Sense representations for Portuguese: experiments with sense embeddings and deep neural language models

Sense representations have gone beyond word representations like Word2Vec, GloVe and FastText and achieved innovative performance on a wide range of natural language processing tasks. Although very useful in many applications, the traditional approaches for generating word embeddings have a strict d...

Full description

Saved in:
Bibliographic Details
Published in:Language resources and evaluation Vol. 55; no. 4; pp. 901 - 924
Main Authors: Rodrigues da Silva, Jéssica, Caseli, Helena de M.
Format: Journal Article
Language:English
Published: Dordrecht Springer Netherlands 01-12-2021
Springer Nature B.V
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Sense representations have gone beyond word representations like Word2Vec, GloVe and FastText and achieved innovative performance on a wide range of natural language processing tasks. Although very useful in many applications, the traditional approaches for generating word embeddings have a strict drawback: they produce a single vector representation for a given word ignoring the fact that ambiguous words can assume different meanings. In this paper, we explore unsupervised sense representations which, different from traditional word embeddings, are able to induce different senses of a word by analyzing its contextual semantics in a text. The unsupervised sense representations investigated in this paper are: sense embeddings and deep neural language models. We present the first experiments carried out for generating sense embeddings for Portuguese. Our experiments show that the sense embedding model (Sense2vec) outperformed traditional word embeddings in syntactic and semantic analogies task, proving that the language resource generated here can improve the performance of NLP tasks in Portuguese. We also evaluated the performance of pre-trained deep neural language models (ELMo and BERT) in two transfer learning approaches: feature based and fine-tuning, in the semantic textual similarity task. Our experiments indicate that the fine tuned Multilingual and Portuguese BERT language models were able to achieve better accuracy than the ELMo model and baselines.
AbstractList Sense representations have gone beyond word representations like Word2Vec, GloVe and FastText and achieved innovative performance on a wide range of natural language processing tasks. Although very useful in many applications, the traditional approaches for generating word embeddings have a strict drawback: they produce a single vector representation for a given word ignoring the fact that ambiguous words can assume different meanings. In this paper, we explore unsupervised sense representations which, different from traditional word embeddings, are able to induce different senses of a word by analyzing its contextual semantics in a text. The unsupervised sense representations investigated in this paper are: sense embeddings and deep neural language models. We present the first experiments carried out for generating sense embeddings for Portuguese. Our experiments show that the sense embedding model (Sense2vec) outperformed traditional word embeddings in syntactic and semantic analogies task, proving that the language resource generated here can improve the performance of NLP tasks in Portuguese. We also evaluated the performance of pre-trained deep neural language models (ELMo and BERT) in two transfer learning approaches: feature based and fine-tuning, in the semantic textual similarity task. Our experiments indicate that the fine tuned Multilingual and Portuguese BERT language models were able to achieve better accuracy than the ELMo model and baselines.
Author Rodrigues da Silva, Jéssica
Caseli, Helena de M.
Author_xml – sequence: 1
  givenname: Jéssica
  orcidid: 0000-0001-6275-6039
  surname: Rodrigues da Silva
  fullname: Rodrigues da Silva, Jéssica
  email: jsc.rodrigues@gmail.com
  organization: Federal University of São Carlos (UFSCar)
– sequence: 2
  givenname: Helena de M.
  orcidid: 0000-0003-3996-8599
  surname: Caseli
  fullname: Caseli, Helena de M.
