Differential data processing technique to improve the performance of wireless sensor networks
A wireless sensor network is a network composed of various types of sensors for the detection of magnetic, thermal, infrared, and acoustic fields, in addition to earthquakes and radio detecting and ranging (radar), among others. The size of the data collected from the various sensors is significant,...
Saved in:
Published in: | The Journal of supercomputing Vol. 75; no. 8; pp. 4489 - 4504 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
New York
Springer US
01-08-2019
Springer Nature B.V |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | A wireless sensor network is a network composed of various types of sensors for the detection of magnetic, thermal, infrared, and acoustic fields, in addition to earthquakes and radio detecting and ranging (radar), among others. The size of the data collected from the various sensors is significant, and it is utilized in various applications such as artificial intelligence, data prediction, and analyses. However, the hardware of a wireless sensor node has limited energy and consumes a significant amount of energy for data transmission. Several studies have been conducted on multi-hop communication, clustering, and the compression/merging of data to increase energy efficiency in data transmission. In this study, the differential data processing (DDP) method is employed to reduce the size of the transmission data and improve the performance of wireless sensor networks. We propose node identification (ID)-based DDP and cluster header (CH)-based DDP. The node ID-based DDP transmits the initial collected aggregate data to the CH at the start of the collection, compares the previous collected data with the currently collected data, and then transfers the difference value to the CH. The CH is transmitted to the base station based on the smallest value of the collected data. The CH-based DDP collects data from the CH, generates reference data for the difference, and transmits the reference data at the time of cluster broadcasting. The member node performs differential processing on the collected data using the reference data transmitted to the CH. The performances of low-energy adaptive clustering hierarchy and DDP were compared. The simulation results revealed that the performance of the wireless sensor networks was improved by efficiently using the energy of the sensor nodes and by decreasing energy consumption in data transmission, given the reduction in the data size. |
---|---|
AbstractList | A wireless sensor network is a network composed of various types of sensors for the detection of magnetic, thermal, infrared, and acoustic fields, in addition to earthquakes and radio detecting and ranging (radar), among others. The size of the data collected from the various sensors is significant, and it is utilized in various applications such as artificial intelligence, data prediction, and analyses. However, the hardware of a wireless sensor node has limited energy and consumes a significant amount of energy for data transmission. Several studies have been conducted on multi-hop communication, clustering, and the compression/merging of data to increase energy efficiency in data transmission. In this study, the differential data processing (DDP) method is employed to reduce the size of the transmission data and improve the performance of wireless sensor networks. We propose node identification (ID)-based DDP and cluster header (CH)-based DDP. The node ID-based DDP transmits the initial collected aggregate data to the CH at the start of the collection, compares the previous collected data with the currently collected data, and then transfers the difference value to the CH. The CH is transmitted to the base station based on the smallest value of the collected data. The CH-based DDP collects data from the CH, generates reference data for the difference, and transmits the reference data at the time of cluster broadcasting. The member node performs differential processing on the collected data using the reference data transmitted to the CH. The performances of low-energy adaptive clustering hierarchy and DDP were compared. The simulation results revealed that the performance of the wireless sensor networks was improved by efficiently using the energy of the sensor nodes and by decreasing energy consumption in data transmission, given the reduction in the data size. |
Author | Park, JiSu Shon, Jin Gon Lim, Kwang Kyu |
Author_xml | – sequence: 1 givenname: Kwang Kyu surname: Lim fullname: Lim, Kwang Kyu organization: Department of Computer Science, Graduate School, Korea National Open University – sequence: 2 givenname: JiSu orcidid: 0000-0001-9003-1131 surname: Park fullname: Park, JiSu email: bluejisu@dgu.edu, bluejisu@korea.ac.kr organization: Convergence Software Institute, Dongguk University – sequence: 3 givenname: Jin Gon surname: Shon fullname: Shon, Jin Gon organization: Department of Computer Science, Graduate School, Korea National Open University |
BookMark | eNp9kE9LAzEQxYNUsK1-AU8Bz9FJNt1NjlL_QsGLHiVkdyft1japydbitze6gjdPMzDvvfnxJmTkg0dCzjlccoDqKnEuRMWAawZCF4LJIzLms6pgIJUckTFoAUzNpDghk5TWACCLqhiT15vOOYzo-85uaGt7S3cxNJhS55e0x2blu_c90j7QbpsvH3ldId1hdCFurW-QBkcPXcRN9tCEPoVIPfaHEN_SKTl2dpPw7HdOycvd7fP8gS2e7h_n1wvWFFz3rHJl01pZC6UhQ7sGREa3TmoQFq3S3CEvda2VLmuc1Upw67CUumyRSyGKKbkYcjNhpk29WYd99PmlEUIpBTmOZ5UYVE0MKUV0Zhe7rY2fhoP5rtEMNZpco_mp0chsKgZTymK_xPgX_Y_rC_tweHE |
CitedBy_id | crossref_primary_10_1155_2022_9309710 crossref_primary_10_1109_TNSE_2021_3104220 crossref_primary_10_1016_j_nanoen_2021_106770 crossref_primary_10_1155_2021_6664324 crossref_primary_10_1007_s11227_019_02937_z |
Cites_doi | 10.1109/ITCC.2005.43 10.1186/s13673-018-0153-6 10.1186/s13673-018-0141-x 10.1109/ReCoSoC.2014.6861346 10.1109/MC.1984.1659158 10.1109/MCOM.2002.1024422 10.1109/ICCCNET.2008.4787686 10.1145/214762.214771 10.1109/CTS.2013.6567202 10.1109/COMST.2006.283821 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2019 Copyright Springer Nature B.V. 2019 |
Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019 – notice: Copyright Springer Nature B.V. 2019 |
DBID | AAYXX CITATION |
DOI | 10.1007/s11227-019-02932-4 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1573-0484 |
EndPage | 4504 |
ExternalDocumentID | 10_1007_s11227_019_02932_4 |
GrantInformation_xml | – fundername: Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education grantid: NRF2017R1D1A1B03035833 |
