Network mining techniques to analyze the risk of the occupational accident via bayesian network
Today, as the construction industry grows, the frequency of occupational accidents has risen as well. The advancement of technology, inadequacies in workplace safety procedures, and untrained workers are the primary causes of these workplace mishaps. In this research, occupational accident data were...
Saved in:
Published in: | International journal of system assurance engineering and management Vol. 13; no. Suppl 1; pp. 633 - 641 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
New Delhi
Springer India
01-03-2022
Springer Nature B.V |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Today, as the construction industry grows, the frequency of occupational accidents has risen as well. The advancement of technology, inadequacies in workplace safety procedures, and untrained workers are the primary causes of these workplace mishaps. In this research, occupational accident data were preprocessed and then subjected to univariate frequency and cross-tabulation analysis. As a consequence of the research, risk factors for occupational accidents were identified. Then, using Bayesian networks, the impacts of these factors on occupational accidents were examined (BNs). A Bayesian network is a graphical model that captures the conditional dependencies between variables. On a dataset from an international construction firm, the Bayesian network was deployed. Finally, we evaluated the correctness of the constructed Bayesian network and other performance criteria, as well as the model's efficacy. The experimental findings indicate that utilizing machine learning methods, some occupational accident situations may be predicted with great accuracy. The main aim of the paper is to aims to get rid of the repetitive patterns in the data and present a more reasonable level of data for the classification analysis. |
---|---|
AbstractList | Today, as the construction industry grows, the frequency of occupational accidents has risen as well. The advancement of technology, inadequacies in workplace safety procedures, and untrained workers are the primary causes of these workplace mishaps. In this research, occupational accident data were preprocessed and then subjected to univariate frequency and cross-tabulation analysis. As a consequence of the research, risk factors for occupational accidents were identified. Then, using Bayesian networks, the impacts of these factors on occupational accidents were examined (BNs). A Bayesian network is a graphical model that captures the conditional dependencies between variables. On a dataset from an international construction firm, the Bayesian network was deployed. Finally, we evaluated the correctness of the constructed Bayesian network and other performance criteria, as well as the model's efficacy. The experimental findings indicate that utilizing machine learning methods, some occupational accident situations may be predicted with great accuracy. The main aim of the paper is to aims to get rid of the repetitive patterns in the data and present a more reasonable level of data for the classification analysis. |
Author | Suri, Ashish Naved, Mohd Nayak, Nihar Ranjan Kumar, Sumit Gupta, Deepak Soni, Mukesh |