  organization: Federal University of São Carlos (UFSCar)
BookMark eNp9kMtKxDAUhoOM4MzoC7gKuK7m0iatOxm8wYCCCu5Cmp7WDp2kJi3q25uZiu5cnQvffy7_As2ss4DQKSXnlBB5ESjJZJEQRhJSZCxL6AGa00ymsUXz2W9OXo_QIoQNISlLZT5HzRPYANhD7yGAHfTQOhtw7Tx-dH4YmzG2LzF89uDbbQQC_miHNxz2MtiWUFWtbQLWtsIVQI8tjF53uNO2GXUDeOsq6MIxOqx1F-DkJy7Ry8318-ouWT_c3q-u1onhtBgSVumCVqVgHIQ0kDJTFrTIhRCyBkklrzkxZZlzE2vOcpIzoXUmODO6TjPgS3Q2ze29e4-3D2rjRm_jSsWyHS5ZKiLFJsp4F4KHWvXxO-2_FCVqZ6iaDFXRMbU3VNEo4pMoRNg24P9G_6P6Bs3xfEk
CitedBy_id crossref_primary_10_1007_s11227_023_05647_9
Cites_doi 10.18653/v1/K16-1006
10.21437/Interspeech.2014-564
10.1109/IJCNN.2013.6707118
10.1609/aaai.v29i1.9496
10.3115/v1/P15-1072
10.1162/tacl_a_00051
10.3115/v1/P15-1173
10.1609/aaai.v25i1.7917
10.1007/978-3-319-41552-9_27
10.3115/v1/D14-1162
10.1145/361219.361220
10.1145/371920.372094
10.1109/CVPR.2015.7298994
10.18653/v1/N18-1202
10.18653/v1/W16-1620
10.3115/v1/N15-1142
10.3115/v1/P15-1010
10.1109/ICCV.2015.11
10.3115/v1/D14-1110
10.21437/Interspeech.2013-596
10.18653/v1/W19-4302
10.18653/v1/D19-1410
10.1613/jair.1.11259
10.3115/v1/D14-1113
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature B.V. part of Springer Nature 2021
The Author(s), under exclusive licence to Springer Nature B.V. part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature B.V. part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Springer Nature B.V. part of Springer Nature 2021.
DBID AAYXX
CITATION
3V.
7SC
7T9
7XB
8AL
8FD
8FE
8FG
8FK
8G5
ABUWG
AFKRA
AIMQZ
ALSLI
ARAPS
AVQMV
AZQEC
BENPR
BGLVJ
CCPQU
CPGLG
CRLPW
DWQXO
GB0
GNUQQ
GUQSH
HCIFZ
JQ2
K50
K7-
L7M
LIQON
L~C
L~D
M0N
M1D
M2O
MBDVC
P5Z
P62
PQEST
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.1007/s10579-020-09525-1
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Linguistics and Language Behavior Abstracts (LLBA)
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni Edition)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest One Literature
Social Science Premium Collection (Proquest) (PQ_SDU_P3)
Advanced Technologies & Aerospace Collection
Arts Premium Collection
ProQuest Central Essentials
ProQuest Databases
Technology Collection
ProQuest One Community College
Linguistics Collection
Linguistics Database
ProQuest Central
DELNET Social Sciences & Humanities Collection
ProQuest Central Student
Research Library Prep
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
ProQuest Computer Science Collection
Art, Design and Architecture Collection
Computer Science Database
Advanced Technologies Database with Aerospace
One Literature (ProQuest)
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Arts & Humanities Database
ProQuest research library
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest DELNET Social Sciences and Humanities Collection
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
Linguistics Collection
Arts Premium Collection
ProQuest Central Korea
ProQuest Research Library
ProQuest Art, Design and Architecture Collection
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
Social Science Premium Collection
ProQuest Computing
ProQuest One Literature - U.S. Customers Only
ProQuest Central Basic
ProQuest One Literature
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
Linguistics and Language Behavior Abstracts (LLBA)
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Linguistics Database
Arts & Humanities Full Text
ProQuest One Academic
ProQuest Central (Alumni)
DatabaseTitleList ProQuest DELNET Social Sciences and Humanities Collection

DeliveryMethod fulltext_linktorsrc
Discipline Library & Information Science
Computer Science
EISSN 1574-0218
EndPage 924
ExternalDocumentID 10_1007_s10579_020_09525_1
GroupedDBID -51
-5C
-5G
-BR
-DZ
-EM
-Y2
-~C
.4H
.4S
.86
.DC
06D
07C
0R~
0VY
199
2.D
203
29L
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3EH
3V.
