Saint-Venant torsion of cylindrical orthotropic elliptical cross section

Highlights•Saint-Venant torsion of cylindrical orthotropic solid elliptical cross section.•Appropriate analytical solution for torsion and Prandtl stress functions.•Upper and lower bounds for the torsional rigidity. This paper deals with the Saint-Venant torsion of elastic cylindrical orthotropic so...

Full description

Saved in:
Bibliographic Details
Published in:Mechanics research communications Vol. 99; pp. 42 - 46
Main Authors: Ecsedi, István, Baksa, Attila
Format: Journal Article
Language:English
Published: Elsevier Ltd 01-07-2019
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Highlights•Saint-Venant torsion of cylindrical orthotropic solid elliptical cross section.•Appropriate analytical solution for torsion and Prandtl stress functions.•Upper and lower bounds for the torsional rigidity. This paper deals with the Saint-Venant torsion of elastic cylindrical orthotropic solid elliptical cross section. The origin of the cylindrical anisotropy coincides with the centroid of the elliptical cross section. By the use of principle of minimum of potential energy and principle of minimum of complementary energy approximate analytical solutions are derived for the torsion function and for the Prandtl’s stress function. Obtained upper and lower bounds for the torsional rigidity show the accuracy of the derived approximate analytic solutions.
AbstractList Highlights•Saint-Venant torsion of cylindrical orthotropic solid elliptical cross section.•Appropriate analytical solution for torsion and Prandtl stress functions.•Upper and lower bounds for the torsional rigidity. This paper deals with the Saint-Venant torsion of elastic cylindrical orthotropic solid elliptical cross section. The origin of the cylindrical anisotropy coincides with the centroid of the elliptical cross section. By the use of principle of minimum of potential energy and principle of minimum of complementary energy approximate analytical solutions are derived for the torsion function and for the Prandtl’s stress function. Obtained upper and lower bounds for the torsional rigidity show the accuracy of the derived approximate analytic solutions.
Author Baksa, Attila
Ecsedi, István
Author_xml – sequence: 1
  givenname: István
  surname: Ecsedi
  fullname: Ecsedi, István
– sequence: 2
  givenname: Attila
  surname: Baksa
  fullname: Baksa, Attila
  email: attila.baksa@uni-miskolc.hu
BookMark eNqFkN1KAzEQRoNUsK2-w77ArpNNmm0utagVCl74cxuS2YSmbJOSBKFv77YVvPRqYOB838yZkUmIwRJSUWgoUHG_a_YWt8lmjPumBSobEA2AuCJTuuxYzWTXTsgUQLJacMpuyCznHQB0ksOUrN-1D6X-skGHUpWYso-hiq7C4-BDnzzqoYqpbGNJ8eCxssPgD-W8xhRzrrLFMjK35NrpIdu73zknn89PH6t1vXl7eV09bGpkdFnq3rm-R0oFb3uJjBmjERdSdK511FhBtXbGCUSDvGsXXKIwnGsjGThHHWdzsrzkntuTdeqQ_F6no6KgTkbUTv0ZUScjCoQajYzo4wW1433f3iaV0duAtvdpfEL10f8f8gPBJ3RO
CitedBy_id crossref_primary_10_1016_j_ijengsci_2021_103603
crossref_primary_10_1007_s00707_021_03110_5
crossref_primary_10_1177_14644207211053457
crossref_primary_10_1007_s00419_023_02370_y
crossref_primary_10_1142_S2047684122500191
crossref_primary_10_1016_j_tafmec_2021_102977
crossref_primary_10_1142_S0219876221500687
crossref_primary_10_1007_s00419_021_02009_w
crossref_primary_10_1016_j_enganabound_2021_05_022
Cites_doi 10.1177/0306419017708642
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright_xml – notice: 2019 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.mechrescom.2019.06.006
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-3972
EndPage 46
ExternalDocumentID 10_1016_j_mechrescom_2019_06_006
S009364131830301X
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SST
SSZ
T5K
WUQ
ZMT
~G-
AAXKI
AAYXX
AFJKZ
AKRWK
CITATION
ID FETCH-LOGICAL-c318t-dffddc11642d9c33bbacc5967f2f1be61aafbf6ccbc472549c6b44ab930ff1f43
ISSN 0093-6413
IngestDate Thu Sep 26 19:19:56 EDT 2024
Fri Feb 23 02:24:21 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Potential energy
Complementary energy
