Network mining techniques to analyze the risk of the occupational accident via bayesian network

Today, as the construction industry grows, the frequency of occupational accidents has risen as well. The advancement of technology, inadequacies in workplace safety procedures, and untrained workers are the primary causes of these workplace mishaps. In this research, occupational accident data were...

Full description

Saved in:
Bibliographic Details
Published in:International journal of system assurance engineering and management Vol. 13; no. Suppl 1; pp. 633 - 641
Main Authors: Nayak, Nihar Ranjan, Kumar, Sumit, Gupta, Deepak, Suri, Ashish, Naved, Mohd, Soni, Mukesh
Format: Journal Article
Language:English
Published: New Delhi Springer India 01-03-2022
Springer Nature B.V
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Today, as the construction industry grows, the frequency of occupational accidents has risen as well. The advancement of technology, inadequacies in workplace safety procedures, and untrained workers are the primary causes of these workplace mishaps. In this research, occupational accident data were preprocessed and then subjected to univariate frequency and cross-tabulation analysis. As a consequence of the research, risk factors for occupational accidents were identified. Then, using Bayesian networks, the impacts of these factors on occupational accidents were examined (BNs). A Bayesian network is a graphical model that captures the conditional dependencies between variables. On a dataset from an international construction firm, the Bayesian network was deployed. Finally, we evaluated the correctness of the constructed Bayesian network and other performance criteria, as well as the model's efficacy. The experimental findings indicate that utilizing machine learning methods, some occupational accident situations may be predicted with great accuracy. The main aim of the paper is to aims to get rid of the repetitive patterns in the data and present a more reasonable level of data for the classification analysis.
AbstractList Today, as the construction industry grows, the frequency of occupational accidents has risen as well. The advancement of technology, inadequacies in workplace safety procedures, and untrained workers are the primary causes of these workplace mishaps. In this research, occupational accident data were preprocessed and then subjected to univariate frequency and cross-tabulation analysis. As a consequence of the research, risk factors for occupational accidents were identified. Then, using Bayesian networks, the impacts of these factors on occupational accidents were examined (BNs). A Bayesian network is a graphical model that captures the conditional dependencies between variables. On a dataset from an international construction firm, the Bayesian network was deployed. Finally, we evaluated the correctness of the constructed Bayesian network and other performance criteria, as well as the model's efficacy. The experimental findings indicate that utilizing machine learning methods, some occupational accident situations may be predicted with great accuracy. The main aim of the paper is to aims to get rid of the repetitive patterns in the data and present a more reasonable level of data for the classification analysis.
Author Suri, Ashish
Naved, Mohd
Nayak, Nihar Ranjan
Kumar, Sumit
Gupta, Deepak