4.4
406
408
409
40E
5GY
5VS
67Z
6NX
78A
8FE
8FG
8G5
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AABYN
AAFGU
AAGAY
AAGJQ
AAHNG
AAIAL
AAJKR
AANTL
AANZL
AAPBV
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAXYU
AAYFA
AAYIU
AAYOK
AAYQN
AAYTO
ABBBX
ABBHK
ABBXA
ABDZT
ABECU
ABECW
ABFGW
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABPTK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACGFO
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACKNC
ACMDZ
ACMLO
ACNXV
ACOKC
ACOMO
ACREN
ACTTH
ACVWB
ACVYN
ACWMK
ADHIR
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADPTO
ADRFC
ADSWE
ADTPH
ADULT
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEEQQ
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEUPB
AEVLU
AEVTX
AEXYK
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFNRJ
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGBP
AGHSJ
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMQZ
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALSLI
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AOCGG
ARAPS
ARCSS
ARMRJ
AVQMV
AXYYD
AYQZM
AZFZN
AZQEC
AZRUE
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BHNFS
BPHCQ
CAG
CCPQU
COF
CPGLG
CRLPW
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EBLON
EBS
EDO
EHI
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GB0
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GPZZG
GQ6
GQ7
GQ8
GUQSH
GXS
HCIFZ
HF~
HG5
HG6
HLICF
HMHOC
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JAAYA
JAB
JBMMH
JBSCW
JCJTX
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JPL
JSODD
JST
JZLTJ
K50
K6V
K7-
KDC
KOV
LIQON
LLZTM
M0N
M1D
M2O
M4Y
MA-
MQGED
N2Q
NB0
NDZJH
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P-O
P19
P62
P9Q
PF-
PQQKQ
PROAC
PT4
Q2X
QF4
QN3
QN7
QOS
R89
R9I
RHV
RIG
ROL
RPX
RSV
S16
S1Z
S26
S27
S28
S3B
SA0
SAP
SCLPG
SDA
SDH
SDM
SHS
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VQA
W23
W48
WK8
YLTOR
Z45
Z7X
Z83
Z88
Z8R
Z8W
Z92
ZMTXR
ZWUKE
~EX
AACDK
AAEOY
AAHCP
AAJBT
AASML
AAYXX
AAYZH
ABAKF
ABXSQ
ACAOD
ACDTI
ACZOJ
ADACV
AEFQL
AEMSY
AFBBN
AGQEE
AGRTI
AGZLP
AHEXP
AIGIU
CITATION
H13
IPSME
7SC
7T9
7XB
8AL
8FD
8FK
JQ2
L7M
L~C
L~D
MBDVC
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c319t-2da91db623e67ce42cb91986667fe7173f30cbb83c7fe3280826aa5632caf45e3
IEDL.DBID AEJHL
ISSN 1574-020X
IngestDate Mon Nov 04 10:51:57 EST 2024
Fri Nov 22 00:28:03 EST 2024
Sat Dec 16 12:09:23 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Deep neural language models
Sense embeddings
Portuguese
Word sense disambiguation
Word embeddings
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-2da91db623e67ce42cb91986667fe7173f30cbb83c7fe3280826aa5632caf45e3
ORCID 0000-0001-6275-6039
0000-0003-3996-8599
PQID 2580827246
PQPubID 28740
PageCount 24
ParticipantIDs proquest_journals_2580827246
crossref_primary_10_1007_s10579_020_09525_1
springer_journals_10_1007_s10579_020_09525_1
PublicationCentury 2000
PublicationDate 2021-12-01
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
– name: Dordrect
PublicationTitle Language resources and evaluation
PublicationTitleAbbrev Lang Resources & Evaluation
PublicationYear 2021
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References Finkelstein, L., Gabrilovich, E., Matias, Y., Rivlin, E., Solan, Z., Wolfman, G., & Ruppin, E. (2001). Placing search in context: The concept revisited. In: Proceedings of the 10th international conference on World Wide Web, pp 406–414.
