A continuous-time analog of the Martingale model of forecast evolution

In many practical situations, a manager would like to simulate forecasts for periods whose duration (e.g., week) is not equal to the periods (e.g., month) for which past forecasting data are available. This article addresses this problem by developing a continuous-time analog of the Martingale model...

Full description

Saved in:
Bibliographic Details
Published in:IIE transactions Vol. 46; no. 1; pp. 23 - 34
Main Authors: Sapra, Amar, Jackson, Peter L.
Format: Journal Article
Language:English
Published: Norcross Taylor & Francis Group 02-01-2014
Taylor & Francis Ltd
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In many practical situations, a manager would like to simulate forecasts for periods whose duration (e.g., week) is not equal to the periods (e.g., month) for which past forecasting data are available. This article addresses this problem by developing a continuous-time analog of the Martingale model of forecast evolution, called the Continuous-Time Martingale Model of Forecast Evolution (CTMMFE). The CTMMFE is used to parameterize the variance-covariance matrix of forecast updates in such a way that the matrix can be scaled for any planning period length. The parameters can then be estimated from past forecasting data corresponding to a specific planning period. Once the parameters are estimated, a variance-covariance matrix can be generated for any planning period length. Numerical experiments are conducted to derive insights into how various characteristics of the variance-covariance matrix (for example, the underlying correlation structure) influence the number of parameters needed as well as the accuracy of the approximation.
AbstractList In many practical situations, a manager would like to simulate forecasts for periods whose duration (e.g., week) is not equal to the periods (e.g., month) for which past forecasting data are available. This article addresses this problem by developing a continuous-time analog of the Martingale model of forecast evolution, called the Continuous-Time Martingale Model of Forecast Evolution (CTMMFE). The CTMMFE is used to parameterize the variance-covariance matrix of forecast updates in such a way that the matrix can be scaled for any planning period length. The parameters can then be estimated from past forecasting data corresponding to a specific planning period. Once the parameters are estimated, a variance-covariance matrix can be generated for any planning period length. Numerical experiments are conducted to derive insights into how various characteristics of the variance-covariance matrix (for example, the underlying correlation structure) influence the number of parameters needed as well as the accuracy of the approximation.
In many practical situations, a manager would like to simulate forecasts for periods whose duration (e.g., week) is not equal to the periods (e.g., month) for which past forecasting data are available. This article addresses this problem by developing a continuous-time analog of the Martingale model of forecast evolution, called the Continuous-Time Martingale Model of Forecast Evolution (CTMMFE). The CTMMFE is used to parameterize the variance-covariance matrix of forecast updates in such a way that the matrix can be scaled for any planning period length. The parameters can then be estimated from past forecasting data corresponding to a specific planning period. Once the parameters are estimated, a variance-covariance matrix can be generated for any planning period length. Numerical experiments are conducted to derive insights into how various characteristics of the variance-covariance matrix (for example, the underlying correlation structure) influence the number of parameters needed as well as the accuracy of the approximation. [PUBLICATION ABSTRACT]
In many practical situations, a manager would like to simulate forecasts for periods whose duration (e.g., week) is not equal to the periods (e.g., month) for which past forecasting data are available. This article addresses this problem by developing a continuous-time analog of the Martingale model of forecast evolution, called the Continuous-Time Martingale Model of Forecast Evolution (CTMMFE). The CTMMFE is used to parameterize the varianceacovariance matrix of forecast updates in such a way that the matrix can be scaled for any planning period length. The parameters can then be estimated from past forecasting data corresponding to a specific planning period. Once the parameters are estimated, a varianceacovariance matrix can be generated for any planning period length. Numerical experiments are conducted to derive insights into how various characteristics of the varianceacovariance matrix (for example, the underlying correlation structure) influence the number of parameters needed as well as the accuracy of the approximation.
Author Sapra, Amar
Jackson, Peter L.