Author_xml | – sequence: 1 givenname: Nihar Ranjan surname: Nayak fullname: Nayak, Nihar Ranjan organization: Sri Venkateswara College of Engineering Technology – sequence: 2 givenname: Sumit surname: Kumar fullname: Kumar, Sumit organization: Indian Institute of Management – sequence: 3 givenname: Deepak surname: Gupta fullname: Gupta, Deepak organization: Department of Computer Science and Engineering, Institute of Technology and Management – sequence: 4 givenname: Ashish surname: Suri fullname: Suri, Ashish organization: School of Electronics and Communication Engineering, Shri Mata Vaishno Devi University – sequence: 5 givenname: Mohd surname: Naved fullname: Naved, Mohd organization: Department of Business Analytics, Jagannath University – sequence: 6 givenname: Mukesh orcidid: 0000-0002-9228-6071 surname: Soni fullname: Soni, Mukesh email: mukeshsoni@ieee.org organization: Senior IEEE Member |
BookMark | eNp9UE1PAyEQJUYTa-0f8ETieZWPBXaPpvErafSiZ8Ky0NIPqEA19ddLuybePExmknnvzZt3AU598AaAK4xuMELiNmGK26ZCBFcIM1FX-ASMUCt4VdO6OT3OrOINas_BJKUlQggTXJMajYB8MfkrxBXcOO_8HGajF9597EyCOUDl1Xr_bWBeGBhdWsFgj3PQerdV2YWyh0pr1xuf4adTsFN7k5zy0A-6l-DMqnUyk98-Bu8P92_Tp2r2-vg8vZtVunjPFRa0Y5bz4lT1fW9qq5kySGhkOy4MtUx0whDLGVJWmVJ9S2pKVPmDN4zRMbgedLcxHNxnuQy7WOwlSTijpOXlREGRAaVjSCkaK7fRbVTcS4zkIUs5ZClLlvKYpcSFRAdSKmA_N_FP-h_WDyHRehs |
CitedBy_id | crossref_primary_10_1108_ECAM_07_2022_0668 crossref_primary_10_1155_2022_7579961 crossref_primary_10_1155_2022_2455259 crossref_primary_10_1155_2022_7585457 crossref_primary_10_1155_2022_9155510 crossref_primary_10_1109_TPDS_2024_3414177 crossref_primary_10_1016_j_jclepro_2023_137999 |
Cites_doi | 10.1109/ICMLC51923.2020.9469570 10.1016/j.ress.2014.06.006 10.1109/IEA.2019.8715109 10.1007/s11042-021-11069-7 10.1109/ICCTICT.2016.7514621 10.1109/ISMSIT.2018.8567309 10.1155/2021/5536170 10.1155/2021/3688881 10.1016/j.ssci.2008.03.004 10.1109/ICRCICN.2017.8234531 10.4018/978-1-5225-0571-6.ch030 10.1109/SACI.2016.7507401 10.1016/j.psep.2019.03.029 10.1007/s13198-021-01262-0 10.1109/ICECA.2019.8822104 10.23919/CISTI.2018.8399345 10.1109/ICIEA52957.2021.9436720 10.1155/2021/6455592 10.1109/IICSPI51290.2020.9332394 10.4018/IJRSDA.2015070104 10.1109/ICITE.2018.8492572 10.1109/EEEIC/ICPSEurope49358.2020.9160852 10.1109/RAIT.2018.8389052 10.1109/ESW.2015.7094956 10.1109/NTAD.2019.8875592 10.1155/2021/7279260 10.1515/jisys-2020-0123 |
ContentType | Journal Article |
Copyright | The Author(s) under exclusive licence to The Society for Reliability Engineering, Quality and Operations Management (SREQOM), India and The Division of Operation and Maintenance, Lulea University of Technology, Sweden 2021 The Author(s) under exclusive licence to The Society for Reliability Engineering, Quality and Operations Management (SREQOM), India and The Division of Operation and Maintenance, Lulea University of Technology, Sweden 2021. |
Copyright_xml | – notice: The Author(s) under exclusive licence to The Society for Reliability Engineering, Quality and Operations Management (SREQOM), India and The Division of Operation and Maintenance, Lulea University of Technology, Sweden 2021 – notice: The Author(s) under exclusive licence to The Society for Reliability Engineering, Quality and Operations Management (SREQOM), India and The Division of Operation and Maintenance, Lulea University of Technology, Sweden 2021. |
