Differential data processing technique to improve the performance of wireless sensor networks

A wireless sensor network is a network composed of various types of sensors for the detection of magnetic, thermal, infrared, and acoustic fields, in addition to earthquakes and radio detecting and ranging (radar), among others. The size of the data collected from the various sensors is significant,...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of supercomputing Vol. 75; no. 8; pp. 4489 - 4504
Main Authors: Lim, Kwang Kyu, Park, JiSu, Shon, Jin Gon
Format: Journal Article
Language:English
Published: New York Springer US 01-08-2019
Springer Nature B.V
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract A wireless sensor network is a network composed of various types of sensors for the detection of magnetic, thermal, infrared, and acoustic fields, in addition to earthquakes and radio detecting and ranging (radar), among others. The size of the data collected from the various sensors is significant, and it is utilized in various applications such as artificial intelligence, data prediction, and analyses. However, the hardware of a wireless sensor node has limited energy and consumes a significant amount of energy for data transmission. Several studies have been conducted on multi-hop communication, clustering, and the compression/merging of data to increase energy efficiency in data transmission. In this study, the differential data processing (DDP) method is employed to reduce the size of the transmission data and improve the performance of wireless sensor networks. We propose node identification (ID)-based DDP and cluster header (CH)-based DDP. The node ID-based DDP transmits the initial collected aggregate data to the CH at the start of the collection, compares the previous collected data with the currently collected data, and then transfers the difference value to the CH. The CH is transmitted to the base station based on the smallest value of the collected data. The CH-based DDP collects data from the CH, generates reference data for the difference, and transmits the reference data at the time of cluster broadcasting. The member node performs differential processing on the collected data using the reference data transmitted to the CH. The performances of low-energy adaptive clustering hierarchy and DDP were compared. The simulation results revealed that the performance of the wireless sensor networks was improved by efficiently using the energy of the sensor nodes and by decreasing energy consumption in data transmission, given the reduction in the data size.
AbstractList A wireless sensor network is a network composed of various types of sensors for the detection of magnetic, thermal, infrared, and acoustic fields, in addition to earthquakes and radio detecting and ranging (radar), among others. The size of the data collected from the various sensors is significant, and it is utilized in various applications such as artificial intelligence, data prediction, and analyses. However, the hardware of a wireless sensor node has limited energy and consumes a significant amount of energy for data transmission. Several studies have been conducted on multi-hop communication, clustering, and the compression/merging of data to increase energy efficiency in data transmission. In this study, the differential data processing (DDP) method is employed to reduce the size of the transmission data and improve the performance of wireless sensor networks. We propose node identification (ID)-based DDP and cluster header (CH)-based DDP. The node ID-based DDP transmits the initial collected aggregate data to the CH at the start of the collection, compares the previous collected data with the currently collected data, and then transfers the difference value to the CH. The CH is transmitted to the base station based on the smallest value of the collected data. The CH-based DDP collects data from the CH, generates reference data for the difference, and transmits the reference data at the time of cluster broadcasting. The member node performs differential processing on the collected data using the reference data transmitted to the CH. The performances of low-energy adaptive clustering hierarchy and DDP were compared. The simulation results revealed that the performance of the wireless sensor networks was improved by efficiently using the energy of the sensor nodes and by decreasing energy consumption in data transmission, given the reduction in the data size.