Author_xml – sequence: 1
  givenname: Amar
  surname: Sapra
  fullname: Sapra, Amar
  organization: Indian Institute of Management Bangalore
– sequence: 2
  givenname: Peter L.
  surname: Jackson
  fullname: Jackson, Peter L.
  organization: School of Operations Research and Industrial Engineering , Cornell University
BookMark eNp9kFFLwzAQgINMcJv-Ax8KvvjSeWnSpH2SMZwKE18UfAtpms6ONJlJq-zfmzJ98UE4OLj77rj7ZmhindUIXWJYYCjgBjiFAvO3RQY4W3CGCeMnaIpzmqdFQWCCpiOSjswZmoWwAwAOuJii9TJRzvatHdwQ0r7tdCKtNG6buCbp33XyJH3sbqXRSedqbcZ647xWMvSJ_nRm6Ftnz9FpI03QFz95jl7Xdy-rh3TzfP-4Wm5SRTDv0xxXGBdMl5Twsq5rxZsG6lzLnMcgGsqSyyrjNC-ZqhiwvC4rTilktOa0wGSOro979959DDr0omuD0sZIq-MDAufACKMMyohe_UF3bvDxt0hRyli8AxeRokdKeReC143Y-7aT_iAwiFGu-JUrRrniKDeO3R7HWhtldPLLeVOLXh6M842XVrVBkH83fAMZW4DI
CODEN IIETDM
Cites_doi 10.1287/msom.1080.0245
10.1016/j.ijpe.2010.11.005
10.1287/mnsc.18.7.370
10.1287/mnsc.1120.1581
10.1287/opre.51.6.969.24920
10.1007/978-1-4612-0949-2
10.1287/msom.1060.0116
10.1080/07408179408966604
10.1002/(SICI)1520-6750(199603)43:2<289::AID-NAV8>3.0.CO;2-6
10.1287/mnsc.47.9.1268.9787
10.1287/mnsc.16.2.B93
10.1080/07408170600967131
10.1287/mnsc.47.10.1326.10260
10.1287/opre.1060.0338
10.1007/978-3-642-51693-1_2
ContentType Journal Article
Copyright Copyright Taylor & Francis Group, LLC 2014
Copyright Taylor & Francis Ltd. 2014
Copyright_xml – notice: Copyright Taylor & Francis Group, LLC 2014
– notice: Copyright Taylor & Francis Ltd. 2014
DBID AAYXX
CITATION
7TB
8FD
FR3
DOI 10.1080/0740817X.2012.761367
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
DatabaseTitle CrossRef
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Engineering Research Database
DatabaseTitleList
Technology Research Database
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1545-8830
2472-5862
EndPage 34
ExternalDocumentID 3111683601
10_1080_0740817X_2012_761367
761367
Genre ORIGINAL ARTICLES
Feature
GroupedDBID -~X
.7F
.86
.QJ
0BK
0R~
29I
2DF
3YN
4.4
5GY
5VS
6TJ
85S
8VB
AAAVI
AAENE
AALDU
AAMIU
AAPBV
AAPUL
AAQRR
ABBKH
ABDBF
ABFIM
ABHAV
ABJVF
ABLIJ
ABPEM
ABPPZ
ABPTK
ABQHQ
ABXUL
ACGEJ
ACGFO
ACGFS
ACNCT
ACTIO
ADCVX
ADGTB
ADINQ
ADXPE
AEGXH
AEGYZ
AEISY
AEMOZ
AENEX
AEOZL
AFKVX
AFOLD
AFWLO
AGDLA
AGMYJ
AHBYD
AHDLD
AIAGR
AIJEM
AIRXU
AJWEG
AKBVH
AKOOK
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
EAP
EAS
EBR
EBS
EBU
EJD
EMK
EPL
EST
ESX
E~A
E~B
FAC
FJW
FUNRP
FVPDL
GEVLZ
GTTXZ
H13
HF~
HZ~
H~9
H~P
I-F
IAO
IEA
IGG
IGS
IOF
IPNFZ
J.P
KYCEM
M4Z
MK~
N95
NA5
NX~
O9-
P2P
QWB
RIG
RNANH
RNS
ROSJB
RTWRZ
RWL
RXW
S-T
SNACF
TAE
TAJZE
TEN
TFL
TFT
TFW
TH9
TN5
TNC
TTHFI
TUS
TWF
U5U
UPT
UT5
UU3
V1K
WH7
ZGOLN
ZL0
~S~
AAYXX
ABJNI
ABPAQ
ABXYU
AHDZW
CITATION
K1G
TBQAZ
TDBHL
TUROJ
7TB
8FD
FR3
ID FETCH-LOGICAL-c317t-51b1186e94379dddc7ff0d5ea57a573e0997ab274596cb6065d9b744024d74813
IEDL.DBID TFW
ISSN 0740-817X
2472-5854
IngestDate Fri Oct 25 04:48:30 EDT 2024
Mon Nov 04 11:15:39 EST 2024