Soni, Mukesh
Author_xml – sequence: 1
  givenname: Nihar Ranjan
  surname: Nayak
  fullname: Nayak, Nihar Ranjan
  organization: Sri Venkateswara College of Engineering Technology
– sequence: 2
  givenname: Sumit
  surname: Kumar
  fullname: Kumar, Sumit
  organization: Indian Institute of Management
– sequence: 3
  givenname: Deepak
  surname: Gupta
  fullname: Gupta, Deepak
  organization: Department of Computer Science and Engineering, Institute of Technology and Management
– sequence: 4
  givenname: Ashish
  surname: Suri
  fullname: Suri, Ashish
  organization: School of Electronics and Communication Engineering, Shri Mata Vaishno Devi University
– sequence: 5
  givenname: Mohd
  surname: Naved
  fullname: Naved, Mohd
  organization: Department of Business Analytics, Jagannath University
– sequence: 6
  givenname: Mukesh
  orcidid: 0000-0002-9228-6071
  surname: Soni
  fullname: Soni, Mukesh
  email: mukeshsoni@ieee.org
  organization: Senior IEEE Member
BookMark eNp9UE1PAyEQJUYTa-0f8ETieZWPBXaPpvErafSiZ8Ky0NIPqEA19ddLuybePExmknnvzZt3AU598AaAK4xuMELiNmGK26ZCBFcIM1FX-ASMUCt4VdO6OT3OrOINas_BJKUlQggTXJMajYB8MfkrxBXcOO_8HGajF9597EyCOUDl1Xr_bWBeGBhdWsFgj3PQerdV2YWyh0pr1xuf4adTsFN7k5zy0A-6l-DMqnUyk98-Bu8P92_Tp2r2-vg8vZtVunjPFRa0Y5bz4lT1fW9qq5kySGhkOy4MtUx0whDLGVJWmVJ9S2pKVPmDN4zRMbgedLcxHNxnuQy7WOwlSTijpOXlREGRAaVjSCkaK7fRbVTcS4zkIUs5ZClLlvKYpcSFRAdSKmA_N_FP-h_WDyHRehs
CitedBy_id crossref_primary_10_1108_ECAM_07_2022_0668
crossref_primary_10_1155_2022_7579961
crossref_primary_10_1155_2022_2455259
crossref_primary_10_1155_2022_7585457
crossref_primary_10_1155_2022_9155510
crossref_primary_10_1109_TPDS_2024_3414177
crossref_primary_10_1016_j_jclepro_2023_137999
Cites_doi 10.1109/ICMLC51923.2020.9469570
10.1016/j.ress.2014.06.006
10.1109/IEA.2019.8715109
10.1007/s11042-021-11069-7
10.1109/ICCTICT.2016.7514621
10.1109/ISMSIT.2018.8567309
10.1155/2021/5536170
10.1155/2021/3688881
10.1016/j.ssci.2008.03.004
10.1109/ICRCICN.2017.8234531
10.4018/978-1-5225-0571-6.ch030
10.1109/SACI.2016.7507401
10.1016/j.psep.2019.03.029
10.1007/s13198-021-01262-0
10.1109/ICECA.2019.8822104
10.23919/CISTI.2018.8399345
10.1109/ICIEA52957.2021.9436720
10.1155/2021/6455592
10.1109/IICSPI51290.2020.9332394
10.4018/IJRSDA.2015070104
10.1109/ICITE.2018.8492572
10.1109/EEEIC/ICPSEurope49358.2020.9160852
10.1109/RAIT.2018.8389052
10.1109/ESW.2015.7094956
10.1109/NTAD.2019.8875592
10.1155/2021/7279260
10.1515/jisys-2020-0123
ContentType Journal Article
Copyright The Author(s) under exclusive licence to The Society for Reliability Engineering, Quality and Operations Management (SREQOM), India and The Division of Operation and Maintenance, Lulea University of Technology, Sweden 2021
The Author(s) under exclusive licence to The Society for Reliability Engineering, Quality and Operations Management (SREQOM), India and The Division of Operation and Maintenance, Lulea University of Technology, Sweden 2021.
Copyright_xml – notice: The Author(s) under exclusive licence to The Society for Reliability Engineering, Quality and Operations Management (SREQOM), India and The Division of Operation and Maintenance, Lulea University of Technology, Sweden 2021
– notice: The Author(s) under exclusive licence to The Society for Reliability Engineering, Quality and Operations Management (SREQOM), India and The Division of Operation and Maintenance, Lulea University of Technology, Sweden 2021.
