A continuous-time analog of the Martingale model of forecast evolution
In many practical situations, a manager would like to simulate forecasts for periods whose duration (e.g., week) is not equal to the periods (e.g., month) for which past forecasting data are available. This article addresses this problem by developing a continuous-time analog of the Martingale model...
Saved in:
Published in: | IIE transactions Vol. 46; no. 1; pp. 23 - 34 |
---|---|
Main Authors: | , |
Format: | Journal Article |
Language: | English |
Published: |
Norcross
Taylor & Francis Group
02-01-2014
Taylor & Francis Ltd |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | In many practical situations, a manager would like to simulate forecasts for periods whose duration (e.g., week) is not equal to the periods (e.g., month) for which past forecasting data are available. This article addresses this problem by developing a continuous-time analog of the Martingale model of forecast evolution, called the Continuous-Time Martingale Model of Forecast Evolution (CTMMFE). The CTMMFE is used to parameterize the variance-covariance matrix of forecast updates in such a way that the matrix can be scaled for any planning period length. The parameters can then be estimated from past forecasting data corresponding to a specific planning period. Once the parameters are estimated, a variance-covariance matrix can be generated for any planning period length. Numerical experiments are conducted to derive insights into how various characteristics of the variance-covariance matrix (for example, the underlying correlation structure) influence the number of parameters needed as well as the accuracy of the approximation. |
---|---|
AbstractList | In many practical situations, a manager would like to simulate forecasts for periods whose duration (e.g., week) is not equal to the periods (e.g., month) for which past forecasting data are available. This article addresses this problem by developing a continuous-time analog of the Martingale model of forecast evolution, called the Continuous-Time Martingale Model of Forecast Evolution (CTMMFE). The CTMMFE is used to parameterize the variance-covariance matrix of forecast updates in such a way that the matrix can be scaled for any planning period length. The parameters can then be estimated from past forecasting data corresponding to a specific planning period. Once the parameters are estimated, a variance-covariance matrix can be generated for any planning period length. Numerical experiments are conducted to derive insights into how various characteristics of the variance-covariance matrix (for example, the underlying correlation structure) influence the number of parameters needed as well as the accuracy of the approximation. In many practical situations, a manager would like to simulate forecasts for periods whose duration (e.g., week) is not equal to the periods (e.g., month) for which past forecasting data are available. This article addresses this problem by developing a continuous-time analog of the Martingale model of forecast evolution, called the Continuous-Time Martingale Model of Forecast Evolution (CTMMFE). The CTMMFE is used to parameterize the variance-covariance matrix of forecast updates in such a way that the matrix can be scaled for any planning period length. The parameters can then be estimated from past forecasting data corresponding to a specific planning period. Once