doi: 10.1070/RC2012v081n07ABEH004243
  contributor:
    fullname: V. I. Pet’kov
– volume: 14
  start-page: 3930
  year: 2012
  ident: 2667_CR33
  publication-title: Cryst. Eng. Commun.
  doi: 10.1039/c2ce25190f
  contributor:
    fullname: Y. Pan
– volume: 45
  start-page: 96
  year: 2000
  ident: 2667_CR16
  publication-title: Russ. J. Inorg. Chem.
  contributor:
    fullname: N. M. Kozhevnikova
– volume: 16
  start-page: 122
  year: 2016
  ident: 2667_CR3
  publication-title: Elektrokhim. Energet.
  contributor:
    fullname: T. L. Kulova
– volume: 8
  start-page: 3589
  year: 2015
  ident: 2667_CR2
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C5EE01941A
  contributor:
    fullname: J. K. Kim
– volume: 120
  start-page: 23911
  year: 2016
  ident: 2667_CR56
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.6b06029
  contributor:
    fullname: A. L. Buzlukov
– volume: 7
  start-page: 13304
  year: 2017
  ident: 2667_CR18
  publication-title: RSC Adv.
  doi: 10.1039/C6RA28580E
  contributor:
    fullname: D. Du
– volume: 46
  start-page: 6776
  year: 2017
  ident: 2667_CR35
  publication-title: Dalton Trans.
  doi: 10.1039/C7DT01044C
  contributor:
    fullname: G. Q. Wang
– volume: 76
  start-page: 28
  year: 2020
  ident: 2667_CR36
  publication-title: Acta Crystallogr., B
  doi: 10.1107/S2052520619015270
  contributor:
    fullname: T. S. Spiridonova
– volume: 51
  start-page: 537
  year: 2006
  ident: 2667_CR24
  publication-title: Russ. J. Inorg. Chem.
  doi: 10.1134/S003602360604005X
  contributor:
    fullname: N. M. Kozhevnikova
– ident: 2667_CR38
– volume: 54
  start-page: 638
  year: 2009
  ident: 2667_CR25
  publication-title: Russ. J. Inorg. Chem.
  doi: 10.1134/S0036023609040238
  contributor:
    fullname: N. M. Kozhevnikova
– volume: 59
  start-page: 838
  year: 2014
  ident: 2667_CR27
  publication-title: Russ. J. Inorg. Chem.
  doi: 10.1134/S0036023614080142
  contributor:
    fullname: N. M. Kozhevnikova
– volume: 74
  start-page: 1168
  year: 1948
  ident: 2667_CR54
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.74.1168
  contributor:
    fullname: J. H. van Vleck
– volume: 49
  start-page: 14251
  year: 1994
  ident: 2667_CR41
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.49.14251
  contributor:
    fullname: G. Kresse
– ident: 2667_CR23
– ident: 2667_CR15
  doi: 10.1002/adma.201700431
– volume: 293
  start-page: 18
  year: 2016
  ident: 2667_CR1
  publication-title: Solid State Ionics
  doi: 10.1016/j.ssi.2016.06.005
  contributor:
    fullname: M. Guin
– volume: 6
  start-page: 19107
  year: 2018
  ident: 2667_CR19
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA07782G
  contributor:
    fullname: K. Feng
SSID ssj0008209
Score 2.3689806
Snippet Research data for the diffusion mechanisms of Na + ions in Na 1 – x Mg 1 – x Al 1 + x (XO 4 ) 3 (X = Mo, W) compounds with the NASICON-type structure (space...
Research data for the diffusion mechanisms of Na.sup.+ ions in Na.sub.1 -.sub.xMg.sub.1 -.sub.xAl.sub.1 +.sub.x(XO.sub.4).sub.3 (X = Mo, W) compounds with the...