DBID AAYXX
CITATION
DOI 10.1007/s13198-021-01574-1
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 0976-4348
EndPage 641
ExternalDocumentID 10_1007_s13198_021_01574_1
GroupedDBID -EM
06D
203
29~
2JY
30V
406
40D
96X
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AAPBV
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
AAZMS
ABBXA
ABDZT
ABECU
ABFGW
ABFTV
ABHQN
ABJNI
ABJOX
ABKAS
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACBMV
ACBRV
ACBYP
ACGFS
ACHSB
ACIGE
ACIPQ
ACIWK
ACKNC
ACMLO
ACOKC
ACTTH
ACVWB
ACWMK
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFTE
AEGNC
AEJHL
AEJRE
AEOHA
AEPYU
AESKC
AESTI
AETCA
AEVLU
AEVTX
AEXYK
AFLOW
AFNRJ
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGJBK
AGMZJ
AGQMX
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJZVZ
AKLTO
AKQUC
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AUKKA
AXYYD
AYJHY
CSCUP
DNIVK
DPUIP
EBLON
EIOEI
ESBYG
FERAY
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ6
GQ7
GQ8
HG6
HMJXF
HQYDN
HRMNR
I0C
IKXTQ
IWAJR
IXD
IZIGR
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KOV
LLZTM
NPVJJ
NQJWS
O93
O9J
PT4
R89
RLLFE
ROL
RSV
SHX
SISQX
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TSG
UG4
UOJIU
UTJUX
UZXMN
VFIZW
W48
Z5O
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z83
Z88
ZMTXR
~A9
0R~
AACDK
AAJBT
AASML
AAYXX
AAYZH
ABAKF
ACAOD
ACDTI
ACZOJ
AEFQL
AEMSY
AFBBN
AGQEE
AGRTI
AIGIU
CITATION
SJYHP
ID FETCH-LOGICAL-c319t-173b5f66097addde4fc5ae07c0fb67e3f57b7e2f650afaeafad92432a21468553
IEDL.DBID AEJHL
ISSN 0975-6809
IngestDate Mon Nov 11 16:31:39 EST 2024
Thu Nov 21 20:37:33 EST 2024
Sat Dec 16 12:10:22 EST 2023
IsPeerReviewed true
IsScholarly true
Issue Suppl 1
Keywords Univariate frequency analysis
Potential severity
Occupational accident
Cyclical probability
Cross-tabulation
Network mining
Machine learning
Bayesian network
Spreadsheet application
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-173b5f66097addde4fc5ae07c0fb67e3f57b7e2f650afaeafad92432a21468553
ORCID 0000-0002-9228-6071
PQID 2653296173
PQPubID 2043907
PageCount 9
ParticipantIDs proquest_journals_2653296173
crossref_primary_10_1007_s13198_021_01574_1
springer_journals_10_1007_s13198_021_01574_1
PublicationCentury 2000
PublicationDate 2022-03-01
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-01
  day: 01
PublicationDecade 2020
PublicationPlace New Delhi
PublicationPlace_xml – name: New Delhi
– name: Dordrecht
PublicationTitle International journal of system assurance engineering and management
PublicationTitleAbbrev Int J Syst Assur Eng Manag
PublicationYear 2022
Publisher Springer India
Springer Nature B.V
Publisher_xml – name: Springer India
– name: Springer Nature B.V
References PatelDHSadatiyaPPatelDKBarotPIoT based obligatory usage of safety equipment for alcohol and accident detection3rd Int conf Electr Commun Aerosp Technol (ICECA)20192019717410.1109/ICECA.2019.8822104
Dai S, Sun Z, Zhang L, Zhou Q, Li Y (2020) Establish of fuzzy synthetic evaluation model and China coal mine safety risk analysis system. In: IEEE 3rd International Conference of Safe Production and Informatization (IICSPI), 514–517. https://doi.org/10.1109/IICSPI51290.2020.9332394.