DBID | AAYXX CITATION |
DOI | 10.1007/s13198-021-01574-1 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 0976-4348 |
EndPage | 641 |
ExternalDocumentID | 10_1007_s13198_021_01574_1 |
GroupedDBID | -EM 06D 203 29~ 2JY 30V 406 40D 96X AAFGU AAHNG AAIAL AAJKR AANZL AAPBV AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO AAZMS ABBXA ABDZT ABECU ABFGW ABFTV ABHQN ABJNI ABJOX ABKAS ABKCH ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACBMV ACBRV ACBYP ACGFS ACHSB ACIGE ACIPQ ACIWK ACKNC ACMLO ACOKC ACTTH ACVWB ACWMK ADHHG ADHIR ADINQ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFTE AEGNC AEJHL AEJRE AEOHA AEPYU AESKC AESTI AETCA AEVLU AEVTX AEXYK AFLOW AFNRJ AFQWF AFWTZ AFZKB AGAYW AGDGC AGGBP AGJBK AGMZJ AGQMX AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJZVZ AKLTO AKQUC ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH AUKKA AXYYD AYJHY CSCUP DNIVK DPUIP EBLON EIOEI ESBYG FERAY FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD GQ6 GQ7 GQ8 HG6 HMJXF HQYDN HRMNR I0C IKXTQ IWAJR IXD IZIGR J-C J0Z JBSCW JCJTX JZLTJ KOV LLZTM NPVJJ NQJWS O93 O9J PT4 R89 RLLFE ROL RSV SHX SISQX SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE TSG UG4 UOJIU UTJUX UZXMN VFIZW W48 Z5O Z7R Z7S Z7X Z7Y Z7Z Z83 Z88 ZMTXR ~A9 0R~ AACDK AAJBT AASML AAYXX AAYZH ABAKF ACAOD ACDTI ACZOJ AEFQL AEMSY AFBBN AGQEE AGRTI AIGIU CITATION SJYHP |
ID | FETCH-LOGICAL-c319t-173b5f66097addde4fc5ae07c0fb67e3f57b7e2f650afaeafad92432a21468553 |
IEDL.DBID | AEJHL |
ISSN | 0975-6809 |
IngestDate | Mon Nov 11 16:31:39 EST 2024 Thu Nov 21 20:37:33 EST 2024 Sat Dec 16 12:10:22 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | Suppl 1 |
Keywords | Univariate frequency analysis Potential severity Occupational accident Cyclical probability Cross-tabulation Network mining Machine learning Bayesian network Spreadsheet application |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-173b5f66097addde4fc5ae07c0fb67e3f57b7e2f650afaeafad92432a21468553 |
ORCID | 0000-0002-9228-6071 |
PQID | 2653296173 |
PQPubID | 2043907 |
PageCount | 9 |
ParticipantIDs | proquest_journals_2653296173 crossref_primary_10_1007_s13198_021_01574_1 springer_journals_10_1007_s13198_021_01574_1 |
PublicationCentury | 2000 |
PublicationDate | 2022-03-01 |
PublicationDateYYYYMMDD | 2022-03-01 |
PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New Delhi |
PublicationPlace_xml | – name: New Delhi – name: Dordrecht |
PublicationTitle | International journal of system assurance engineering and management |
PublicationTitleAbbrev | Int J Syst Assur Eng Manag |
PublicationYear | 2022 |
Publisher | Springer India Springer Nature B.V |
Publisher_xml | – name: Springer India – name: Springer Nature B.V |