the parameters are estimated, a variance-covariance matrix can be generated for any planning period length. Numerical experiments are conducted to derive insights into how various characteristics of the variance-covariance matrix (for example, the underlying correlation structure) influence the number of parameters needed as well as the accuracy of the approximation. [PUBLICATION ABSTRACT] In many practical situations, a manager would like to simulate forecasts for periods whose duration (e.g., week) is not equal to the periods (e.g., month) for which past forecasting data are available. This article addresses this problem by developing a continuous-time analog of the Martingale model of forecast evolution, called the Continuous-Time Martingale Model of Forecast Evolution (CTMMFE). The CTMMFE is used to parameterize the varianceacovariance matrix of forecast updates in such a way that the matrix can be scaled for any planning period length. The parameters can then be estimated from past forecasting data corresponding to a specific planning period. Once the parameters are estimated, a varianceacovariance matrix can be generated for any planning period length. Numerical experiments are conducted to derive insights into how various characteristics of the varianceacovariance matrix (for example, the underlying correlation structure) influence the number of parameters needed as well as the accuracy of the approximation. |
Author | Sapra, Amar Jackson, Peter L. |
Author_xml | – sequence: 1 givenname: Amar surname: Sapra fullname: Sapra, Amar organization: Indian Institute of Management Bangalore – sequence: 2 givenname: Peter L. surname: Jackson fullname: Jackson, Peter L. organization: School of Operations Research and Industrial Engineering , Cornell University |
BookMark | eNp9kFFLwzAQgINMcJv-Ax8KvvjSeWnSpH2SMZwKE18UfAtpms6ONJlJq-zfmzJ98UE4OLj77rj7ZmhindUIXWJYYCjgBjiFAvO3RQY4W3CGCeMnaIpzmqdFQWCCpiOSjswZmoWwAwAOuJii9TJRzvatHdwQ0r7tdCKtNG6buCbp33XyJH3sbqXRSedqbcZ647xWMvSJ_nRm6Ftnz9FpI03QFz95jl7Xdy-rh3TzfP-4Wm5SRTDv0xxXGBdMl5Twsq5rxZsG6lzLnMcgGsqSyyrjNC-ZqhiwvC4rTilktOa0wGSOro979959DDr0omuD0sZIq-MDAufACKMMyohe_UF3bvDxt0hRyli8AxeRokdKeReC143Y-7aT_iAwiFGu-JUrRrniKDeO3R7HWhtldPLLeVOLXh6M842XVrVBkH83fAMZW4DI |
CODEN | IIETDM |
Cites_doi | 10.1287/msom.1080.0245 10.1016/j.ijpe.2010.11.005 10.1287/mnsc.18.7.370 10.1287/mnsc.1120.1581 10.1287/opre.51.6.969.24920 10.1007/978-1-4612-0949-2 10.1287/msom.1060.0116 10.1080/07408179408966604 10.1002/(SICI)1520-6750(199603)43:2<289::AID-NAV8>3.0.CO;2-6 10.1287/mnsc.47.9.1268.9787 10.1287/mnsc.16.2.B93 10.1080/07408170600967131 10.1287/mnsc.47.10.1326.10260 10.1287/opre.1060.0338 10.1007/978-3-642-51693-1_2 |
ContentType | Journal Article |
Copyright | Copyright Taylor & Francis Group, LLC 2014 Copyright Taylor & Francis Ltd. 2014 |
Copyright_xml | – notice: Copyright Taylor & Francis Group, LLC 2014 – notice: Copyright Taylor & Francis Ltd. 2014 |
DBID | AAYXX CITATION 7TB 8FD FR3 |
DOI | 10.1080/0740817X.2012.761367 |
DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database |
DatabaseTitle | CrossRef Technology Research Database Mechanical & Transportation Engineering Abstracts Engineering Research Database |
DatabaseTitleList | Technology Research Database Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1545-8830 2472-5862 |
EndPage | 34 |
ExternalDocumentID | 3111683601 10_1080_0740817X_2012_761367 761367 |
Genre | ORIGINAL ARTICLES Feature |