ZhangLWuXSkibniewskiMJZhongJLuYBayesian-network-based safety risk analysis in construction projectsReliab Eng Syst Saf2014131293910.1016/j.ress.2014.06.006
Sarkar S, Ejaz N, Maiti J (2018) Application of hybrid clustering technique for pattern extraction of accident at work: a case study of a steel industry. In: 4th International Conference on Recent Advances in Information Technology (RAIT). 1–6. https://doi.org/10.1109/RAIT.2018.8389052
Munirathinam R, Ponnan S, Chakraborty C, Umathurai S (2021) Improved performance on seizure detection in an automated electroencephalogram signal under evolution by extracting entropy feature. Multimedia Tools and Applications 1–16
Chakraborty C, Gupta B, Ghosh S K (2017) Chronic wound characterization using bayesian classifier under telemedicine framework. In: Medical Imaging: Concepts, Methodologies, Tools, and Applications. 741–760. IGI Global
SarkarSVinaySMaitiJText mining based safety risk assessment and prediction of occupational accidents in a steel plantInt Conf Comput Tech Inform Commun Technol (ICCTICT)2016201643944410.1109/ICCTICT.2016.7514621
Wu F, Zhu C, Xu J, Bhatt M W, Sharma A (2021) Research on image text recognition based on canny edge detection algorithm and k-means algorithm. In: International Journal of System Assurance Engineering and Management. Springer Science and Business Media LLC. https://doi.org/10.1007/s13198-021-01262-0
MahajanKGargUShabazMShanmuganathanVCPIDM: A clustering based profound iterating deep learning model for HSI segmentationWireless Communications and Mobile Computing2021Hindawi Limited11210.1155/2021/7279260
Modenese A, Gobba F, Paolucci V, John S M, Sartorelli P, Wittlich M (2020) Occupational solar UV exposure in construction workers in Italy: results of a one-month monitoring with personal dosimeters. In: 2020 IEEE International Conference on Environment and Electrical Engineering and 2020 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe). 1–5. https://doi.org/10.1109/EEEIC/ICPSEurope49358.2020.9160852
Sarkar S, Kumar A, Mohanpuria SK, Maiti J (2017) Application of Bayesian network model in explaining occupational accidents in a steel industry. In: 3th International Conference on Research in Computational Intelligence and Communication Networks (ICRCICN). 2017:337–392. https://doi.org/10.1109/ICRCICN.2017.8234531
YaoQShabazMLohaniTKWasim BhattMPanesarGSSinghRK3D modelling and visualization for vision based vibration signal processing and measurementJ Intell Syst202130154155310.1515/jisys-2020-0123
SharmaCAmandeepBSobtiRLohaniTKShabazMKaurMA secured frame selection based video watermarking technique to address quality loss of data: combining graph based transform, singular valued decomposition, and hyperchaotic encryptionSecurity and Communication Networks2021Hindawi Limited11910.1155/2021/5536170
Fang A, Peng X, Zhou J, Tang L (2018) Research on the map-matching and spatial-temporal visualization of expressway traffic accident information. In: 3rd IEEE International Conference on Intelligent Transportation Engineering (ICITE), 23–27. https://doi.org/10.1109/ICITE.2018.8492572.
Sario M C, Prasetyo Y T (2021) Classification scheme of work-related accidents in a ready mixed concrete company. In: IEEE 8th International Conference on Industrial Engineering and Applications (ICIEA). 50–54. https://doi.org/10.1109/ICIEA52957.2021.9436720.
Akşehır Z D, Oruç Y, Elıbol A, Akleylek S, Kili E (2018) On the analysis of work accidents data by using data preprocessing and statistical techniques. In: 2nd International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), 1–6. https://doi.org/10.1109/ISMSIT.2018.8567309.
Salvador L R, Thinh Van D (2016) Occupational safety and health: an overview. In: IEEE 11th International Symposium on Applied Computational Intelligence and Informatics (SACI). 355–360. https://doi.org/10.1109/SACI.2016.7507401
YingJJ-CChangC-KChangY-TApplying a genetic algorithm to determine premium rate of occupational accident insuranceInt Conf Mach Learn Cybernet (ICMLC)20202020949810.1109/ICMLC51923.2020.9469570
KoščákPJenčováEGalandaJLiptákováDAirports SMS penetration with occupational health protectionNew Trends in Aviation Developm (NTAD)201920199610110.1109/NTAD.2019.8875592
ChopraSDhimanGSharmaAShabazMShuklaPAroraMAhmedSHTaxonomy of adaptive neuro fuzzy inference system in modern engineering sciencesComputational Intelligence and Neuroscience2021Hindawi Limited11410.1155/2021/6455592
IchikawaNStatistical accident analysis and electrical fatality rate in Japan, 2002–2011 - causes and preventive measures of fatal electrical accidentsIEEE IAS Electr Safety Workshop201520151510.1109/ESW.2015.7094956
TangSShabazMChakrabortyCA new face image recognition algorithm based on cerebellum-basal ganglia mechanismJournal of Healthcare Engineering2021Hindawi Limited11110.1155/2021/3688881
LiMWangDShanHRisk assessment of mine ignition sources using fuzzy Bayesian networkProcess Saf Environ Prot201912529730610.1016/j.psep.2019.03.029
Galindo C A C, Monge E L P (2018) Business intelligence: Evaluation of occupational risks using a dashboard focused on decision making. In: 13th Iberian Conference on Information Systems and Technologies (CISTI). 1–4. https://doi.org/10.23919/CISTI.2018.8399345.