Thu Nov 21 22:30:59 EST 2024
Tue Jun 13 19:35:02 EDT 2023
IsPeerReviewed false
IsScholarly false
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c317t-51b1186e94379dddc7ff0d5ea57a573e0997ab274596cb6065d9b744024d74813
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 1446618618
PQPubID 35122
PageCount 12
ParticipantIDs informaworld_taylorfrancis_310_1080_0740817X_2012_761367
proquest_journals_1446618618
proquest_miscellaneous_1506364609
crossref_primary_10_1080_0740817X_2012_761367
PublicationCentury 2000
PublicationDate 2014-01-02
PublicationDateYYYYMMDD 2014-01-02
PublicationDate_xml – month: 01
  year: 2014
  text: 2014-01-02
  day: 02
PublicationDecade 2010
PublicationPlace Norcross
PublicationPlace_xml – name: Norcross
PublicationTitle IIE transactions
PublicationYear 2014
Publisher Taylor & Francis Group
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis Group
– name: Taylor & Francis Ltd
References CIT0010
McKean H.P. (CIT0015) 1969
CIT0020
CIT0001
CIT0011
CIT0004a
Rudin W. (CIT0004b) 1976
Chopra S. (CIT0004) 2007
CIT0014a
CIT0014
CIT0002
Ikeda N. (CIT0013) 1989
CIT0005
CIT0016
CIT0007
CIT0018
CIT0006
CIT0009
CIT0008
CIT0019
References_xml – ident: CIT0018
  doi: 10.1287/msom.1080.0245
– ident: CIT0001
  doi: 10.1016/j.ijpe.2010.11.005
– volume-title: Supply Chain Management: Strategy, Planning, and Operation third edition
  year: 2007
  ident: CIT0004
  contributor:
    fullname: Chopra S.
– ident: CIT0008
  doi: 10.1287/mnsc.18.7.370
– ident: CIT0016
  doi: 10.1287/mnsc.1120.1581
– ident: CIT0004a
  doi: 10.1287/opre.51.6.969.24920
– volume-title: Stochastic Differential Equations and Diffusion Processes, second edition
  year: 1989
  ident: CIT0013
  contributor:
    fullname: Ikeda N.
– ident: CIT0010
– volume-title: Stochastic Integrals
  year: 1969
  ident: CIT0015
  contributor:
    fullname: McKean H.P.
– ident: CIT0014
  doi: 10.1007/978-1-4612-0949-2
– volume-title: Principles of Mathematical Analysis, third edition
  year: 1976
  ident: CIT0004b
  contributor:
    fullname: Rudin W.
– ident: CIT0011
  doi: 10.1287/msom.1060.0116
– ident: CIT0009
  doi: 10.1080/07408179408966604
– ident: CIT0006
  doi: 10.1002/(SICI)1520-6750(199603)43:2<289::AID-NAV8>3.0.CO;2-6
– ident: CIT0019
  doi: 10.1287/mnsc.47.9.1268.9787
– ident: CIT0007
  doi: 10.1287/mnsc.16.2.B93
– ident: CIT0020
  doi: 10.1080/07408170600967131
– ident: CIT0002
  doi: 10.1287/mnsc.47.10.1326.10260
– ident: CIT0014a
  doi: 10.1287/opre.1060.0338
– ident: CIT0005
  doi: 10.1007/978-3-642-51693-1_2
SSID ssj0007018
Score 1.6919926
Snippet In many practical situations, a manager would like to simulate forecasts for periods whose duration (e.g., week) is not equal to the periods (e.g., month) for...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Publisher
StartPage 23
SubjectTerms Approximation
forecast evolution
Forecasting
Forecasting techniques