GroupedDBID | -~X .7F .86 .QJ 0BK 0R~ 29I 2DF 3YN 4.4 5GY 5VS 6TJ 85S 8VB AAAVI AAENE AALDU AAMIU AAPBV AAPUL AAQRR ABBKH ABDBF ABFIM ABHAV ABJVF ABLIJ ABPEM ABPPZ ABPTK ABQHQ ABXUL ACGEJ ACGFO ACGFS ACNCT ACTIO ADCVX ADGTB ADINQ ADXPE AEGXH AEGYZ AEISY AEMOZ AENEX AEOZL AFKVX AFOLD AFWLO AGDLA AGMYJ AHBYD AHDLD AIAGR AIJEM AIRXU AJWEG AKBVH AKOOK AKVCP ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW BLEHA CCCUG CE4 CS3 DGEBU DKSSO EAP EAS EBR EBS EBU EJD EMK EPL EST ESX E~A E~B FAC FJW FUNRP FVPDL GEVLZ GTTXZ H13 HF~ HZ~ H~9 H~P I-F IAO IEA IGG IGS IOF IPNFZ J.P KYCEM M4Z MK~ N95 NA5 NX~ O9- P2P QWB RIG RNANH RNS ROSJB RTWRZ RWL RXW S-T SNACF TAE TAJZE TEN TFL TFT TFW TH9 TN5 TNC TTHFI TUS TWF U5U UPT UT5 UU3 V1K WH7 ZGOLN ZL0 ~S~ AAYXX ABJNI ABPAQ ABXYU AHDZW CITATION K1G TBQAZ TDBHL TUROJ 7TB 8FD FR3 |
ID | FETCH-LOGICAL-c317t-51b1186e94379dddc7ff0d5ea57a573e0997ab274596cb6065d9b744024d74813 |
IEDL.DBID | TFW |
ISSN | 0740-817X 2472-5854 |
IngestDate | Fri Oct 25 04:48:30 EDT 2024 Mon Nov 04 11:15:39 EST 2024 Thu Nov 21 22:30:59 EST 2024 Tue Jun 13 19:35:02 EDT 2023 |
IsPeerReviewed | false |
IsScholarly | false |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c317t-51b1186e94379dddc7ff0d5ea57a573e0997ab274596cb6065d9b744024d74813 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 1446618618 |
PQPubID | 35122 |
PageCount | 12 |
ParticipantIDs | informaworld_taylorfrancis_310_1080_0740817X_2012_761367 proquest_journals_1446618618 proquest_miscellaneous_1506364609 crossref_primary_10_1080_0740817X_2012_761367 |
PublicationCentury | 2000 |
PublicationDate | 2014-01-02 |
PublicationDateYYYYMMDD | 2014-01-02 |
PublicationDate_xml | – month: 01 year: 2014 text: 2014-01-02 day: 02 |
PublicationDecade | 2010 |
PublicationPlace | Norcross |
PublicationPlace_xml | – name: Norcross |
PublicationTitle | IIE transactions |
PublicationYear | 2014 |
Publisher | Taylor & Francis Group Taylor & Francis Ltd |
Publisher_xml | – name: Taylor & Francis Group – name: Taylor & Francis Ltd |
References | CIT0010 McKean H.P. (CIT0015) 1969 CIT0020 CIT0001 CIT0011 CIT0004a Rudin W. (CIT0004b) 1976 Chopra S. (CIT0004) 2007 CIT0014a CIT0014 CIT0002 Ikeda N. (CIT0013) 1989 CIT0005 CIT0016 CIT0007 CIT0018 CIT0006 CIT0009 CIT0008 CIT0019 |
References_xml | – ident: CIT0018 doi: 10.1287/msom.1080.0245 – ident: CIT0001 doi: 10.1016/j.ijpe.2010.11.005 – volume-title: Supply Chain Management: Strategy, Planning, and Operation third edition year: 2007 ident: CIT0004 contributor: fullname: Chopra S. – ident: CIT0008 doi: 10.1287/mnsc.18.7.370 – ident: CIT0016 doi: 10.1287/mnsc.1120.1581 – ident: CIT0004a doi: 10.1287/opre.51.6.969.24920 – volume-title: Stochastic Differential Equations and Diffusion Processes, second edition year: 1989 ident: CIT0013 contributor: fullname: Ikeda N. – ident: CIT0010 – volume-title: Stochastic Integrals year: 1969 ident: CIT0015 contributor: fullname: McKean H.P. – ident: CIT0014 doi: 10.1007/978-1-4612-0949-2 – volume-title: Principles of Mathematical Analysis, third edition year: 1976 ident: CIT0004b contributor: fullname: Rudin W. – ident: CIT0011 doi: 10.1287/msom.1060.0116 – ident: CIT0009 doi: 10.1080/07408179408966604 – ident: CIT0006 doi: 10.1002/(SICI)1520-6750(199603)43:2<289::AID-NAV8>3.0.CO;2-6 – ident: CIT0019 doi: 10.1287/mnsc.47.9.1268.9787 – ident: CIT0007 doi: 10.1287/mnsc.16.2.B93 – ident: CIT0020 doi: 10.1080/07408170600967131 – ident: CIT0002 doi: 10.1287/mnsc.47.10.1326.10260 – ident: CIT0014a doi: 10.1287/opre.1060.0338 – ident: CIT0005 doi: 10.1007/978-3-642-51693-1_2 |
