Deep Neural Network a Posteriori Probability Detector for Two-Dimensional Magnetic Recording
In two-dimensional magnetic recording (TDMR) channels, intersymbol interference (within and between tracks) and pattern-dependent media noise are impediments to reaching higher areal density. We propose a novel deep neural network (DNN)-based a posteriori probability (APP) detection system with para...
Saved in:
Published in: | IEEE transactions on magnetics Vol. 56; no. 6; pp. 1 - 12 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
New York
IEEE
01-06-2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | In two-dimensional magnetic recording (TDMR) channels, intersymbol interference (within and between tracks) and pattern-dependent media noise are impediments to reaching higher areal density. We propose a novel deep neural network (DNN)-based a posteriori probability (APP) detection system with parallel multi-track detection for TDMR channels. The proposed DNN-based APP detector replaces the trellis-based Bahl-Cocke-Jelinek-Raviv (BCJR) or Viterbi algorithm and pattern-dependent noise prediction (PDNP) in a typical TDMR scenario, in which it directly outputs log-likelihood ratios of the coded bits and iteratively exchanges them with a subsequent channel decoder to minimize bit error rate (BER). We investigate three DNN architectures-fully connected DNN, convolutional neural network (CNN), and long short-term memory (LSTM) network. The DNN's complexity is limited by employing linear partial response (PR) equalizer pre-processing. The best performing DNN architecture, CNN, is selected for iterative decoding with a channel decoder. Simulation results on a grain-flipping-probability (GFP) media model show that all three DNN architectures yield significant BER reductions over a recently proposed 2D-PDNP system and a previously proposed local area influence probabilistic (LAIP)-BCJR system. On a GFP model with 18 nm track pitch and 11.4 Teragrains/in 2 , the CNN detection system achieves an information areal density of 3.08 Terabits/in 2 , i.e., a 21.72% density gain over a standard BCJR-based 1D-PDNP; the CNN-based system also has <inline-formula> <tex-math notation="LaTeX">3\times </tex-math></inline-formula> the throughput of 1D-PDNP, yet requires only 1/10th the computer run time. |
---|---|
AbstractList | In two-dimensional magnetic recording (TDMR) channels, intersymbol interference (within and between tracks) and pattern-dependent media noise are impediments to reaching higher areal density. We propose a novel deep neural network (DNN)-based a posteriori probability (APP) detection system with parallel multi-track detection for TDMR channels. The proposed DNN-based APP detector replaces the trellis-based Bahl-Cocke-Jelinek-Raviv (BCJR) or Viterbi algorithm and pattern-dependent noise prediction (PDNP) in a typical TDMR scenario, in which it directly outputs log-likelihood ratios of the coded bits and iteratively exchanges them with a subsequent channel decoder to minimize bit error rate (BER). We investigate three DNN architectures-fully connected DNN, convolutional neural network (CNN), and long short-term memory (LSTM) network. The DNN's complexity is limited by employing linear partial response (PR) equalizer pre-processing. The best performing DNN architecture, CNN, is selected for iterative decoding with a channel decoder. Simulation results on a grain-flipping-probability (GFP) media model show that all three DNN architectures yield significant BER reductions over a recently proposed 2D-PDNP system and a previously proposed local area influence probabilistic (LAIP)-BCJR system. On a GFP model with 18 nm track pitch and 11.4 Teragrains/in 2 , the CNN detection system achieves an information areal density of 3.08 Terabits/in 2 , i.e., a 21.72% density gain over a standard BCJR-based 1D-PDNP; the CNN-based system also has <inline-formula> <tex-math