Author Park, JiSu
Shon, Jin Gon
Lim, Kwang Kyu
Author_xml – sequence: 1
  givenname: Kwang Kyu
  surname: Lim
  fullname: Lim, Kwang Kyu
  organization: Department of Computer Science, Graduate School, Korea National Open University
– sequence: 2
  givenname: JiSu
  orcidid: 0000-0001-9003-1131
  surname: Park
  fullname: Park, JiSu
  email: bluejisu@dgu.edu, bluejisu@korea.ac.kr
  organization: Convergence Software Institute, Dongguk University
– sequence: 3
  givenname: Jin Gon
  surname: Shon
  fullname: Shon, Jin Gon
  organization: Department of Computer Science, Graduate School, Korea National Open University
BookMark eNp9kE9LAzEQxYNUsK1-AU8Bz9FJNt1NjlL_QsGLHiVkdyft1japydbitze6gjdPMzDvvfnxJmTkg0dCzjlccoDqKnEuRMWAawZCF4LJIzLms6pgIJUckTFoAUzNpDghk5TWACCLqhiT15vOOYzo-85uaGt7S3cxNJhS55e0x2blu_c90j7QbpsvH3ldId1hdCFurW-QBkcPXcRN9tCEPoVIPfaHEN_SKTl2dpPw7HdOycvd7fP8gS2e7h_n1wvWFFz3rHJl01pZC6UhQ7sGREa3TmoQFq3S3CEvda2VLmuc1Upw67CUumyRSyGKKbkYcjNhpk29WYd99PmlEUIpBTmOZ5UYVE0MKUV0Zhe7rY2fhoP5rtEMNZpco_mp0chsKgZTymK_xPgX_Y_rC_tweHE
CitedBy_id crossref_primary_10_1155_2022_9309710
crossref_primary_10_1109_TNSE_2021_3104220
crossref_primary_10_1016_j_nanoen_2021_106770
crossref_primary_10_1155_2021_6664324
crossref_primary_10_1007_s11227_019_02937_z
Cites_doi 10.1109/ITCC.2005.43
10.1186/s13673-018-0153-6
10.1186/s13673-018-0141-x
10.1109/ReCoSoC.2014.6861346
10.1109/MC.1984.1659158
10.1109/MCOM.2002.1024422
10.1109/ICCCNET.2008.4787686
10.1145/214762.214771
10.1109/CTS.2013.6567202
10.1109/COMST.2006.283821
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2019
Copyright Springer Nature B.V. 2019
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019
– notice: Copyright Springer Nature B.V. 2019
DBID AAYXX
CITATION
DOI 10.1007/s11227-019-02932-4
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-0484
EndPage 4504
ExternalDocumentID 10_1007_s11227_019_02932_4
GrantInformation_xml – fundername: Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education
  grantid: NRF2017R1D1A1B03035833
GroupedDBID -4Z
-59
-5G
-BR
-EM
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
199
1N0
203
29L
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFGW
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPTK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACBMV
ACBRV
ACBYP
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACTTH
ACVWB
ACWMK
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFLOW
AFNRJ
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJDOV
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BDATZ
BGNMA
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EAS
EBD
EBLON
EBS
EDO
EIOEI
EJD
EMK
EPL
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAK
LLZTM
M4Y
MA-
N9A
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9O
PF0
PT4
PT5
QOK
QOS
R89
R9I
RHV
ROL
RPX
RSV
S16
S27
S3B
SAP
SCJ
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UNUBA
UOJIU
UTJUX
VC2
W23
W48
WH7
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~8M
~EX
-Y2
1SB
2.D
28-
2P1
2VQ
5QI
AACDK
AAEOY
AAGNY
AAJBT
AAOBN
AARHV
AASML
AAYOK
AAYTO
AAYXX
AAYZH
ABAKF
ABDPE
ABULA
ACAOD
ACBXY
ACDTI
ACZOJ
ADQRH
AEBTG
AEFIE
AEFQL
AEKMD
AEMSY
AFBBN
AFEXP
AFGCZ
AGGDS
AGJBK
AGQEE
AGRTI
AI.