References | PatelDHSadatiyaPPatelDKBarotPIoT based obligatory usage of safety equipment for alcohol and accident detection3rd Int conf Electr Commun Aerosp Technol (ICECA)20192019717410.1109/ICECA.2019.8822104 Dai S, Sun Z, Zhang L, Zhou Q, Li Y (2020) Establish of fuzzy synthetic evaluation model and China coal mine safety risk analysis system. In: IEEE 3rd International Conference of Safe Production and Informatization (IICSPI), 514–517. https://doi.org/10.1109/IICSPI51290.2020.9332394. ZhangLWuXSkibniewskiMJZhongJLuYBayesian-network-based safety risk analysis in construction projectsReliab Eng Syst Saf2014131293910.1016/j.ress.2014.06.006 Sarkar S, Ejaz N, Maiti J (2018) Application of hybrid clustering technique for pattern extraction of accident at work: a case study of a steel industry. In: 4th International Conference on Recent Advances in Information Technology (RAIT). 1–6. https://doi.org/10.1109/RAIT.2018.8389052 Munirathinam R, Ponnan S, Chakraborty C, Umathurai S (2021) Improved performance on seizure detection in an automated electroencephalogram signal under evolution by extracting entropy feature. Multimedia Tools and Applications 1–16 Chakraborty C, Gupta B, Ghosh S K (2017) Chronic wound characterization using bayesian classifier under telemedicine framework. In: Medical Imaging: Concepts, Methodologies, Tools, and Applications. 741–760. IGI Global SarkarSVinaySMaitiJText mining based safety risk assessment and prediction of occupational accidents in a steel plantInt Conf Comput Tech Inform Commun Technol (ICCTICT)2016201643944410.1109/ICCTICT.2016.7514621 Wu F, Zhu C, Xu J, Bhatt M W, Sharma A (2021) Research on image text recognition based on canny edge detection algorithm and k-means algorithm. In: International Journal of System Assurance Engineering and Management. Springer Science and Business Media LLC. https://doi.org/10.1007/s13198-021-01262-0 MahajanKGargUShabazMShanmuganathanVCPIDM: A clustering based profound iterating deep learning model for HSI segmentationWireless Communications and Mobile Computing2021Hindawi Limited11210.1155/2021/7279260 Modenese A, Gobba F, Paolucci V, John S M, Sartorelli P, Wittlich M (2020) Occupational solar UV exposure in construction workers in Italy: results of a one-month monitoring with personal dosimeters. In: 2020 IEEE International Conference on Environment and Electrical Engineering and 2020 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe). 1–5. https://doi.org/10.1109/EEEIC/ICPSEurope49358.2020.9160852 Sarkar S, Kumar A, Mohanpuria SK, Maiti J (2017) Application of Bayesian network model in explaining occupational accidents in a steel industry. In: 3th International Conference on Research in Computational Intelligence and Communication Networks (ICRCICN). 2017:337–392. https://doi.org/10.1109/ICRCICN.2017.8234531 YaoQShabazMLohaniTKWasim BhattMPanesarGSSinghRK3D modelling and visualization for vision based vibration signal processing and measurementJ Intell Syst202130154155310.1515/jisys-2020-0123 SharmaCAmandeepBSobtiRLohaniTKShabazMKaurMA secured frame selection based video watermarking technique to address quality loss of data: combining graph based transform, singular valued decomposition, and hyperchaotic encryptionSecurity and Communication Networks2021Hindawi Limited11910.1155/2021/5536170 Fang A, Peng X, Zhou J, Tang L (2018) Research on the map-matching and spatial-temporal visualization of expressway traffic accident information. In: 3rd IEEE International Conference on Intelligent Transportation Engineering (ICITE), 23–27. https://doi.org/10.1109/ICITE.2018.8492572. Sario M C, Prasetyo Y T (2021) Classification scheme of work-related accidents in a ready mixed concrete company. In: IEEE 8th International Conference on Industrial Engineering and Applications (ICIEA). 