Cardoso, P. C., Maziero, E. G., Jorge, M. L., Seno, E. M., Di Felippo, A., Rino, L. H., et al. (2011). Cstnews-A discourse-annotated corpus for single and multi-document summarization of news texts in Brazilian Portuguese. In Proceedings of the 3rd RST Brazilian meeting (pp. 88–105).
Mesnil, G., He, X., Deng, L., & Bengio, Y. (2013). Investigation of recurrent-neural-network architectures and learning methods for spoken language understanding. In Interspeech (pp. 3771–3775).
Rodrigues, J., Branco, A., Neale, S., & Silva, J. (2016). Lx-dsemvectors: Distributional semantics models for Portuguese. In International conference on computational processing of the Portuguese language, Springer (pp. 259–270).
Branco, A., Mendes, A., Pereira, S., Henriques, P., Pellegrini, T., Meinedo, H., et al. (2012). The Portuguese language in the digital age. White Paper Series, Berlin, http://metanet4u.eu/wbooks/portuguese.pdf.
Wagner Filho, J. A., Wilkens, R., Idiart, M., & Villavicencio, A. (2018). The BrWaC corpus: A new open resource for Brazilian Portuguese. In Proceedings of the eleventh international conference on language resources and evaluation (LREC 2018).
Liu, W., Mei, T., Zhang, Y., Che, C., & Luo, J. (2015). Multi-task deep visual-semantic embedding for video thumbnail selection. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 3707–3715).
Camacho-ColladosJPilehvarMTFrom word to sense embeddings: A survey on vector representations of meaningJournal of Artificial Intelligence Research20186374378810.1613/jair.1.11259
Peters, M., Ruder, S., & Smith, N. A. (2019). To tune or not to tune? adapting pretrained representations to diverse tasks. arXiv preprint arXiv:190305987.
Iacobacci, I., Pilehvar, MT., & Navigli, R. (2015). Sensembed: Learning sense embeddings for word and relational similarity. In: Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp 95–105.
Camacho-Collados, J., Pilehvar, M. T., & Navigli, R. (2015). A unified multilingual semantic representation of concepts. In Proceedings of the 53rd annual meeting of the association for computational linguistics and the 7th international joint conference on natural language processing (Vol. 1: Long Papers, pp. 741–751).
Chen, X., Liu, Z., & Sun, M. (2014). A unified model for word sense representation and disambiguation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP) (pp. 1025–1035).
Chelba, C., Mikolov, T., Schuster, M., Ge, Q., Brants, T., Koehn, P., & Robinson, T. (2013). One billion word benchmark for measuring progress in statistical language modeling. arXiv preprint arXiv:13123005.
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., & Polosukhin, I. (2017). Attention is all you need. In Advances in neural information processing systems (pp. 5998–6008).
Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., et al. (2019a). Roberta: A robustly optimized bert pretraining approach. arXiv preprint arXiv:190711692.
Pina, L. N., & Johansson, R. (2014). A simple and efficient method to generate word sense representations. arXiv preprint arXiv:14126045.
Bordes, A., Weston, J., Collobert, R., & Bengio, Y. (2011). Learning structured embeddings of knowledge bases. In Twenty-fifth AAAI conference on artificial intelligence.
Reimers, N., & Gurevych, I. (2019). Sentence-bert: Sentence embeddings using siamese bert-networks. arXiv preprint arXiv:190810084.
Rodrigues, J., & Branco, A. (2018). Finely tuned, 2 billion token based word embeddings for portuguese. In Proceedings of the eleventh international conference on language resources and evaluation (LREC 2018).
BojanowskiPGraveEJoulinAMikolovTEnriching word vectors with subword informationTransactions of the Association for Computational Linguistics2017513514610.1162/tacl_a_00051
Takala, P. (2016). Word embeddings for morphologically rich languages. In ESANN.
Peters, M. E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., & Zettlemoyer, L. (2018). Deep contextualized word representations. arXiv preprint arXiv:180205365.