ChakrabortyCGuptaBGhoshSKIdentification of chronic wound status under tele-wound network through smartphoneInt J Rough Sets and Data Anal (IJRSDA)201522587710.4018/IJRSDA.2015070104
Gumasing M J J, Sasot Z B (2019) An occupational risk analysis of garbage collection tasks in the Philippines. In: IEEE 6th International Conference on Industrial Engineering and Applications (ICIEA). 408–413. https://doi.org/10.1109/IEA.2019.8715109
MartinJERivasTMatíasJMTaboadaJArgüellesAA Bayesian network analysis of workplace accidents caused by falls from a heightSaf Sci200947220621410.1016/j.ssci.2008.03.004
1574_CR3
1574_CR1
C Chakraborty (1574_CR2) 2015; 2
JJ-C Ying (1574_CR26) 2020; 2020
JE Martin (1574_CR13) 2009; 47
1574_CR8
1574_CR7
1574_CR6
DH Patel (1574_CR16) 2019; 2019
1574_CR5
1574_CR18
1574_CR14
1574_CR15
K Mahajan (1574_CR12) 2021
1574_CR17
L Zhang (1574_CR27) 2014; 131
1574_CR21
S Tang (1574_CR23) 2021
C Sharma (1574_CR22) 2021
1574_CR24
1574_CR20
Q Yao (1574_CR25) 2021; 30
S Sarkar (1574_CR19) 2016; 2016
P Koščák (1574_CR10) 2019; 2019
S Chopra (1574_CR4) 2021
N Ichikawa (1574_CR9) 2015; 2015
M Li (1574_CR11) 2019; 125
References_xml – volume: 2020
  start-page: 94
  year: 2020
  ident: 1574_CR26
  publication-title: Int Conf Mach Learn Cybernet (ICMLC)
  doi: 10.1109/ICMLC51923.2020.9469570
  contributor:
    fullname: JJ-C Ying
– volume: 131
  start-page: 29
  year: 2014
  ident: 1574_CR27
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2014.06.006
  contributor:
    fullname: L Zhang
– ident: 1574_CR8
  doi: 10.1109/IEA.2019.8715109
– ident: 1574_CR15
  doi: 10.1007/s11042-021-11069-7
– volume: 2016
  start-page: 439
  year: 2016
  ident: 1574_CR19
  publication-title: Int Conf Comput Tech Inform Commun Technol (ICCTICT)
  doi: 10.1109/ICCTICT.2016.7514621
  contributor:
    fullname: S Sarkar
– ident: 1574_CR1
  doi: 10.1109/ISMSIT.2018.8567309
– start-page: 1
  volume-title: Security and Communication Networks
  year: 2021
  ident: 1574_CR22
  doi: 10.1155/2021/5536170
  contributor:
    fullname: C Sharma
– start-page: 1
  volume-title: Journal of Healthcare Engineering
  year: 2021
  ident: 1574_CR23
  doi: 10.1155/2021/3688881
  contributor:
    fullname: S Tang
– volume: 47
  start-page: 206
  issue: 2
  year: 2009
  ident: 1574_CR13
  publication-title: Saf Sci
  doi: 10.1016/j.ssci.2008.03.004
  contributor:
    fullname: JE Martin
– ident: 1574_CR20
  doi: 10.1109/ICRCICN.2017.8234531
– ident: 1574_CR3
  doi: 10.4018/978-1-5225-0571-6.ch030
– ident: 1574_CR17
  doi: 10.1109/SACI.2016.7507401
– volume: 125
  start-page: 297
  year: 2019
  ident: 1574_CR11
  publication-title: Process Saf Environ Prot
