Some "LIM INF" Results for Increments of a Wiener Process
Let W(t) for$0 \leq t < \infty$be a standard Wiener process, suppose$0 < a_T \leq T$for$T > 0$, and let d(T, t) = {2t[log(T/t) + log log t ]}1/2. Quantities such as$\lim, \inf_{T \rightarrow \infty} \sup_{a_T \leq t \leq T} \frac{W(T) - W(T - t)}{d(T,t)},$ $\lim, \inf_{T \rightarrow \infty}...
Saved in:
Published in: | The Annals of probability Vol. 17; no. 3; pp. 1063 - 1082 |
---|---|
Main Authors: | , |
Format: | Journal Article |
Language: | English |
Published: |
Hayward, CA
Institute of Mathematical Statistics
01-07-1989
The Institute of Mathematical Statistics |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Let W(t) for$0 \leq t < \infty$be a standard Wiener process, suppose$0 < a_T \leq T$for$T > 0$, and let d(T, t) = {2t[log(T/t) + log log t ]}1/2. Quantities such as$\lim, \inf_{T \rightarrow \infty} \sup_{a_T \leq t \leq T} \frac{W(T) - W(T - t)}{d(T,t)},$
$\lim, \inf_{T \rightarrow \infty} \sup_{\substack{0 \leq t \leq T - a_T\\0 \leq s \leq a_T}} \frac{|W(t + s) - W(t)|}{d(t + a_T, a_T)}$and$\lim, \inf_{T \rightarrow \infty} \sup_{\substack{0 \leq u < v \leq T\\a_T \leq v - u}} \frac{|W(v) - W(u)|}{d(v, v - u)}$are investigated. |
---|---|
ISSN: | 0091-1798 2168-894X |
DOI: | 10.1214/aop/1176991257 |