LiWMcCallumASemi-supervised sequence modeling with syntactic topic modelsAAAI20055813818
Rothe, S., & Schütze, H. (2015). Autoextend: Extending word embeddings to embeddings for synsets and lexemes. arXiv preprint arXiv:150701127.
SaltonGWongAYangCSA vector space model for automatic indexingCommunications of the ACM1975181161362010.1145/361219.361220
BruckschenMMunizFSouzaJFuchsJInfanteKMunizMGonçalvesPVieiraRAluısioSAnotaçao lingüıstica em xml do corpus pln-br2008ICMC-USPSérie de relatórios do NILC
Pelevina, M., Arefyev, N., Biemann, C., & Panchenko, A. (2017). Making sense of word embeddings. arXiv preprint arXiv:170803390.
Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I. (2018). Improving language understanding by generative pre-training. https://www.s3-us-west-2amazonawscom/openai-assets/researchcovers/languageunsupervised/languageunderstandingpaperpdf.
Huang, EH., Socher, R., Manning, CD., & Ng, AY. (2012). Improving word representations via global context and multiple word prototypes. In: Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics: Long Papers-Volume 1, Association for Computational Linguistics, pp 873–882.
Reisinger, J., & Mooney, R. J. (2010). Multi-prototype vector-space models of word meaning. In Human language technologies: The 2010 annual conference of the North American chapter of the association for computational linguistics, Association for Computational Linguistics (pp. 109–117).
Devlin, J., Chang, MW., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:181004805.
McCann, B., Bradbury, J., Xiong, C., & Socher, R. (2017). Learned in translation: Contextualized word vectors. In Advances in neural information processing systems (pp. 6294–6305).
Mikolov, T., Le, Q. V., & Sutskever, I. (2013b). Exploiting similarities among languages for machine translation. arXiv preprint arXiv:13094168.
Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013a). Efficient estimation of word representations in vector space. arXiv preprint arXiv:13013781.
Melamud, O., Goldberger, J., & Dagan, I. (2016). context2vec: Learning generic context embedding with bidirectional LSTM. In Proceedings of The 20th SIGNLL conference on computational natural language learning (pp. 51–61).
Fonseca, ER., & Rosa, JLG. (2013). A two-step convolutional neural network approach for semantic role labeling. In: The 2013 International Joint Conference on Neural Networks (IJCNN), IEEE, pp 1–7.
Lample, G., & Conneau, A. (2019). Cross-lingual language model pretraining. arXiv preprint arXiv:190107291.
Aluísio, R. M., Pinheiro, G. M., Finger, M., Graças, M., Nunes, V., & Tagnin, S. E. (2003). The Lacio-Web project: Overview and issues in Brazilian Portuguese corpora creation. In Proceedings of corpus linguistics, Citeseer.
Ling, W., Dyer, C., Black, A. W., & Trancoso, I. (2015). Two/too simple adaptations of word2vec for syntax problems. In Proceedings of the 2015 conference of the North American chapter of the association for computational linguistics: human language technologies (pp. 1299–1304).
Trask, A., Michalak, P., & Liu, J. (2015). sense2vec-a fast and accurate method for word sense disambiguation in neural word embeddings. arXiv preprint arXiv:151106388.
Zhu, Y., Kiros, R., Zemel, R., Salakhutdinov, R., Urtasun, R., Torralba, A., & Fidler, S. (2015). Aligning books and movies: Towards story-like visual explanations by watching movies and reading books. In Proceedings of the IEEE international conference on computer vision (pp. 19–27).
SchützeHAutomatic word sense discriminationComputational Linguistics199824197123
Socher, R., Perelygin, A., Wu, J., Chuang, J., Manning, C. D., Ng, A. Y., & Potts, C. (2013). Recursive deep models for semantic compositionality over a sentiment treebank. In Proceedings of the 2013 conference on empirical methods in natural language processing (pp. 1631–1642).