  doi: 10.1016/j.psep.2019.03.029
  contributor:
    fullname: M Li
– ident: 1574_CR24
  doi: 10.1007/s13198-021-01262-0
– volume: 2019
  start-page: 71
  year: 2019
  ident: 1574_CR16
  publication-title: 3rd Int conf Electr Commun Aerosp Technol (ICECA)
  doi: 10.1109/ICECA.2019.8822104
  contributor:
    fullname: DH Patel
– ident: 1574_CR7
  doi: 10.23919/CISTI.2018.8399345
– ident: 1574_CR18
  doi: 10.1109/ICIEA52957.2021.9436720
– start-page: 1
  volume-title: Computational Intelligence and Neuroscience
  year: 2021
  ident: 1574_CR4
  doi: 10.1155/2021/6455592
  contributor:
    fullname: S Chopra
– ident: 1574_CR5
  doi: 10.1109/IICSPI51290.2020.9332394
– volume: 2
  start-page: 58
  issue: 2
  year: 2015
  ident: 1574_CR2
  publication-title: Int J Rough Sets and Data Anal (IJRSDA)
  doi: 10.4018/IJRSDA.2015070104
  contributor:
    fullname: C Chakraborty
– ident: 1574_CR6
  doi: 10.1109/ICITE.2018.8492572
– ident: 1574_CR14
  doi: 10.1109/EEEIC/ICPSEurope49358.2020.9160852
– ident: 1574_CR21
  doi: 10.1109/RAIT.2018.8389052
– volume: 2015
  start-page: 1
  year: 2015
  ident: 1574_CR9
  publication-title: IEEE IAS Electr Safety Workshop
  doi: 10.1109/ESW.2015.7094956
  contributor:
    fullname: N Ichikawa
– volume: 2019
  start-page: 96
  year: 2019
  ident: 1574_CR10
  publication-title: New Trends in Aviation Developm (NTAD)
  doi: 10.1109/NTAD.2019.8875592
  contributor:
    fullname: P Koščák
– start-page: 1
  volume-title: Wireless Communications and Mobile Computing
  year: 2021
  ident: 1574_CR12
  doi: 10.1155/2021/7279260
  contributor:
    fullname: K Mahajan
– volume: 30
  start-page: 541
  issue: 1
  year: 2021
  ident: 1574_CR25
  publication-title: J Intell Syst
  doi: 10.1515/jisys-2020-0123
  contributor:
    fullname: Q Yao
SSID ssj0001214240
Score 2.4412267
Snippet Today, as the construction industry grows, the frequency of occupational accidents has risen as well. The advancement of technology, inadequacies in workplace...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Publisher
StartPage 633
SubjectTerms Accident data
Accident prediction
Bayesian analysis
Construction companies
Construction industry
Contingency tables
Engineering
Engineering Economics
Frequency analysis
Logistics
Machine learning
Marketing
Occupational accidents
Occupational safety
Organization
Original Article
Quality Control
Reliability
Risk analysis
Safety and Risk
Tabulation
Title Network mining techniques to analyze the risk of the occupational accident via bayesian network
URI https://link.springer.com/article/10.1007/s13198-021-01574-1
https://www.proquest.com/docview/2653296173