50–54. https://doi.org/10.1109/ICIEA52957.2021.9436720. Akşehır Z D, Oruç Y, Elıbol A, Akleylek S, Kili E (2018) On the analysis of work accidents data by using data preprocessing and statistical techniques. In: 2nd International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), 1–6. https://doi.org/10.1109/ISMSIT.2018.8567309. Salvador L R, Thinh Van D (2016) Occupational safety and health: an overview. In: IEEE 11th International Symposium on Applied Computational Intelligence and Informatics (SACI). 355–360. https://doi.org/10.1109/SACI.2016.7507401 YingJJ-CChangC-KChangY-TApplying a genetic algorithm to determine premium rate of occupational accident insuranceInt Conf Mach Learn Cybernet (ICMLC)20202020949810.1109/ICMLC51923.2020.9469570 KoščákPJenčováEGalandaJLiptákováDAirports SMS penetration with occupational health protectionNew Trends in Aviation Developm (NTAD)201920199610110.1109/NTAD.2019.8875592 ChopraSDhimanGSharmaAShabazMShuklaPAroraMAhmedSHTaxonomy of adaptive neuro fuzzy inference system in modern engineering sciencesComputational Intelligence and Neuroscience2021Hindawi Limited11410.1155/2021/6455592 IchikawaNStatistical accident analysis and electrical fatality rate in Japan, 2002–2011 - causes and preventive measures of fatal electrical accidentsIEEE IAS Electr Safety Workshop201520151510.1109/ESW.2015.7094956 TangSShabazMChakrabortyCA new face image recognition algorithm based on cerebellum-basal ganglia mechanismJournal of Healthcare Engineering2021Hindawi Limited11110.1155/2021/3688881 LiMWangDShanHRisk assessment of mine ignition sources using fuzzy Bayesian networkProcess Saf Environ Prot201912529730610.1016/j.psep.2019.03.029 Galindo C A C, Monge E L P (2018) Business intelligence: Evaluation of occupational risks using a dashboard focused on decision making. In: 13th Iberian Conference on Information Systems and Technologies (CISTI). 1–4. https://doi.org/10.23919/CISTI.2018.8399345. ChakrabortyCGuptaBGhoshSKIdentification of chronic wound status under tele-wound network through smartphoneInt J Rough Sets and Data Anal (IJRSDA)201522587710.4018/IJRSDA.2015070104 Gumasing M J J, Sasot Z B (2019) An occupational risk analysis of garbage collection tasks in the Philippines. In: IEEE 6th International Conference on Industrial Engineering and Applications (ICIEA). 408–413. https://doi.org/10.1109/IEA.2019.8715109 MartinJERivasTMatíasJMTaboadaJArgüellesAA Bayesian network analysis of workplace accidents caused by falls from a heightSaf Sci200947220621410.1016/j.ssci.2008.03.004 1574_CR3 1574_CR1 C Chakraborty (1574_CR2) 2015; 2 JJ-C Ying (1574_CR26) 2020; 2020 JE Martin (1574_CR13) 2009; 47 1574_CR8 1574_CR7 1574_CR6 DH Patel (1574_CR16) 2019; 2019 1574_CR5 1574_CR18 1574_CR14 1574_CR15 K Mahajan (1574_CR12) 2021 1574_CR17 L Zhang (1574_CR27) 2014; 131 1574_CR21 S Tang (1574_CR23) 2021 C Sharma (1574_CR22) 2021 1574_CR24 1574_CR20 Q Yao (1574_CR25) 2021; 30 S Sarkar (1574_CR19) 2016; 2016 P Koščák (1574_CR10) 2019; 2019 S Chopra (1574_CR4) 2021 N Ichikawa (1574_CR9) 2015; 2015 M Li (1574_CR11) 2019; 125 |