Nóbrega, F. A. A. (2013). Desambiguação lexical de sentidos para o português por meio de uma abordagem multilíngue mono e multidocumento. PhD thesis, Universidade de São Paulo.
Pennington, J., Socher, R., & Manning, C. D. (2014). Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP) (pp. 1532–1543).
Firth, J., & (1957). A synopsis of linguistic theory 1930–1955. In: Studies in Linguistic Analysis, Philological Society, Oxford, reprinted in Palmer, F., (Eds.). (1968). Selected Papers of J. Longman, Harlow: R. Firth.
Wu, Z., & Giles, C L. (2015). Sense-aware semantic analysis: A multi-prototype word representation model using wikipedia. In Twenty-ninth AAAI conference on artificial intelligence.
Hartmann, N., Fonseca, E., Shulby, C., Treviso, M., Rodrigues, J., & Aluisio, S. (2017). Portuguese word embeddings: Evaluating on word analogies and natural language tasks. arXiv preprint arXiv:170806025.
Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., et al. (2019b). Roberta: A robustly optimized bert pretraining approach. arxiv 2019. arXiv preprint arXiv:190711692.
HarrisZSDistributional structure. Word1954102–3146162
Neelakantan, A., Shankar, J., Passos, A., & McCallum, A. (2015). Efficient non-parametric estimation of multiple embeddings per word in vector space. arXiv preprint arXiv:150406654.
P Bojanowski (9525_CR2) 2017; 5
9525_CR49
9525_CR46
9525_CR45
9525_CR48
9525_CR47
9525_CR42
9525_CR41
9525_CR40
9525_CR17
M Bruckschen (9525_CR5) 2008
9525_CR16
9525_CR19
9525_CR18
9525_CR13
9525_CR12
H Schütze (9525_CR44) 1998; 24
9525_CR14
ZS Harris (9525_CR15) 1954; 10
9525_CR11
9525_CR10
9525_CR51
9525_CR50
G Salton (9525_CR43) 1975; 18
9525_CR28
9525_CR27
9525_CR29
9525_CR24
9525_CR23
9525_CR26
9525_CR25
9525_CR22
9525_CR21
9525_CR39
W Li (9525_CR20) 2005; 5
9525_CR38
9525_CR35
9525_CR34
9525_CR37
9525_CR36
9525_CR31
9525_CR30
9525_CR3
9525_CR33
9525_CR4
9525_CR32
9525_CR1
J Camacho-Collados (9525_CR6) 2018; 63
9525_CR9
9525_CR7
9525_CR8
References_xml – ident: 9525_CR47
– ident: 9525_CR26
  doi: 10.18653/v1/K16-1006
– ident: 9525_CR9
  doi: 10.21437/Interspeech.2014-564
– ident: 9525_CR24
– ident: 9525_CR14
  doi: 10.1109/IJCNN.2013.6707118
– ident: 9525_CR28
– ident: 9525_CR8
– ident: 9525_CR50
  doi: 10.1609/aaai.v29i1.9496
– ident: 9525_CR4
– ident: 9525_CR7
  doi: 10.3115/v1/P15-1072
– ident: 9525_CR11
– volume: 5
  start-page: 135
  year: 2017
  ident: 9525_CR2
  publication-title: Transactions of the Association for Computational Linguistics
  doi: 10.1162/tacl_a_00051
  contributor:
    fullname: P Bojanowski
– ident: 9525_CR42
  doi: 10.3115/v1/P15-1173
– ident: 9525_CR3
  doi: 10.1609/aaai.v25i1.7917
– ident: 9525_CR23
– ident: 9525_CR41
  doi: 10.1007/978-3-319-41552-9_27