GroupedDBID | -4Z -59 -5G -BR -EM -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 199 1N0 203 29L 2J2 2JN 2JY 2KG 2KM 2LR 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AAFGU AAHNG AAIAL AAJKR AANZL AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN ABBBX ABBXA ABDBF ABDZT ABECU ABFGW ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKAS ABKCH ABKTR ABMNI ABMQK ABNWP ABPTK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACBMV ACBRV ACBYP ACGFS ACHSB ACHXU ACIGE ACIPQ ACKNC ACMDZ ACMLO ACOKC ACOMO ACTTH ACVWB ACWMK ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADZKW AEFTE AEGAL AEGNC AEJHL AEJRE AENEX AEOHA AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AFLOW AFNRJ AFQWF AFWTZ AFZKB AGAYW AGDGC AGGBP AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJDOV AJRNO AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BDATZ BGNMA CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EAS EBD EBLON EBS EDO EIOEI EJD EMK EPL ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV LAK LLZTM M4Y MA- N9A NB0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P9O PF0 PT4 PT5 QOK QOS R89 R9I RHV ROL RPX RSV S16 S27 S3B SAP SCJ SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC TUS U2A UG4 UNUBA UOJIU UTJUX VC2 W23 W48 WH7 WK8 YLTOR Z45 Z5O Z7R Z7S Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~8M ~EX -Y2 1SB 2.D 28- 2P1 2VQ 5QI AACDK AAEOY AAGNY AAJBT AAOBN AARHV AASML AAYOK AAYTO AAYXX AAYZH ABAKF ABDPE ABULA ACAOD ACBXY ACDTI ACZOJ ADQRH AEBTG AEFIE AEFQL AEKMD AEMSY AFBBN AFEXP AFGCZ AGGDS AGJBK AGQEE AGRTI AI. AIGIU AJBLW BBWZM CAG CITATION COF H13 H~9 KOW N2Q NDZJH OVD R4E RNI RZC RZE RZK S1Z S26 S28 SCLPG T16 TEORI UZXMN VFIZW VH1 |
ID | FETCH-LOGICAL-c319t-7f6cda4b2890157fc02573af4902aea891fe169b9896be5b821afe6496de14223 |
IEDL.DBID | AEJHL |
ISSN | 0920-8542 |
IngestDate | Thu Oct 10 20:36:10 EDT 2024 Thu Nov 21 21:28:40 EST 2024 Sat Dec 16 12:01:32 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | Wireless sensor network Data aggregation Differential processing Energy efficiency |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-7f6cda4b2890157fc02573af4902aea891fe169b9896be5b821afe6496de14223 |
ORCID | 0000-0001-9003-1131 |
PQID | 2288805731 |
PQPubID | 2043774 |
PageCount | 16 |
ParticipantIDs | proquest_journals_2288805731 crossref_primary_10_1007_s11227_019_02932_4 springer_journals_10_1007_s11227_019_02932_4 |
PublicationCentury | 2000 |
PublicationDate | 2019-08-01 |
PublicationDateYYYYMMDD | 2019-08-01 |
PublicationDate_xml | – month: 08 year: 2019 text: 2019-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationSubtitle | An International Journal of High-Performance Computer Design, Analysis, and Use |
PublicationTitle | The Journal of supercomputing |
PublicationTitleAbbrev | J Supercomput |
PublicationYear | 2019 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Karray F, Jmal MW, Abid M, BenSaleh MS, Obeid AM (2014) A review on wireless sensor node architectures. In: The Ninth International Symposium on ReCoSoC. IEEE, pp 1–8 WanRXiongNLocNAn energy-efficient sleep scheduling mechanism with similarity measure for wireless sensor networksHum-Centric Comput Inf Sci2018811810.1186/s13673-018-0141-x Heinzelman WR, Chanrakasan A, Balakrishnan H (2000) Energy-efficient communication protocol for wireless microsensor networks, In: Proceedings of the 33rd Annual Hawaii International Conference on System Sciences, Maui, USA, pp 1–10 LeeSKimHAn energy-efficient low-memory image compression system for multimedia IoT productsEURASIP2018201887 Oracle (2011) Big data: business opportunities, requirements and oracle`s approach. pp 1–8 Weather data portal (https://Data.kma.go.kr) (2018).https://data.kma.go.kr/. Accessed: 08 Apr 2018 Sadler JCM, Martonosi M (2006) Data compression algorithms for energy-constrained devices in delay tolerant networks. In: Sensor systems, pp 265–278, 2006 MiaoQRongboZA Monte