Game theory
Martingale
Mathematical problems
Parameter estimation
Stochastic models
Studies
Title A continuous-time analog of the Martingale model of forecast evolution
URI https://www.tandfonline.com/doi/abs/10.1080/0740817X.2012.761367
https://www.proquest.com/docview/1446618618
https://search.proquest.com/docview/1506364609
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagEwy8EYWCjMRqyMuPjBU0YmKhiG6WE9sSS4pIwu_nLo-qFYIBpCxJ5MQ6n-_lu-8IueE8N4bbhCmjApaE0jHjfcR8YYRzeSpAPmDo4lk-LdTDDGFyVlX8mFaJPrTvgCJaWY2b2-TVkBF3B1oPFJlcYGJWdAt-eCywnBxMG2Trefa6EsUyaAN8OIDhiKF27oePbOimDeTSb5K6VT_Z_v8nfkD2etOTTjteOSRbrjwiu2uAhMckm1LMXX8rm2VTMew7T02J4R269BRMRdqhDqBWoW0PHXwO83eFqWrqPns-PiEv2Wx-_8j6TgusAPuhZjzMwdEQLkV0QmttIb0PLHeGS7hih-W1JgcHlqeiyMHn4TbNEVowSqxMVBifklG5LN0Zoc5GzksPbpcTsPSx4bkSgTIgGkBbhsWYsIHG-r0D1NDhgFPa00cjfXRHnzFR6wuh6zaQ4buuIzr-fehkWDTd78xKo_-LPQJCNSbXq9ewp_CgxJQOyKsRdTEWiQjS87___YLswF3ShmuiCRnVH427JNuVba5aJv0CY0fjJw
link.rule.ids 315,782,786,1455,1509,27933,27934,58021,59734,60523
linkProvider Taylor & Francis
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDLZ4HIADb8RgQJC4BvpK0h4nYAIBuzDEblHaJBKXDrGN34_dB2JCcEBIPTVK2ziJ7c91PgOcCZEbI2zCU5MGPAmV48b7iPvCSOfyTKJ-oNDFoxqM0qtrosnptWdhKK2SMLSviSIqXU2bm4LRbUrcBZo9tGRqRJlZ0TkC8ViqRVhG3zgm-vxh__lTGaugCvFRD05d2tNzPzxlzjrNcZd-09WVAepv_MOnb8J6432yXr1ctmDBlduw9oWTcAf6PUbp6y_lbDybcCo9z0xJER429gy9RVYTD5BhYVUZHbqPA3CFmUyZe2-W8i489a-Hlze8KbbAC3QhplyEOWIN6TIiKLTWFsr7wApnhMIrdnTC1uSIYUUmixxhj7BZTuyCUWJVkobxHiyV49LtA3M2cl55RF5O4uzHRuSpDFKD2gENZlh0gLdC1q81p4YOW6rSRj6a5KNr-XQg_ToTelrFMnxdeETHv3fttrOmm8050QSBqUxAmHbg9LMZtxX9KzGlQ_FqIl6MZSKD7ODvbz-BlZvhw72-vx3cHcIqtiRV9CbqwtL0beaOYHFiZ8fViv0AzZ7nSw
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB58gOjBt7g-I3iN9pWkPYpuUZRFUNFbSJsEvHQXd9ff70wfiyJ6UOipYdowSWbyTSbfAJwKURgjbMJTkwY8CZXjxvuI-9JI54pMon2g0MWDGrykV32iyZnd4qe0SsLQviGKqG01Le6R9V1G3Dl6PXRk6oUSs6IzxOGxVPOwKIMGVD3mzzNbrII6wkcSnES6y3M_fOWLc_pCXfrNVNf-J1_7f8_XYbXde7KLZrJswJyrNmHlEyPhFuQXjJLXX6vpcDrmVHiemYriO2zoGe4VWUM7QG6F1UV06D3235VmPGHuvZ3I2_CU9x8vr3lbaoGXuIGYcBEWiDSky4ie0FpbKu8DK5wRCp_Y0f1aUyCCFZksCwQ9wmYFcQtGiVVJGsY7sFANK7cLzNnIeeURdzmJYx8bUaQySA3aBnSXYdkD3ulYjxpGDR12RKWtfjTpRzf66UH6eSD0pI5k-KbsiI5_Fz3oBk23S3OsCQBTkYAw7cHJrBkXFZ2UmMqhejXRLsYykUG29_e_H8PS_VWu724Gt_uwjA1JHbqJDmBh8jZ1hzA_ttOjer5-APus5e8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+continuous-time+analog+of+the+Martingale+model+of+forecast+evolution&rft.jtitle=IIE+transactions&rft.au=Sapra%2C+Amar&rft.au=Jackson%2C+Peter+L.&rft.date=2014-01-02&rft.pub=Taylor+%26+Francis+Group&rft.issn=0740-817X&rft.eissn=1545-8830&rft.volume=46&rft.issue=1&rft.spage=23&rft.epage=34&rft_id=info:doi/10.1080%2F0740817X.2012.761367&rft.externalDocID=761367
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-817X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-817X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-817X&client=summon