– ident: 9525_CR19
– ident: 9525_CR48
– ident: 9525_CR33
  doi: 10.3115/v1/D14-1162
– ident: 9525_CR40
– volume: 18
  start-page: 613
  issue: 11
  year: 1975
  ident: 9525_CR43
  publication-title: Communications of the ACM
  doi: 10.1145/361219.361220
  contributor:
    fullname: G Salton
– ident: 9525_CR12
  doi: 10.1145/371920.372094
– volume: 5
  start-page: 813
  year: 2005
  ident: 9525_CR20
  publication-title: AAAI
  contributor:
    fullname: W Li
– ident: 9525_CR37
– ident: 9525_CR16
– ident: 9525_CR22
  doi: 10.1109/CVPR.2015.7298994
– ident: 9525_CR49
– ident: 9525_CR35
  doi: 10.18653/v1/N18-1202
– volume-title: Anotaçao lingüıstica em xml do corpus pln-br
  year: 2008
  ident: 9525_CR5
  contributor:
    fullname: M Bruckschen
– ident: 9525_CR45
– ident: 9525_CR32
  doi: 10.18653/v1/W16-1620
– volume: 24
  start-page: 97
  issue: 1
  year: 1998
  ident: 9525_CR44
  publication-title: Computational Linguistics
  contributor:
    fullname: H Schütze
– ident: 9525_CR13
– ident: 9525_CR21
  doi: 10.3115/v1/N15-1142
– ident: 9525_CR18
  doi: 10.3115/v1/P15-1010
– ident: 9525_CR36
– ident: 9525_CR29
– ident: 9525_CR17
– ident: 9525_CR51
  doi: 10.1109/ICCV.2015.11
– ident: 9525_CR10
  doi: 10.3115/v1/D14-1110
– ident: 9525_CR25
– ident: 9525_CR46
– volume: 10
  start-page: 146
  issue: 2–3
  year: 1954
  ident: 9525_CR15
  publication-title: Distributional structure. Word
  contributor:
    fullname: ZS Harris
– ident: 9525_CR27
  doi: 10.21437/Interspeech.2013-596
– ident: 9525_CR34
  doi: 10.18653/v1/W19-4302
– ident: 9525_CR1
– ident: 9525_CR38
  doi: 10.18653/v1/D19-1410
– ident: 9525_CR39
– volume: 63
  start-page: 743
  year: 2018
  ident: 9525_CR6
  publication-title: Journal of Artificial Intelligence Research
  doi: 10.1613/jair.1.11259
  contributor:
    fullname: J Camacho-Collados
– ident: 9525_CR30
  doi: 10.3115/v1/D14-1113
– ident: 9525_CR31
SSID ssj0042478
Score 2.3170433
Snippet Sense representations have gone beyond word representations like Word2Vec, GloVe and FastText and achieved innovative performance on a wide range of natural...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Publisher
StartPage 901
SubjectTerms Computational Linguistics
Computer Science
Experiments
Language
Language and Literature
Language modeling
Linguistics
Natural language processing
Original Paper
Performance enhancement
Performance evaluation
Portuguese language
Representations
Semantic analysis
Semantics
Social Sciences
Syntax
Words (language)
Title Sense representations for Portuguese: experiments with sense embeddings and deep neural language models
URI https://link.springer.com/article/10.1007/s10579-020-09525-1
https://www.proquest.com/docview/2580827246