Carlo localization method based on differential evolution optimization applied into economic forecasting in mobile wireless sensor networksEURASIP2018201832 Deosarkar BP, Yadav NS, Yadav RP (2008) Clusterhead selection in clustering algorithms for wireless sensor networks: a survey. In: IEEE International Conference on ICCCn 2008. IEEE, pp 1–8 WelchTAA technique for high-performance data compressionIEEE Comput198417681910.1109/MC.1984.1659158 AkyildizISuWSankarasubramaniamYCayirciEA survey on sensor networksIEEE Commun Mag200240810211410.1109/MCOM.2002.1024422 KimJRouting techniques for data aggregation in sensor networksJIPS2018142369417 WittenINealRClearyJArithmetic coding for data compressionCommun ACM19873052054010.1145/214762.214771 RhimHTamineKAbassiRSauveronDGuemaraSA multi-hop graph-based approach for an energy-efficient routing protocol in wireless sensor networksHum-Centric Comput Inf Sci2018813010.1186/s13673-018-0153-6 Kimura N, Latifi S (2005) A survey on data compression in wireless sensor networks. In: International Conference on Information Technology: Coding and Computing (ITCC’05), vol II Sagiroglu S, Sinanc D (2013) Big data: a review. In: International Conference on Collaboration Technologies and Systems (CTS) Sadler CM, Martonosi M (2006) Data compression algorithms for energy-constrained devices in delay tolerant networks. In: SenSys, pp 265–278 RajagopalanRVarshneyPData-aggregation techniques in sensor networks: a surveyIEEE Commun Surv Tutor200684486310.1109/COMST.2006.283821 2932_CR8 R Rajagopalan (2932_CR13) 2006; 8 2932_CR11 2932_CR18 H Rhim (2932_CR9) 2018; 8 S Lee (2932_CR14) 2018; 2018 2932_CR15 I Akyildiz (2932_CR12) 2002; 40 J Kim (2932_CR5) 2018; 14 R Wan (2932_CR7) 2018; 8 2932_CR1 TA Welch (2932_CR16) 1984; 17 2932_CR3 2932_CR2 2932_CR4 Q Miao (2932_CR10) 2018; 2018 I Witten (2932_CR17) 1987; 30 2932_CR6 |
References_xml | – ident: 2932_CR4 doi: 10.1109/ITCC.2005.43 – ident: 2932_CR15 – volume: 8 start-page: 30 issue: 1 year: 2018 ident: 2932_CR9 publication-title: Hum-Centric Comput Inf Sci doi: 10.1186/s13673-018-0153-6 contributor: fullname: H Rhim – volume: 8 start-page: 18 issue: 1 year: 2018 ident: 2932_CR7 publication-title: Hum-Centric Comput Inf Sci doi: 10.1186/s13673-018-0141-x contributor: fullname: R Wan – ident: 2932_CR18 – ident: 2932_CR3 doi: 10.1109/ReCoSoC.2014.6861346 – volume: 17 start-page: 8 issue: 6 year: 1984 ident: 2932_CR16 publication-title: IEEE Comput doi: 10.1109/MC.1984.1659158 contributor: fullname: TA Welch – ident: 2932_CR1 – volume: 40 start-page: 102 issue: 8 year: 2002 ident: 2932_CR12 publication-title: IEEE Commun Mag doi: 10.1109/MCOM.2002.1024422 contributor: fullname: I Akyildiz – ident: 2932_CR11 doi: 10.1109/ICCCNET.2008.4787686 – volume: 30 start-page: 520 year: 1987 ident: 2932_CR17 publication-title: Commun ACM doi: 10.1145/214762.214771 contributor: fullname: I Witten – ident: 2932_CR2 doi: 10.1109/CTS.2013.6567202 – ident: 2932_CR6 – ident: 2932_CR8 – volume: 14 start-page: 369 issue: 2 year: 2018 ident: 2932_CR5 publication-title: JIPS contributor: fullname: J Kim – volume: 8 start-page: 48 issue: 4 year: 2006 ident: 2932_CR13 publication-title: IEEE Commun Surv Tutor doi: 10.1109/COMST.2006.283821 contributor: fullname: R Rajagopalan – volume: 2018 start-page: 87 year: 2018 ident: 2932_CR14 publication-title: EURASIP contributor: fullname: S Lee – volume: 2018 start-page: 32 year: 2018 ident: 2932_CR10 publication-title: EURASIP contributor: fullname: Q Miao |