References_xml | – volume: 2020 start-page: 94 year: 2020 ident: 1574_CR26 publication-title: Int Conf Mach Learn Cybernet (ICMLC) doi: 10.1109/ICMLC51923.2020.9469570 contributor: fullname: JJ-C Ying – volume: 131 start-page: 29 year: 2014 ident: 1574_CR27 publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2014.06.006 contributor: fullname: L Zhang – ident: 1574_CR8 doi: 10.1109/IEA.2019.8715109 – ident: 1574_CR15 doi: 10.1007/s11042-021-11069-7 – volume: 2016 start-page: 439 year: 2016 ident: 1574_CR19 publication-title: Int Conf Comput Tech Inform Commun Technol (ICCTICT) doi: 10.1109/ICCTICT.2016.7514621 contributor: fullname: S Sarkar – ident: 1574_CR1 doi: 10.1109/ISMSIT.2018.8567309 – start-page: 1 volume-title: Security and Communication Networks year: 2021 ident: 1574_CR22 doi: 10.1155/2021/5536170 contributor: fullname: C Sharma – start-page: 1 volume-title: Journal of Healthcare Engineering year: 2021 ident: 1574_CR23 doi: 10.1155/2021/3688881 contributor: fullname: S Tang – volume: 47 start-page: 206 issue: 2 year: 2009 ident: 1574_CR13 publication-title: Saf Sci doi: 10.1016/j.ssci.2008.03.004 contributor: fullname: JE Martin – ident: 1574_CR20 doi: 10.1109/ICRCICN.2017.8234531 – ident: 1574_CR3 doi: 10.4018/978-1-5225-0571-6.ch030 – ident: 1574_CR17 doi: 10.1109/SACI.2016.7507401 – volume: 125 start-page: 297 year: 2019 ident: 1574_CR11 publication-title: Process Saf Environ Prot doi: 10.1016/j.psep.2019.03.029 contributor: fullname: M Li – ident: 1574_CR24 doi: 10.1007/s13198-021-01262-0 – volume: 2019 start-page: 71 year: 2019 ident: 1574_CR16 publication-title: 3rd Int conf Electr Commun Aerosp Technol (ICECA) doi: 10.1109/ICECA.2019.8822104 contributor: fullname: DH Patel – ident: 1574_CR7 doi: 10.23919/CISTI.2018.8399345 – ident: 1574_CR18 doi: 10.1109/ICIEA52957.2021.9436720 – start-page: 1 volume-title: Computational Intelligence and Neuroscience year: 2021 ident: 1574_CR4 doi: 10.1155/2021/6455592 contributor: fullname: S Chopra – ident: 1574_CR5 doi: 10.1109/IICSPI51290.2020.9332394 – volume: 2 start-page: 58 issue: 2 year: 2015 ident: 1574_CR2 publication-title: Int J Rough Sets and Data Anal (IJRSDA) doi: 10.4018/IJRSDA.2015070104 contributor: fullname: C Chakraborty – ident: 1574_CR6 doi: 10.1109/ICITE.2018.8492572 – ident: 1574_CR14 doi: 10.1109/EEEIC/ICPSEurope49358.2020.9160852 – ident: 1574_CR21 doi: 10.1109/RAIT.2018.8389052 – volume: 2015 start-page: 1 year: 2015 ident: 1574_CR9 publication-title: IEEE IAS Electr Safety Workshop doi: 10.1109/ESW.2015.7094956 contributor: fullname: N Ichikawa – volume: 2019 start-page: 96 year: 2019 ident: 1574_CR10 publication-title: New Trends in Aviation Developm (NTAD) doi: 10.1109/NTAD.2019.8875592 contributor: fullname: P Koščák – start-page: 1 volume-title: Wireless Communications and Mobile Computing year: 2021 ident: 1574_CR12 doi: 10.1155/2021/7279260 contributor: fullname: K Mahajan – volume: 30 start-page: 541 issue: 1 year: 2021 ident: 1574_CR25 publication-title: J Intell Syst doi: 10.1515/jisys-2020-0123 contributor: fullname: Q Yao |
SSID | ssj0001214240 |
Score | 2.4412267 |
Snippet | Today, as the construction industry grows, the frequency of occupational accidents has risen as well. The advancement of technology, inadequacies in workplace... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Publisher |
StartPage | 633 |