Volume 55
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR27TsMw0IJ2YaFQQBRa5AGxQFDjR2yzVbRVhRBLQWqnKA-nAyJUpP1_zq5NAMEAS6LIF-vku7Pv4btD6FwxoRIudSBzkCamwjRINaVBIZRICTwjbZvYTsXDTA5HpkwO_XBdlM_XPiJpN-pPuW5cqMBYO6AVEB6AydOEs4cDczcHo7vJvd-AGWF2Aw65YAZ-5nJlfp7l63lUK5nf4qL2uBm3_oXoHtp12iUebNhhH23pso1avnMDdoLcRj2XroAvsMtHMvTx4wdoMQXrVmNb8dJnJ5UVBkhsrp6uF4C9vsF1e4AKG4curuxv-iXVuY1p4aTMca71Epu6mYCZd49i24GnOkRP49Hj7SRwLRmCDGR1FZA8UWGegs6kI5FpRrJUhUqCDSQKbQL6Be1naSppBt-USFAwoiThESVZUjCu6RFqlK-lPkY4jzIwLgvFEsUYlZEES6ivJJeh9W2JDrr0hImXm8obcV1j2axxDGsc2zWOww7qetrFTgqrmHCDgCAs6qArT6x6-PfZTv4Gfop2iLnqYm-5dFFj9bbWPbRd5eszx5vmPZvPh---8t7x
link.rule.ids 315,782,786,27933,27934,41073,42142,48344,48347,49649,49652,52153
linkProvider Springer Nature
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1NT8Iw9EXhoBdR1IiC9mC86BLXdWvrjSgIEbmACbdlWztOTuLg__ta1qBGD3pZsvS1eel7r32v7wvgUjIuk1BoTyiUJib91Et1EHg5lzyl-I20bWI74eOZeOiZMjnM5cLYaHfnkrQn9adkt5BLz5g7qBbQ0EObp85kxJCX693h9LHvTmBGmT2B_ZAzAz-rkmV-XuXrhbTRMr85Ru1902_8D9N92Kv0S9JdM8QBbOmiCQ3Xu4FUotyETpWwQK5IlZFkKOTGD2E-QftWE1vz0uUnFSVBSGKCT1dzRF_fkU2DgJKYJ11S2mn6NdXKerVIUiiitF4QUzkTMXMPpMT24CmP4KXfm94PvKopg5ehtC49qhLpqxS1Jh3xTDOapdKXAq0gnmvj0s-D2yxNRZDhf0AFqhhRkoRRQLMkZ6EOjqFWvBX6BIiKMjQvc8kSyVggIoG20K0UofDt6xZvwbWjTLxY196IN1WWzR7HuMex3ePYb0HbES-u5LCMaWgQ4JRFLbhxxNoM_77a6d_AL2BnMH0exaPh-OkMdqkJfLExL22oLd9XugPbpVqdV4z6ASbF4S8
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFH_oBuLF6VScnzmIFy1b07RJvA3dmDpEmIK30jbpTtZht__fl6yxKnoQL4WS15Dm5SXvl_cFcCoZl0kotCcUShOTfuqlOgi8nEueUnxG2haxnfD7Z3E9MGlyPqL4rbe7M0kuYxpMlqZi3p2pvPsp8C3k0jPQB1UEGnqIf5oMkQyu9GZ_cDsau92YUWZ3Yz_kzNA_V4EzP_fy9XCqNc5vRlJ79gxb_x_1JmxUeifpLxfKFqzoog0tV9OBVCLehqMqkIGckSpSyXDOtW_DdIK4VxObC9PFLRUlQUpinFIXU_wVfUnqwgElMVe9pLSf6ZdUK2vtIkmhiNJ6RkxGTRyZuzgltjZPuQNPw8Hj1cirijV4GUrx3KMqkb5KUZvSEc80o1kqfSkQHfFcG1N_HvSyNBVBhu8BFah6REkSRgHNkpyFOtiFRvFa6D0gKsoQduaSJZKxQEQCMVJPilD49taLd-DccSmeLXNyxHX2ZTPHMc5xbOc49jtw6BgZV_JZxjQ0A-CURR24cIyrm3_vbf9v5Cew9nA9jMc393cHsE6NP4x1hTmExvxtoY9gtVSL42rNvgNmGuny
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sense+representations+for+Portuguese%3A+experiments+with+sense+embeddings+and+deep+neural+language+models&rft.jtitle=Language+resources+and+evaluation&rft.au=Rodrigues+da+Silva%2C+J%C3%A9ssica&rft.au=Caseli%2C+Helena+de+M.&rft.date=2021-12-01&rft.pub=Springer+Netherlands&rft.issn=1574-020X&rft.eissn=1574-0218&rft.volume=55&rft.issue=4&rft.spage=901&rft.epage=924&rft_id=info:doi/10.1007%2Fs10579-020-09525-1&rft.externalDocID=10_1007_s10579_020_09525_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1574-020X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1574-020X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1574-020X&client=summon