SSID | ssj0004373 |
Score | 2.2586038 |
Snippet | A wireless sensor network is a network composed of various types of sensors for the detection of magnetic, thermal, infrared, and acoustic fields, in addition... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Publisher |
StartPage | 4489 |
SubjectTerms | Artificial intelligence Clustering Compilers Computer Science Data compression Data processing Data transmission Energy Energy consumption Energy transmission Interpreters Nodes Performance enhancement Processor Architectures Programming Languages Remote sensors Sensors Wireless sensor networks |
Title | Differential data processing technique to improve the performance of wireless sensor networks |
URI | https://link.springer.com/article/10.1007/s11227-019-02932-4 https://www.proquest.com/docview/2288805731 |
Volume | 75 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1NS8MwNLjt4sX5idMpOXjTyJKmaXIcbnOKeHGCFylpm6A42rFu_9-XfqwoetBTC0mT8D76vl8QulBCJyYxihgKtglngSBS6AGJpR_BkI59W7gunoLHFzkauzY53sZ1kX5c1xHJ4kfd1LpRxlyWpCIDEFGM8BbqgOzxgbg7w_H99KEph_TKwLKC3aXPWVUr8_MqX-VRo2R-i4sW4mbS_ddBd9FOpV3iYUkOe2jLpPuoW9_cgCtGPkCvo-peFODvOXZZonhRVgzATnjT1xWvMvxeeB3g9c3gRVNlgDOLXZvjOXyDc7CFsyVOy5Ty_BA9T8azmympLlogMXDgigRWxInmkQs6Uj-wMShCgactVwOmjZaKWkOFipRUIjJ-JBnV1giuRGKcD8k7Qu00S80xwjyAaSKi0grLEz9WUlLtcZ9aCppfpHrosgZ3uCj7aYRN52QHuRAgFxaQC3kP9WuMhBVv5SFjYLW7Po60h65qFDTDv6928rfpp2ibFVh02X591F4t1-YMtfJkfV5RnHvezW4nn1NB0XU |
link.rule.ids | 315,782,786,27933,27934,41073,42142,48344,48347,48357,49649,49652,49662,52153 |
linkProvider | Springer Nature |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED7RdoCF8hSFAh7YIFLtOI49VrRVEaULRWoHFDmJLZCqpGra_4-dBxEIBtgi2bGjO1_ufI_vAG4Ek7GKlXAUNncTSnzmcCZ7TsS90AzJyNO56-LZn875YGhhcmhVC5Nnu1chyfxPXRe7YUJsmqRwekZHEYc2oGXRzkkTWv35YjGo6yHdIrIszPbco6Qslvl5la8KqbYyvwVGc30zav_vSw9gv7QvUb84EIewo5IjaFe9G1ApysfwOig7oxgJXyKbJ4pWRc2A2Ql9IruiTYrec7-DeXxTaFXXGaBUIwt0vDTvoMzchtM1Soqk8uwEXkbD2f3YKVstOJGRwY3jaxbFkoY27Ig9X0fGFPJdqanoEakkF1grzEQouGCh8kJOsNSKGfLHynqR3FNoJmmizgBR30xjIeaaaRp7keAcS5d6WGNj-4WiA7cVvYNVgagR1NjJlnKBoVyQUy6gHehWLAlK6coCQsy93SI54g7cVSyoh39f7fxv069hdzx7mgSTh-njBeyRnKM2968Lzc16qy6hkcXbq_L4fQCn3tQZ |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED_cBuKL8xOnU_Pgm5YtaZomj8NtOpQhOMEXKWmboDDasXX_v0k_VhR9EN8K-Wi4y5HL3f1-AbgSTMYqVsJR2NxNKPGZw5nsOxH3QtMkI0_noYtnf_rKhyNLk7NB8efV7lVKssA0WJamJOstYt2rgW-YEFsyKZy-Oa-IQxvQsmEx2oTWYDK7G9fYSLfIMguzFO5RUgJnfp7l6-FUe5zfkqT52TNu_3_Ve7Bb-p1oUGyUfdhSyQG0qzcdUGnih_A2LF9MMZY_R7Z-FC0KLIH5K9owvqIsRR95PMJ8viu0qPEHKNXIEiDPzRi0MrfkdImSoth8dQQv49Hs9t4pn2BwImObmeNrFsWShjYdiT1fR8ZF8l2pqegTqSQXWCvMRCi4YKHyQk6w1IpRwWJlo0vuMTSTNFEngKhvurEQc800jb1IcI6lSz2ssfEJQ9GB60r2waJg2ghqTmUrucBILsglF9AOdCv1BKXVrQJCzH3eMjziDtxU6qibf5_t9G_dL2H7aTgOHifThzPYIblCbUlgF5rZcq3OobGK1xflTvwEV4vcsA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Differential+data+processing+technique+to+improve+the+performance+of+wireless+sensor+networks&rft.jtitle=The+Journal+of+supercomputing&rft.au=Lim%2C+Kwang+Kyu&rft.au=Park%2C+JiSu&rft.au=Shon%2C+Jin+Gon&rft.date=2019-08-01&rft.pub=Springer+US&rft.issn=0920-8542&rft.eissn=1573-0484&rft.volume=75&rft.issue=8&rft.spage=4489&rft.epage=4504&rft_id=info:doi/10.1007%2Fs11227-019-02932-4&rft.externalDocID=10_1007_s11227_019_02932_4 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-8542&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-8542&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-8542&client=summon |