Relationship of skeletal muscle glucose 6-phosphate to glucose disposal rate and glycogen synthase activity in insulin-resistant and non-insulin-dependent diabetic rhesus monkeys
Reduced insulin action on skeletal muscle glycogen synthase activity and reduced whole-body insulin-mediated glucose disposal rates in insulin-resistant subjects may be associated with an alteration in muscle glucose transport (or phosphorylation) or with a defect distal to glucose 6-phosphate. To e...
Saved in:
Published in: | Diabetologia Vol. 37; no. 2; pp. 127 - 133 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
Berlin
Springer
01-02-1994
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Reduced insulin action on skeletal muscle glycogen synthase activity and reduced whole-body insulin-mediated glucose disposal rates in insulin-resistant subjects may be associated with an alteration in muscle glucose transport (or phosphorylation) or with a defect distal to glucose 6-phosphate. To examine this issue we determined the glucose 6-phosphate concentration and glycogen synthase activity in muscle samples obtained under basal and euglycaemic hyperinsulinaemic clamp conditions in 27 rhesus monkeys (Macaca mulatta). They ranged from metabolically normal (n = 11) to insulin-resistant (n = 8) to overtly diabetic (non-insulin-dependent) (n = 8). The glucose 6-phosphate measured under insulin-stimulated conditions was inversely correlated to insulin-stimulated glycogen synthase independent activity (r = -0.54, p < 0.005), the change in glycogen synthase independent activity (insulin-stimulated minus basal) (r = -0.58, p < 0.002) and to whole-body insulin-mediated glucose disposal rate (r = -0.60, p < 0.002). The insulin-resistant and diabetic monkeys had significantly higher insulin-stimulated glucose 6-phosphate concentrations (0.57 +/- 0.11 and 0.62 +/- 0.11 nmol/mg dry weight, respectively) compared to the normal monkeys (0.29 +/- 0.05 nmol/mg dry weight) (p's < 0.05). We conclude that under euglycaemic/hyperinsulinaemic conditions, a defect distal to glucose 6-phosphate is a major contributor to reduced whole-body insulin-mediated glucose disposal rates and to reduced insulin action on glycogen synthase in insulin-resistant and diabetic monkeys. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0012-186X 1432-0428 |
DOI: | 10.1007/s001250050082 |