SSID | ssj0007018 |
Score | 1.6919926 |
Snippet | In many practical situations, a manager would like to simulate forecasts for periods whose duration (e.g., week) is not equal to the periods (e.g., month) for... |
SourceID | proquest crossref informaworld |
SourceType | Aggregation Database Publisher |
StartPage | 23 |
SubjectTerms | Approximation forecast evolution Forecasting Forecasting techniques Game theory Martingale Mathematical problems Parameter estimation Stochastic models Studies |
Title | A continuous-time analog of the Martingale model of forecast evolution |
URI | https://www.tandfonline.com/doi/abs/10.1080/0740817X.2012.761367 https://www.proquest.com/docview/1446618618 https://search.proquest.com/docview/1506364609 |
Volume | 46 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagEwy8EYWCjMRqyMuPjBU0YmKhiG6WE9sSS4pIwu_nLo-qFYIBpCxJ5MQ6n-_lu-8IueE8N4bbhCmjApaE0jHjfcR8YYRzeSpAPmDo4lk-LdTDDGFyVlX8mFaJPrTvgCJaWY2b2-TVkBF3B1oPFJlcYGJWdAt-eCywnBxMG2Trefa6EsUyaAN8OIDhiKF27oePbOimDeTSb5K6VT_Z_v8nfkD2etOTTjteOSRbrjwiu2uAhMckm1LMXX8rm2VTMew7T02J4R269BRMRdqhDqBWoW0PHXwO83eFqWrqPns-PiEv2Wx-_8j6TgusAPuhZjzMwdEQLkV0QmttIb0PLHeGS7hih-W1JgcHlqeiyMHn4TbNEVowSqxMVBifklG5LN0Zoc5GzksPbpcTsPSx4bkSgTIgGkBbhsWYsIHG-r0D1NDhgFPa00cjfXRHnzFR6wuh6zaQ4buuIzr-fehkWDTd78xKo_-LPQJCNSbXq9ewp_CgxJQOyKsRdTEWiQjS87___YLswF3ShmuiCRnVH427JNuVba5aJv0CY0fjJw |
link.rule.ids | 315,782,786,1455,1509,27933,27934,58021,59734,60523 |
linkProvider | Taylor & Francis |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDLZ4HIADb8RgQJC4BvpK0h4nYAIBuzDEblHaJBKXDrGN34_dB2JCcEBIPTVK2ziJ7c91PgOcCZEbI2zCU5MGPAmV48b7iPvCSOfyTKJ-oNDFoxqM0qtrosnptWdhKK2SMLSviSIqXU2bm4LRbUrcBZo9tGRqRJlZ0TkC8ViqRVhG3zgm-vxh__lTGaugCvFRD05d2tNzPzxlzjrNcZd-09WVAepv_MOnb8J6432yXr1ctmDBlduw9oWTcAf6PUbp6y_lbDybcCo9z0xJER429gy9RVYTD5BhYVUZHbqPA3CFmUyZe2-W8i489a-Hlze8KbbAC3QhplyEOWIN6TIiKLTWFsr7wApnhMIrdnTC1uSIYUUmixxhj7BZTuyCUWJVkobxHiyV49LtA3M2cl55RF5O4uzHRuSpDFKD2gENZlh0gLdC1q81p4YOW6rSRj6a5KNr-XQg_ToTelrFMnxdeETHv3fttrOmm8050QSBqUxAmHbg9LMZtxX9KzGlQ_FqIl6MZSKD7ODvbz-BlZvhw72-vx3cHcIqtiRV9CbqwtL0beaOYHFiZ8fViv0AzZ7nSw |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB58gOjBt7g-I3iN9pWkPYpuUZRFUNFbSJsEvHQXd9ff70wfiyJ6UOipYdowSWbyTSbfAJwKURgjbMJTkwY8CZXjxvuI-9JI54pMon2g0MWDGrykV32iyZnd4qe0SsLQviGKqG01Le6R9V1G3Dl6PXRk6oUSs6IzxOGxVPOwKIMGVD3mzzNbrII6wkcSnES6y3M_fOWLc_pCXfrNVNf-J1_7f8_XYbXde7KLZrJswJyrNmHlEyPhFuQXjJLXX6vpcDrmVHiemYriO2zoGe4VWUM7QG6F1UV06D3235VmPGHuvZ3I2_CU9x8vr3lbaoGXuIGYcBEWiDSky4ie0FpbKu8DK5wRCp_Y0f1aUyCCFZksCwQ9wmYFcQtGiVVJGsY7sFANK7cLzNnIeeURdzmJYx8bUaQySA3aBnSXYdkD3ulYjxpGDR12RKWtfjTpRzf66UH6eSD0pI5k-KbsiI5_Fz3oBk23S3OsCQBTkYAw7cHJrBkXFZ2UmMqhejXRLsYykUG29_e_H8PS_VWu724Gt_uwjA1JHbqJDmBh8jZ1hzA_ttOjer5-APus5e8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+continuous-time+analog+of+the+Martingale+model+of+forecast+evolution&rft.jtitle=IIE+transactions&rft.au=Sapra%2C+Amar&rft.au=Jackson%2C+Peter+L.&rft.date=2014-01-02&rft.pub=Taylor+%26+Francis+Group&rft.issn=0740-817X&rft.eissn=1545-8830&rft.volume=46&rft.issue=1&rft.spage=23&rft.epage=34&rft_id=info:doi/10.1080%2F0740817X.2012.761367&rft.externalDocID=761367 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-817X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-817X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-817X&client=summon |