AIGIU
AJBLW
BBWZM
CAG
CITATION
COF
H13
H~9
KOW
N2Q
NDZJH
OVD
R4E
RNI
RZC
RZE
RZK
S1Z
S26
S28
SCLPG
T16
TEORI
UZXMN
VFIZW
VH1
ID FETCH-LOGICAL-c319t-7f6cda4b2890157fc02573af4902aea891fe169b9896be5b821afe6496de14223
IEDL.DBID AEJHL
ISSN 0920-8542
IngestDate Thu Oct 10 20:36:10 EDT 2024
Thu Nov 21 21:28:40 EST 2024
Sat Dec 16 12:01:32 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Wireless sensor network
Data aggregation
Differential processing
Energy efficiency
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-7f6cda4b2890157fc02573af4902aea891fe169b9896be5b821afe6496de14223
ORCID 0000-0001-9003-1131
PQID 2288805731
PQPubID 2043774
PageCount 16
ParticipantIDs proquest_journals_2288805731
crossref_primary_10_1007_s11227_019_02932_4
springer_journals_10_1007_s11227_019_02932_4
PublicationCentury 2000
PublicationDate 2019-08-01
PublicationDateYYYYMMDD 2019-08-01
PublicationDate_xml – month: 08
  year: 2019
  text: 2019-08-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationSubtitle An International Journal of High-Performance Computer Design, Analysis, and Use
PublicationTitle The Journal of supercomputing
PublicationTitleAbbrev J Supercomput
PublicationYear 2019
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Karray F, Jmal MW, Abid M, BenSaleh MS, Obeid AM (2014) A review on wireless sensor node architectures. In: The Ninth International Symposium on ReCoSoC. IEEE, pp 1–8
WanRXiongNLocNAn energy-efficient sleep scheduling mechanism with similarity measure for wireless sensor networksHum-Centric Comput Inf Sci2018811810.1186/s13673-018-0141-x
Heinzelman WR, Chanrakasan A, Balakrishnan H (2000) Energy-efficient communication protocol for wireless microsensor networks, In: Proceedings of the 33rd Annual Hawaii International Conference on System Sciences, Maui, USA, pp 1–10
LeeSKimHAn energy-efficient low-memory image compression system for multimedia IoT productsEURASIP2018201887
Oracle (2011) Big data: business opportunities, requirements and oracle`s approach. pp 1–8
Weather data portal (https://Data.kma.go.kr) (2018).https://data.kma.go.kr/. Accessed: 08 Apr 2018
Sadler JCM, Martonosi M (2006) Data compression algorithms for energy-constrained devices in delay tolerant networks. In: Sensor systems, pp 265–278, 2006
MiaoQRongboZA Monte Carlo localization method based on differential evolution optimization applied into economic forecasting in mobile wireless sensor networksEURASIP2018201832
Deosarkar BP, Yadav NS, Yadav RP (2008) Clusterhead selection in clustering algorithms for wireless sensor networks: a survey. In: IEEE International Conference on ICCCn 2008. IEEE, pp 1–8
WelchTAA technique for high-performance data compressionIEEE Comput198417681910.1109/MC.1984.1659158
AkyildizISuWSankarasubramaniamYCayirciEA survey on sensor networksIEEE Commun Mag200240810211410.1109/MCOM.2002.1024422
KimJRouting techniques for data aggregation in sensor networksJIPS2018142369417
WittenINealRClearyJArithmetic coding for data compressionCommun ACM19873052054010.1145/214762.214771