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF60vejBt1itsgdvupJks69j0ZYi0osK3sIm2QURU7GpoL_e2U3SVNGDHgKBhGH5Mtl57Mw3CJ1yqbVQ1hJpA0ninHMiZU6JsSrL89jI0Pohtrdi8iCvho4mhy5SF8XTRXMi6TfqttcNlEUSV1EAFkzEBEKeLtgeBsrdHQyvxzdLqRXXvuWzK0owwmWg6naZnwV9NUmtn_ntaNRbnNHmv9a6hTZqBxMPKo3YRium2EHrS7SDuyiZVLXf-NlPh8ALHtcZLqdYO5qSD4PBM8Su8BxPrb-fLvERY51lbhppid8eNU71u3G9mLio5O6h-9Hw7nJM6kELJIOFliQUNGWWc4ALtrvcxDZj2gQiC2zKhaGWiVSYyII3p602cOUQttFIu6ngkjG6jzrFtDAHCEM4E3ClHCsbi1PLU6mVphAzhRkPUkt76KzBOnmp-DSSljnZwZYAbImHLQl7qN98jqT-t2ZJxBmNFHheIOy8wb99_Lu0w7-9foTWItfr4AvO-qhTvs7NMVqd5fOTWuM-Ac3Lz84
link.rule.ids 315,782,786,27933,27934,41073,42142,48344,48347,49649,49652,52153
linkProvider Springer Nature
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagHYCBN6I8PbCBpbz8GitoaUXpQpHYLCexJQYSRFMk-PWc86AFwQBDpEiJTtaXi_2dffcdQmdMaM2ltURYT5AoZYwIkYbEWJmkaWSEb8smtnd8_CCuek4mJ2pqYcps9-ZIspyp58Vu4C2CuJQCWMJ4RCDmaUeSReDL7e5wct1f2Ftx9Vvl9orklDDhybpe5mdDX9ekOdH8djZaLjn9jf8NdhOt1xQTdyuf2EJLJttGawvCgztIjavsb_xU9ofAn0quU1zkWDuhkneDgRtil3qOc1ve5wuKxFgnietHWuDXR41j_WZcNSbOKru76L7fm1wOSN1qgSQw0IL4PIypZQzwggkvNZFNqDYeTzwbM25CS3nMTWCBz2mrDVwpBG5hoF1fcEFpuIdaWZ6ZfYQhoPGYlE6XjUaxZbHQUocQNfkJ82IbdtB5A7Z6rhQ11Fw72cGmADZVwqb8Djpqvoeq_66pChgNAwncC4xdNPjPH_9u7eBvr5-ilcHkdqRGw_HNIVoNgM-4xAGfHqFW8TIzx2h5ms5Oavf7AFvi08c
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA-6geiD3-J0ah5807B-5aOPw21MHUNQwbeQtgn4YDtcJ-hf76Xt1in6ID4UAi1HuFxzd8n9fofQORNK8dAYIowjSJAwRoRIfKJNGCdJoIVriia293z8JHp9S5OzQPEX1e7zK8kS02BZmtK8M0lMpwa-geUIYssLwJ3xgED-0wwgkwFLb3b7N8PR0jmLxXIVRy0hp4QJJ6ywMz8L-uqf6qDz2z1p4X4GW_-f-DbarEJP3C1tZQet6HQXbSwREu4hOS6rwvFL0TcCLxhepzjPsLIEJh8aQ8yIbUk6zkwxzpaYirGKY9unNMdvzwpH6l1blCZOS7n76HHQf7gakqoFA4lhojlxuR9RwxjoDjbCRAcmpko7PHZMxLj2DeUR156BOE8ZpeFJIKHzPWX7hQtK_QPUSLNUHyIMiY7DwtDytdEgMiwSKlQ-ZFNuzJzI-C10MVe8nJRMG7LmVLZqk6A2WahNui3Unq-NrP66qfQY9b0QYjIQdjlfi_r179KO_vb5GVq76w3k6Hp8e4zWPQuIKKrS2qiRv870CVqdJrPTyhI_ATDc3IE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Network+mining+techniques+to+analyze+the+risk+of+the+occupational+accident+via+bayesian+network&rft.jtitle=International+journal+of+system+assurance+engineering+and+management&rft.au=Nayak%2C+Nihar+Ranjan&rft.au=Kumar%2C+Sumit&rft.au=Gupta%2C+Deepak&rft.au=Suri%2C+Ashish&rft.date=2022-03-01&rft.pub=Springer+India&rft.issn=0975-6809&rft.eissn=0976-4348&rft.volume=13&rft.issue=Suppl+1&rft.spage=633&rft.epage=641&rft_id=info:doi/10.1007%2Fs13198-021-01574-1&rft.externalDocID=10_1007_s13198_021_01574_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0975-6809&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0975-6809&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0975-6809&client=summon