Torsional rigidity
Saint-Venant torsion
Cylindrical orthotropy
Upper and lower bounds
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c318t-dffddc11642d9c33bbacc5967f2f1be61aafbf6ccbc472549c6b44ab930ff1f43
PageCount 5
ParticipantIDs crossref_primary_10_1016_j_mechrescom_2019_06_006
elsevier_sciencedirect_doi_10_1016_j_mechrescom_2019_06_006
PublicationCentury 2000
PublicationDate July 2019
2019-07-00
PublicationDateYYYYMMDD 2019-07-01
PublicationDate_xml – month: 07
  year: 2019
  text: July 2019
PublicationDecade 2010
PublicationTitle Mechanics research communications
PublicationYear 2019
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Renton (bib0006) 2000
Sadd (bib0004) 2005
Lekhnitskii (bib0003) 1971
Renton (bib0007) 2002
Ecsedi, Baksa (bib0008) 2017; 45
Richards (bib0013) 1977
Weber, Günther (bib0015) 1958
Dym (bib0012) 1973
Rand, Rowenski (bib0005) 2005
Washizu (bib0010) 1975
Shames, Dym (bib0011) 1985
Lekhnitskii (bib0002) 1963
Saint-Venant (bib0009) 1865; 10
Sokolnikoff (bib0001) 1956
Luire (bib0014) 2005
Washizu (10.1016/j.mechrescom.2019.06.006_bib0010) 1975
Lekhnitskii (10.1016/j.mechrescom.2019.06.006_bib0002) 1963
Lekhnitskii (10.1016/j.mechrescom.2019.06.006_bib0003) 1971
Rand (10.1016/j.mechrescom.2019.06.006_bib0005) 2005
Saint-Venant (10.1016/j.mechrescom.2019.06.006_bib0009) 1865; 10
Sadd (10.1016/j.mechrescom.2019.06.006_bib0004) 2005
Luire (10.1016/j.mechrescom.2019.06.006_bib0014) 2005
Sokolnikoff (10.1016/j.mechrescom.2019.06.006_bib0001) 1956
Ecsedi (10.1016/j.mechrescom.2019.06.006_bib0008) 2017; 45
Dym (10.1016/j.mechrescom.2019.06.006_bib0012) 1973
Renton (10.1016/j.mechrescom.2019.06.006_bib0006) 2000
Richards (10.1016/j.mechrescom.2019.06.006_bib0013) 1977
Shames (10.1016/j.mechrescom.2019.06.006_bib0011) 1985
Renton (10.1016/j.mechrescom.2019.06.006_bib0007) 2002
Weber (10.1016/j.mechrescom.2019.06.006_bib0015) 1958
References_xml – volume: 10
  start-page: 297
  year: 1865
  end-page: 349
  ident: bib0009
  article-title: Mémoire sur les divers genres d’homogénéité de corps solides et principalement sur l’ homogénéité semi-polaire on cylindrique, et les homogénéites polire on sphericonique et sphérique, liouville
  publication-title: J. Math. Ser. II.
  contributor:
    fullname: Saint-Venant
– year: 1973
  ident: bib0012
  publication-title: Solid Mechanics: A Variational Approach
  contributor:
    fullname: Dym
– year: 1956
  ident: bib0001
  publication-title: Mathematical Theory of Elasticity
  contributor:
    fullname: Sokolnikoff
– year: 2002
  ident: bib0007
  publication-title: Applied Elaticity. Matrix and Tensor Analysis of Elastic Continua
  contributor:
    fullname: Renton
– year: 1985
  ident: bib0011
  publication-title: Energy and Finite Element Methods in Structural Mechanics
  contributor:
    fullname: Dym
– year: 2005
  ident: bib0004
  publication-title: Elasticity: Theory, Applications and Numerics
  contributor:
    fullname: Sadd
– year: 1977
  ident: bib0013
  publication-title: Energy Method in Stress Analysis: with an Introduction to Finite Element Techniques
  contributor:
    fullname: Richards
– year: 2000
  ident: bib0006
  publication-title: Elastic Beams and Frames
  contributor:
    fullname: Renton
– year: 2005
  ident: bib0005
  publication-title: Analytical Methods in Anisotropic Elasticity
  contributor:
    fullname: Rowenski
– year: 1958
  ident: bib0015
  publication-title: Torsionstheorie
  contributor:
    fullname: Günther
– year: 1963
  ident: bib0002
  publication-title: Theory of Elasticity of an Anisotropic Elastic Body
  contributor:
    fullname: Lekhnitskii
– year: 1971
  ident: bib0003
  publication-title: Torsion of Anisotropic and Non-homogeneous Beams
  contributor:
    fullname: Lekhnitskii
– volume: 45
  start-page: 286
  year: 2017
  end-page: 294
  ident: bib0008
  article-title: Saint-Venant torsion of anisotropic elliptical bar
  publication-title: Int. J. Mech. Eng.Educ.