RhimHTamineKAbassiRSauveronDGuemaraSA multi-hop graph-based approach for an energy-efficient routing protocol in wireless sensor networksHum-Centric Comput Inf Sci2018813010.1186/s13673-018-0153-6
Kimura N, Latifi S (2005) A survey on data compression in wireless sensor networks. In: International Conference on Information Technology: Coding and Computing (ITCC’05), vol II
Sagiroglu S, Sinanc D (2013) Big data: a review. In: International Conference on Collaboration Technologies and Systems (CTS)
Sadler CM, Martonosi M (2006) Data compression algorithms for energy-constrained devices in delay tolerant networks. In: SenSys, pp 265–278
RajagopalanRVarshneyPData-aggregation techniques in sensor networks: a surveyIEEE Commun Surv Tutor200684486310.1109/COMST.2006.283821
2932_CR8
R Rajagopalan (2932_CR13) 2006; 8
2932_CR11
2932_CR18
H Rhim (2932_CR9) 2018; 8
S Lee (2932_CR14) 2018; 2018
2932_CR15
I Akyildiz (2932_CR12) 2002; 40
J Kim (2932_CR5) 2018; 14
R Wan (2932_CR7) 2018; 8
2932_CR1
TA Welch (2932_CR16) 1984; 17
2932_CR3
2932_CR2
2932_CR4
Q Miao (2932_CR10) 2018; 2018
I Witten (2932_CR17) 1987; 30
2932_CR6
References_xml – ident: 2932_CR4
  doi: 10.1109/ITCC.2005.43
– ident: 2932_CR15
– volume: 8
  start-page: 30
  issue: 1
  year: 2018
  ident: 2932_CR9
  publication-title: Hum-Centric Comput Inf Sci
  doi: 10.1186/s13673-018-0153-6
  contributor:
    fullname: H Rhim
– volume: 8
  start-page: 18
  issue: 1
  year: 2018
  ident: 2932_CR7
  publication-title: Hum-Centric Comput Inf Sci
  doi: 10.1186/s13673-018-0141-x
  contributor:
    fullname: R Wan
– ident: 2932_CR18
– ident: 2932_CR3
  doi: 10.1109/ReCoSoC.2014.6861346
– volume: 17
  start-page: 8
  issue: 6
  year: 1984
  ident: 2932_CR16
  publication-title: IEEE Comput
  doi: 10.1109/MC.1984.1659158
  contributor:
    fullname: TA Welch
– ident: 2932_CR1
– volume: 40
  start-page: 102
  issue: 8
  year: 2002
  ident: 2932_CR12
  publication-title: IEEE Commun Mag
  doi: 10.1109/MCOM.2002.1024422
  contributor:
    fullname: I Akyildiz
– ident: 2932_CR11
  doi: 10.1109/ICCCNET.2008.4787686
– volume: 30
  start-page: 520
  year: 1987
  ident: 2932_CR17
  publication-title: Commun ACM
  doi: 10.1145/214762.214771
  contributor:
    fullname: I Witten
– ident: 2932_CR2
  doi: 10.1109/CTS.2013.6567202
– ident: 2932_CR6
– ident: 2932_CR8
– volume: 14
  start-page: 369
  issue: 2
  year: 2018
  ident: 2932_CR5
  publication-title: JIPS
  contributor:
    fullname: J Kim
– volume: 8
  start-page: 48
  issue: 4
  year: 2006
  ident: 2932_CR13
  publication-title: IEEE Commun Surv Tutor
  doi: 10.1109/COMST.2006.283821
  contributor:
    fullname: R Rajagopalan
– volume: 2018
  start-page: 87
  year: 2018
  ident: 2932_CR14
  publication-title: EURASIP
  contributor:
    fullname: S Lee
– volume: 2018
  start-page: 32
  year: 2018
  ident: 2932_CR10
  publication-title: EURASIP
  contributor:
    fullname: Q Miao
SSID ssj0004373
Score 2.2586038
Snippet A wireless sensor network is a network composed of various types of sensors for the detection of magnetic, thermal, infrared, and acoustic fields, in addition...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Publisher
StartPage 4489