notation="LaTeX">3\times </tex-math></inline-formula> the throughput of 1D-PDNP, yet requires only 1/10th the computer run time. In two-dimensional magnetic recording (TDMR) channels, intersymbol interference (within and between tracks) and pattern-dependent media noise are impediments to reaching higher areal density. We propose a novel deep neural network (DNN)-based a posteriori probability (APP) detection system with parallel multi-track detection for TDMR channels. The proposed DNN-based APP detector replaces the trellis-based Bahl–Cocke–Jelinek–Raviv (BCJR) or Viterbi algorithm and pattern-dependent noise prediction (PDNP) in a typical TDMR scenario, in which it directly outputs log-likelihood ratios of the coded bits and iteratively exchanges them with a subsequent channel decoder to minimize bit error rate (BER). We investigate three DNN architectures—fully connected DNN, convolutional neural network (CNN), and long short-term memory (LSTM) network. The DNN’s complexity is limited by employing linear partial response (PR) equalizer pre-processing. The best performing DNN architecture, CNN, is selected for iterative decoding with a channel decoder. Simulation results on a grain-flipping-probability (GFP) media model show that all three DNN architectures yield significant BER reductions over a recently proposed 2D-PDNP system and a previously proposed local area influence probabilistic (LAIP)-BCJR system. On a GFP model with 18 nm track pitch and 11.4 Teragrains/in2, the CNN detection system achieves an information areal density of 3.08 Terabits/in2, i.e., a 21.72% density gain over a standard BCJR-based 1D-PDNP; the CNN-based system also has [Formula Omitted] the throughput of 1D-PDNP, yet requires only 1/10th the computer run time. |
Author | Belzer, Benjamin J. Shen, Jinlu Sivakumar, Krishnamoorthy James, Ashish Chan, Kheong Sann Aboutaleb, Ahmed |
Author_xml | – sequence: 1 givenname: Jinlu orcidid: 0000-0003-4190-5044 surname: Shen fullname: Shen, Jinlu organization: School of Electrical Engineering and Computer Science, Washington State University, Pullman, WA, USA – sequence: 2 givenname: Ahmed orcidid: 0000-0003-0791-7762 surname: Aboutaleb fullname: Aboutaleb, Ahmed organization: School of Electrical Engineering and Computer Science, Washington State University, Pullman, WA, USA – sequence: 3 givenname: Krishnamoorthy orcidid: 0000-0002-4026-7768 surname: Sivakumar fullname: Sivakumar, Krishnamoorthy organization: School of Electrical Engineering and Computer Science, Washington State University, Pullman, WA, USA – sequence: 4 givenname: Benjamin J. orcidid: 0000-0001-9419-9281 surname: Belzer fullname: Belzer, Benjamin J. email: belzer@wsu.edu organization: School of Electrical Engineering and Computer Science, Washington State University, Pullman, WA, USA – sequence: 5 givenname: Kheong Sann orcidid: 0000-0002-6835-3895 surname: Chan fullname: Chan, Kheong Sann organization: Nanjing Institute of Technology, Nanjing, China – sequence: 6 givenname: Ashish surname: James fullname: James, Ashish organization: Institute for Infocomm Research, ASTAR, Singapore |
BookMark | eNo9kE1Lw0AQhhdRsFZ_gHgJeE6d_cgmeyytVqHVIvUmLJvNpGxts3U3pfTfm9LiYXgZeN5heG7IZeMbJOSewoBSUE-L2XAyYMBgwFSRSS4vSI8qQVMAqS5JD4AWqRJSXJObGFfdKjIKPfI9Rtwm77gLZt1Fu_fhJzHJ3McWg_PBJfPgS1O6tWsPyRhbtK0PSd3NYu_TsdtgE51vuvbMLBtsnU0-0fpQuWZ5S65qs454d84--Xp5Xoxe0-nH5G00nKaW01ymXBimaIV5VpSF5Ka2hapysKUxQuWmqlXFZIU2R8osMiwBqVVVJTIsOQPgffJ4ursN_neHsdUrvwvdT1EzAQK4YpB1FD1RNvgYA9Z6G9zGhIOmoI8S9VGiPkrUZ4ld5-HUcYj4zyvIZK4E_wMOrXBh |
CODEN | IEMGAQ |