  contributor:
    fullname: Baksa
– year: 1975
  ident: bib0010
  publication-title: Variational Methods in Elasticity and Plasticity
  contributor:
    fullname: Washizu
– year: 2005
  ident: bib0014
  publication-title: Theory of Elasticity
  contributor:
    fullname: Luire
– year: 1971
  ident: 10.1016/j.mechrescom.2019.06.006_bib0003
  contributor:
    fullname: Lekhnitskii
– year: 1963
  ident: 10.1016/j.mechrescom.2019.06.006_bib0002
  contributor:
    fullname: Lekhnitskii
– year: 1956
  ident: 10.1016/j.mechrescom.2019.06.006_bib0001
  contributor:
    fullname: Sokolnikoff
– year: 1973
  ident: 10.1016/j.mechrescom.2019.06.006_bib0012
  contributor:
    fullname: Dym
– year: 2005
  ident: 10.1016/j.mechrescom.2019.06.006_bib0004
  contributor:
    fullname: Sadd
– year: 1975
  ident: 10.1016/j.mechrescom.2019.06.006_bib0010
  contributor:
    fullname: Washizu
– year: 2002
  ident: 10.1016/j.mechrescom.2019.06.006_bib0007
  contributor:
    fullname: Renton
– volume: 45
  start-page: 286
  issue: 3
  year: 2017
  ident: 10.1016/j.mechrescom.2019.06.006_bib0008
  article-title: Saint-Venant torsion of anisotropic elliptical bar
  publication-title: Int. J. Mech. Eng.Educ.
  doi: 10.1177/0306419017708642
  contributor:
    fullname: Ecsedi
– year: 2005
  ident: 10.1016/j.mechrescom.2019.06.006_bib0005
  contributor:
    fullname: Rand
– volume: 10
  start-page: 297
  year: 1865
  ident: 10.1016/j.mechrescom.2019.06.006_bib0009
  article-title: Mémoire sur les divers genres d’homogénéité de corps solides et principalement sur l’ homogénéité semi-polaire on cylindrique, et les homogénéites polire on sphericonique et sphérique, liouville
  publication-title: J. Math. Ser. II.
  contributor:
    fullname: Saint-Venant
– year: 1985
  ident: 10.1016/j.mechrescom.2019.06.006_bib0011
  contributor:
    fullname: Shames
– year: 1977
  ident: 10.1016/j.mechrescom.2019.06.006_bib0013
  contributor:
    fullname: Richards
– year: 1958
  ident: 10.1016/j.mechrescom.2019.06.006_bib0015
  contributor:
    fullname: Weber
– year: 2005
  ident: 10.1016/j.mechrescom.2019.06.006_bib0014
  contributor:
    fullname: Luire
– year: 2000
  ident: 10.1016/j.mechrescom.2019.06.006_bib0006
  contributor:
    fullname: Renton
SSID ssj0007940
Score 2.2998931
Snippet Highlights•Saint-Venant torsion of cylindrical orthotropic solid elliptical cross section.•Appropriate analytical solution for torsion and Prandtl stress...
SourceID crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 42
SubjectTerms Complementary energy
Cylindrical orthotropy
Potential energy
Saint-Venant torsion
Torsional rigidity
Upper and lower bounds
Title Saint-Venant torsion of cylindrical orthotropic elliptical cross section
URI https://dx.doi.org/10.1016/j.mechrescom.2019.06.006
Volume 99
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELYKXOgBlT4EtFQ-9LYyysMbb8RpC1ttK7WXpdXeonhsS1DYXZEsEv-e8WM3pkWCCvUSRZaSjD2jmW8m8yDkUykyyArQrNBCMt63Y17y_oAlSghQWonSzTocT8SP6eB0xEdd_ny39l85jWvIa1s5-w_cXr8UF_AeeY5X5Dpen8T3Cbr6LfulbYJLz47SCYgQbhFQKt8QxP6rmbfX88U59GxDzoUPaDuL2WtcctYsRq3fta0Ptv2cQ28gm60eFZZ0uBwaNIZO7zTtjfsJn66l73P9u_FR3LY9v6zjeIMrcYrjDetCmC7ryCnWMmcF92WlR9rr0oHIGcKde8rWT0MK2tL31Qp210ci_9LoPrhwcXSFO8U92hQfS5Vrupr80UTbmeWJpcWSgsrK-nvTDbKVoRZCJbg1_DqaflsbalRFvkIp0B4SvXz638Pfexi9RIjk7BXZCa4EHXoZ2CUv9Ow1eRk1mHxDxrE00CANdG5oJA00kgbaSQN1FNAgDW_Jzy-js5MxC7MzGODGW6aMUQpSdIYzVUKeS1kD9MtCmMykUhdpXRtpCgAJXNggARSS81qWeWJManj-jmzO5jO9R2gpEo0WXSUg0fvmSV0aBKFK8xxExqXYJ-nqTKqFb5FSrXIHL6ruHCt7jpVLoyz2yfHq8KoA9TyEq5Dvjz598Kyn35PtTq4_kM32eqkPyUajlh-DhNwBPW5_sw
link.rule.ids 315,782,786,27933,27934
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Saint-Venant+torsion+of+cylindrical+orthotropic+elliptical+cross+section&rft.jtitle=Mechanics+research+communications&rft.au=Ecsedi%2C+Istv%C3%A1n&rft.au=Baksa%2C+Attila&rft.date=2019-07-01&rft.pub=Elsevier+Ltd&rft.issn=0093-6413&rft.eissn=1873-3972&rft.volume=99&rft.spage=42&rft.epage=46&rft_id=info:doi/10.1016%2Fj.mechrescom.2019.06.006&rft.externalDocID=S009364131830301X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0093-6413&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0093-6413&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0093-6413&client=summon