SubjectTerms Artificial intelligence
Clustering
Compilers
Computer Science
Data compression
Data processing
Data transmission
Energy
Energy consumption
Energy transmission
Interpreters
Nodes
Performance enhancement
Processor Architectures
Programming Languages
Remote sensors
Sensors
Wireless sensor networks
Title Differential data processing technique to improve the performance of wireless sensor networks
URI https://link.springer.com/article/10.1007/s11227-019-02932-4
https://www.proquest.com/docview/2288805731
Volume 75
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1NS8MwNLjt4sX5idMpOXjTyJKmaXIcbnOKeHGCFylpm6A42rFu_9-XfqwoetBTC0mT8D76vl8QulBCJyYxihgKtglngSBS6AGJpR_BkI59W7gunoLHFzkauzY53sZ1kX5c1xHJ4kfd1LpRxlyWpCIDEFGM8BbqgOzxgbg7w_H99KEph_TKwLKC3aXPWVUr8_MqX-VRo2R-i4sW4mbS_ddBd9FOpV3iYUkOe2jLpPuoW9_cgCtGPkCvo-peFODvOXZZonhRVgzATnjT1xWvMvxeeB3g9c3gRVNlgDOLXZvjOXyDc7CFsyVOy5Ty_BA9T8azmympLlogMXDgigRWxInmkQs6Uj-wMShCgactVwOmjZaKWkOFipRUIjJ-JBnV1giuRGKcD8k7Qu00S80xwjyAaSKi0grLEz9WUlLtcZ9aCppfpHrosgZ3uCj7aYRN52QHuRAgFxaQC3kP9WuMhBVv5SFjYLW7Po60h65qFDTDv6928rfpp2ibFVh02X591F4t1-YMtfJkfV5RnHvezW4nn1NB0XU
link.rule.ids 315,782,786,27933,27934,41073,42142,48344,48347,48357,49649,49652,49662,52153
linkProvider Springer Nature
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED7RdoCF8hSFAh7YIFLtOI49VrRVEaULRWoHFDmJLZCqpGra_4-dBxEIBtgi2bGjO1_ufI_vAG4Ek7GKlXAUNncTSnzmcCZ7TsS90AzJyNO56-LZn875YGhhcmhVC5Nnu1chyfxPXRe7YUJsmqRwekZHEYc2oGXRzkkTWv35YjGo6yHdIrIszPbco6Qslvl5la8KqbYyvwVGc30zav_vSw9gv7QvUb84EIewo5IjaFe9G1ApysfwOig7oxgJXyKbJ4pWRc2A2Ql9IruiTYrec7-DeXxTaFXXGaBUIwt0vDTvoMzchtM1Soqk8uwEXkbD2f3YKVstOJGRwY3jaxbFkoY27Ig9X0fGFPJdqanoEakkF1grzEQouGCh8kJOsNSKGfLHynqR3FNoJmmizgBR30xjIeaaaRp7keAcS5d6WGNj-4WiA7cVvYNVgagR1NjJlnKBoVyQUy6gHehWLAlK6coCQsy93SI54g7cVSyoh39f7fxv069hdzx7mgSTh-njBeyRnKM2968Lzc16qy6hkcXbq_L4fQCn3tQZ
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED_cBuKL8xOnU_Pgm5YtaZomj8NtOpQhOMEXKWmboDDasXX_v0k_VhR9EN8K-Wi4y5HL3f1-AbgSTMYqVsJR2NxNKPGZw5nsOxH3QtMkI0_noYtnf_rKhyNLk7NB8efV7lVKssA0WJamJOstYt2rgW-YEFsyKZy-Oa-IQxvQsmEx2oTWYDK7G9fYSLfIMguzFO5RUgJnfp7l6-FUe5zfkqT52TNu_3_Ve7Bb-p1oUGyUfdhSyQG0qzcdUGnih_A2LF9MMZY_R7Z-FC0KLIH5K9owvqIsRR95PMJ8viu0qPEHKNXIEiDPzRi0MrfkdImSoth8dQQv49Hs9t4pn2BwImObmeNrFsWShjYdiT1fR8ZF8l2pqegTqSQXWCvMRCi4YKHyQk6w1IpRwWJlo0vuMTSTNFEngKhvurEQc800jb1IcI6lSz2ssfEJQ9GB60r2waJg2ghqTmUrucBILsglF9AOdCv1BKXVrQJCzH3eMjziDtxU6qibf5_t9G_dL2H7aTgOHifThzPYIblCbUlgF5rZcq3OobGK1xflTvwEV4vcsA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Differential+data+processing+technique+to+improve+the+performance+of+wireless+sensor+networks&rft.jtitle=The+Journal+of+supercomputing&rft.au=Lim%2C+Kwang+Kyu&rft.au=Park%2C+JiSu&rft.au=Shon%2C+Jin+Gon&rft.date=2019-08-01&rft.pub=Springer+US&rft.issn=0920-8542&rft.eissn=1573-0484&rft.volume=75&rft.issue=8&rft.spage=4489&rft.epage=4504&rft_id=info:doi/10.1007%2Fs11227-019-02932-4&rft.externalDocID=10_1007_s11227_019_02932_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-8542&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-8542&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-8542&client=summon