SubjectTerms | Accident data Accident prediction Bayesian analysis Construction companies Construction industry Contingency tables Engineering Engineering Economics Frequency analysis Logistics Machine learning Marketing Occupational accidents Occupational safety Organization Original Article Quality Control Reliability Risk analysis Safety and Risk Tabulation |
Title | Network mining techniques to analyze the risk of the occupational accident via bayesian network |
URI | https://link.springer.com/article/10.1007/s13198-021-01574-1 https://www.proquest.com/docview/2653296173 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF60vejBt1itsgdvupJks69j0ZYi0osK3sIm2QURU7GpoL_e2U3SVNGDHgKBhGH5Mtl57Mw3CJ1yqbVQ1hJpA0ninHMiZU6JsSrL89jI0Pohtrdi8iCvho4mhy5SF8XTRXMi6TfqttcNlEUSV1EAFkzEBEKeLtgeBsrdHQyvxzdLqRXXvuWzK0owwmWg6naZnwV9NUmtn_ntaNRbnNHmv9a6hTZqBxMPKo3YRium2EHrS7SDuyiZVLXf-NlPh8ALHtcZLqdYO5qSD4PBM8Su8BxPrb-fLvERY51lbhppid8eNU71u3G9mLio5O6h-9Hw7nJM6kELJIOFliQUNGWWc4ALtrvcxDZj2gQiC2zKhaGWiVSYyII3p602cOUQttFIu6ngkjG6jzrFtDAHCEM4E3ClHCsbi1PLU6mVphAzhRkPUkt76KzBOnmp-DSSljnZwZYAbImHLQl7qN98jqT-t2ZJxBmNFHheIOy8wb99_Lu0w7-9foTWItfr4AvO-qhTvs7NMVqd5fOTWuM-Ac3Lz84 |
link.rule.ids | 315,782,786,27933,27934,41073,42142,48344,48347,49649,49652,52153 |
linkProvider | Springer Nature |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagHYCBN6I8PbCBpbz8GitoaUXpQpHYLCexJQYSRFMk-PWc86AFwQBDpEiJTtaXi_2dffcdQmdMaM2ltURYT5AoZYwIkYbEWJmkaWSEb8smtnd8_CCuek4mJ2pqYcps9-ZIspyp58Vu4C2CuJQCWMJ4RCDmaUeSReDL7e5wct1f2Ftx9Vvl9orklDDhybpe5mdDX9ekOdH8djZaLjn9jf8NdhOt1xQTdyuf2EJLJttGawvCgztIjavsb_xU9ofAn0quU1zkWDuhkneDgRtil3qOc1ve5wuKxFgnietHWuDXR41j_WZcNSbOKru76L7fm1wOSN1qgSQw0IL4PIypZQzwggkvNZFNqDYeTzwbM25CS3nMTWCBz2mrDVwpBG5hoF1fcEFpuIdaWZ6ZfYQhoPGYlE6XjUaxZbHQUocQNfkJ82IbdtB5A7Z6rhQ11Fw72cGmADZVwqb8Djpqvoeq_66pChgNAwncC4xdNPjPH_9u7eBvr5-ilcHkdqRGw_HNIVoNgM-4xAGfHqFW8TIzx2h5ms5Oavf7AFvi08c |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA-6geiD3-J0ah5807B-5aOPw21MHUNQwbeQtgn4YDtcJ-hf76Xt1in6ID4UAi1HuFxzd8n9fofQORNK8dAYIowjSJAwRoRIfKJNGCdJoIVriia293z8JHp9S5OzQPEX1e7zK8kS02BZmtK8M0lMpwa-geUIYssLwJ3xgED-0wwgkwFLb3b7N8PR0jmLxXIVRy0hp4QJJ6ywMz8L-uqf6qDz2z1p4X4GW_-f-DbarEJP3C1tZQet6HQXbSwREu4hOS6rwvFL0TcCLxhepzjPsLIEJh8aQ8yIbUk6zkwxzpaYirGKY9unNMdvzwpH6l1blCZOS7n76HHQf7gakqoFA4lhojlxuR9RwxjoDjbCRAcmpko7PHZMxLj2DeUR156BOE8ZpeFJIKHzPWX7hQtK_QPUSLNUHyIMiY7DwtDytdEgMiwSKlQ-ZFNuzJzI-C10MVe8nJRMG7LmVLZqk6A2WahNui3Unq-NrP66qfQY9b0QYjIQdjlfi_r179KO_vb5GVq76w3k6Hp8e4zWPQuIKKrS2qiRv870CVqdJrPTyhI_ATDc3IE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Network+mining+techniques+to+analyze+the+risk+of+the+occupational+accident+via+bayesian+network&rft.jtitle=International+journal+of+system+assurance+engineering+and+management&rft.au=Nayak%2C+Nihar+Ranjan&rft.au=Kumar%2C+Sumit&rft.au=Gupta%2C+Deepak&rft.au=Suri%2C+Ashish&rft.date=2022-03-01&rft.pub=Springer+India&rft.issn=0975-6809&rft.eissn=0976-4348&rft.volume=13&rft.issue=Suppl+1&rft.spage=633&rft.epage=641&rft_id=info:doi/10.1007%2Fs13198-021-01574-1&rft.externalDocID=10_1007_s13198_021_01574_1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0975-6809&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0975-6809&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0975-6809&client=summon |