Research data for the diffusion mechanisms of Na+ ions in Na1 –xMg1 –xAl1 +x(XO4)3 (X = Mo, W) compounds with the NASICON-type structure (space group Rc, Z =...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Publisher
StartPage 42
SubjectTerms Activation energy
Aluminum
Classical and Quantum Gravitation
Diffusion barriers
Diffusion rate
Electric properties
Elementary Particles
Homogeneity
Ion currents
Ionic mobility
Magnesium
NMR spectroscopy
Nuclear magnetic resonance spectroscopy
Particle and Nuclear Physics
Physics
Physics and Astronomy
Quantum Field Theory
Relativity Theory
Sodium
Sodium diffusion
Sodium molybdate
Solid solutions
Solid State Physics
Solids and Liquids
Tungstates
Title Ion Mobility in Triple Sodium Molybdates and Tungstates with a NASICON Structure
URI https://link.springer.com/article/10.1134/S1063776122010071
https://www.proquest.com/docview/2650478974
Volume 134
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFH_oRPDitzidEkQQlGrXZmlyHG5jE51iJ8xTSbJERG1ldYf99yZZp-j0oKce8lJCXvK-3y8AhxxjYfRu1TPKh3gYM-JRIqTHlLEVRMRI4Por2nHU7dNG08LkBB-hi_TpdJqRdIJ68uwIPouN7xJGxukObP7Wt23jC0b11HAJFurNi_blh_ylk8IOS-_ZCUUu88effNFG32XyTHLU6ZzWyn9WuwrLhYWJ6pMjsQZzKl2HRVfpKfMNuOlkKbrKXE3sGD2mqDe0sXYUZ4PH0YsZeR4LGwXIEU8HqGdkges5ypGN2CKOuvW4c37dRbEDnh0N1SbctZq987ZXPKvgSXPf3jyqCRFaRyFhUlLJsAp4rSZC4YBtpKASi8hXAeVSRIbBNnmma0wQQRmRXIRbUEqzVG0Dqiqj6yjTgeYh9jVjyh8wQX2JfazDaliG4-n2Jq8T9IzEeR0hTma2qAwHlgGJRaVIbdnLAx_ledKJb5N65LDBqE_LcFQQ6extyCUvugjMeiyQ1RfKypSRSXEv8yQwBimOqHGiynAy5dzn8K9r2_kT9S4sBbZLwkVqKlAyDFF7MJ8PRvvFYbXf_v194x0nUN86
link.rule.ids 315,782,786,27934,27935,41074,42143,48345,48348,49650,49653,52154
linkProvider Springer Nature
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swED9B0QQvDBjTyviwEBISU0Qau479WDFKI6BMSybtzbJde0IaCWroA_89tpswMeABnn2JTr7zne_rZ4ADSYhyfrcXOedDI0I4jRhVOuLG3RVUymkS5itGeTr-zb6fepgc3M7ChG73tiQZLPX83RFynLvgBacu6k58ATf2c-NLHuw87sDSICvOho8GmM07Ozx95D9oipkv_uSJO_rfKD-rjganM_z4LnbXYLW5Y6LBXCnWYcGUG_Ah9Hrq-hP8yKoSXVahK_YeXZeomPpsO8qryfXsxq38vVc-D1AjWU5Q4axBmDqqkc_ZIonGgzw7uRqjPEDPzqZmE34NT4uTUdQ8rBBpd-LuImYpVdammHKtmebEJLLfV1gFaButmCYqjU3CpFapE7Evn9k-V1QxTrVU-DN0yqo0XwD1jPN2jNvESkxiy7mJJ1yxWJOYWNzDXThq91fczvEzRIg7MBHPtqgL-14CwuNSlL7x5Y-c1bXI8p9ikAZ0MBazLhw2RLa6m0otmzkCx4-HsnpCud1KUjQnsxaJ0xiSMhdGdeFbK7l_y6_ytvUm6j1YHhWXF-IiG59_hZXEz0yEvM02dJxwzA4s1pPZbqO5D4QO4W8
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFH9irTZxYTCYKHRgoUlITNHSxHXsE6r6oRa6UpEi7WbZjo0qQVI17aH_PbabbCqDA-Lsl8jys9_z-_j9DHApMJbW73YC63xIgDEjASVSBUzbu4JMGIk8vmKcJrNbOhg6mpyPNRbGd7vXJck9psGxNOWb61VmqjdI8HVqA5k4sRF45Iq5ocOQN7FrLWxAszf8NJ7eGWO67_Jw8oH7oCps_vEnB67pdwP9oFLqHdDo9L-n_hSeVHdP1NtvlmfwSOdncOx7QFX5HOaTIkc3he-W3aFljhZrl4VHaZEttz_tyI-ddPmBEok8QwtrJTwaqUQul4sEmvXSSf_LDKWekna71i_g22i46I-D6sGFQNmTuAmoIUQak8SEKUUVwzoS3a6Mpae8UZIqLJNQR1QomVjVu7Ka6TJJJGVECRmfQyMvcv0SUEdbL0iZiYyIcWgY02HGJA0VDrGJO3ELPtRrzVd7Xg3u45EY8wdL1IJ3Thvc8VXkriHmu9iWJZ-kX3kv8axhNKQteF8JmWKzFkpU-AI7H0dxdSDZrrXKqxNb8sheVXFCbXjVgqtai_fDf53bq3-Sfgsn88GITyezz6_hceSgFD6d04aG1Y2-gKMy276pNvEvSbvqOw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ion+Mobility+in+Triple+Sodium+Molybdates+and+Tungstates+with+a+NASICON+Structure&rft.jtitle=Journal+of+experimental+and+theoretical+physics&rft.au=Buzlukov%2C+A.+L.&rft.au=Fedorov%2C+D.+S.&rft.au=Serdtsev%2C+A.+V.&rft.au=Kotova%2C+I.+Yu&rft.date=2022-01-01&rft.pub=Pleiades+Publishing&rft.issn=1063-7761&rft.eissn=1090-6509&rft.volume=134&rft.issue=1&rft.spage=42&rft.epage=50&rft_id=info:doi/10.1134%2FS1063776122010071&rft.externalDocID=10_1134_S1063776122010071
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-7761&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-7761&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-7761&client=summon