CitedBy_id | crossref_primary_10_1016_j_jmmm_2022_169670 crossref_primary_10_1063_9_0000008 crossref_primary_10_3390_electronics12071746 crossref_primary_10_1109_TMAG_2020_3038435 crossref_primary_10_1063_5_0051085 crossref_primary_10_1109_TMAG_2022_3216640 crossref_primary_10_1109_TMAG_2020_3038419 crossref_primary_10_1109_TMAG_2022_3213591 crossref_primary_10_1109_TMAG_2021_3122136 crossref_primary_10_1109_ACCESS_2022_3210330 crossref_primary_10_1109_TMAG_2021_3121200 crossref_primary_10_1109_TMAG_2023_3285946 crossref_primary_10_1109_TMAG_2022_3210067 crossref_primary_10_1016_j_aeue_2022_154521 crossref_primary_10_1109_TMAG_2020_3035705 crossref_primary_10_1002_jnm_3133 crossref_primary_10_1109_ACCESS_2020_3018466 crossref_primary_10_1109_TMAG_2020_3026979 crossref_primary_10_1109_TMAG_2023_3325899 crossref_primary_10_1109_TMAG_2021_3131139 crossref_primary_10_1109_TMAG_2024_3370929 crossref_primary_10_3390_app11104387 |
Cites_doi | 10.1109/TMAG.2015.2451112 10.1109/TMAG.2013.2249580 10.1109/TMAG.2019.2894110 10.1109/TMAG.2011.2156770 10.1109/18.817531 10.1109/ICC.2019.8761903 10.1109/49.920181 10.1166/jnn.2011.2738 10.1038/nature14539 10.1109/TIT.1974.1055186 10.1109/TMAG.2012.2194988 10.1109/TMAG.2008.2010676 10.1109/TMAG.2015.2441742 10.1109/ICC.2015.7248357 10.1162/neco.1997.9.8.1735 10.1201/9780203490310.ch33 10.1109/TMAG.2011.2157808 10.1109/TMAG.2009.2035635 10.1109/TMAG.2015.2511721 10.1109/TMAG.2016.2606651 10.1109/ICC.2018.8422905 10.1109/TMAG.2017.2747627 10.1109/ICC.1995.524253 10.1109/TMAG.2016.2569530 10.1063/1.3679383 10.1109/TMAG.2019.2939863 10.1016/j.jmmm.2010.12.022 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1109/TMAG.2020.2985636 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library Online CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX Electronics & Communications Abstracts |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library Online url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1941-0069 |
EndPage | 12 |
ExternalDocumentID | 10_1109_TMAG_2020_2985636 9056794 |
Genre | orig-research |
GrantInformation_xml | – fundername: United States National Science Foundation (NSF) grantid: CCF-1817083 funderid: 10.13039/100000001 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AASAJ ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AI. AIBXA AKJIK ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RIG RNS TN5 TWZ VH1 VJK XFK XXG AAYXX CITATION 7SP 7U5 8BQ 8FD JG9 L7M |
ID | FETCH-LOGICAL-c3176-34a291de758b863afc89d70cbaa497adf9d26dec7e12ce2eb0e1c9dd45eb32003 |
IEDL.DBID | RIE |
ISSN | 0018-9464 |
IngestDate | Thu Oct 10 14:41:27 EDT 2024 Fri Aug 23 00:29:14 EDT 2024 Wed Jun 26 19:28:55 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3176-34a291de758b863afc89d70cbaa497adf9d26dec7e12ce2eb0e1c9dd45eb32003 |
ORCID | 0000-0003-4190-5044 0000-0001-9419-9281 0000-0002-6835-3895 0000-0003-0791-7762 0000-0002-4026-7768 |
OpenAccessLink | https://doi.org/10.1109/tmag.2020.2985636 |
PQID | 2404039205 |
PQPubID | 85461 |
PageCount | 12 |
ParticipantIDs | proquest_journals_2404039205 crossref_primary_10_1109_TMAG_2020_2985636 ieee_primary_9056794 |
PublicationCentury | 2000 |
PublicationDate | 2020-06-01 |
PublicationDateYYYYMMDD | 2020-06-01 |
PublicationDate_xml | – month: 06 year: 2020 text: 2020-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on magnetics |
PublicationTitleAbbrev | TMAG |
PublicationYear | 2020 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 lecun (ref11) 1995 ref14 ref31 ref32 ref10 scholz (ref30) 2008 ref2 goodfellow (ref26) 2016 ref1 ref17 ref16 ref19 ref18 kingma (ref27) 2014 ref24 ref23 ref20 ref22 ref21 jin (ref25) 2000 ref28 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref28 doi: 10.1109/TMAG.2015.2451112 – ident: ref23 doi: 10.1109/TMAG.2013.2249580 – ident: ref9 doi: 10.1109/TMAG.2019.2894110 – ident: ref20 doi: 10.1109/TMAG.2011.2156770 – ident: ref2 doi: 10.1109/18.817531 – year: 1995 ident: ref11 article-title: Convolutional networks for images, speech, and time-series publication-title: The Handbook of Brain Theory and Neural Networks contributor: fullname: lecun – year: 2008 ident: ref30 publication-title: Confidence Bounds and Intervals for Parameters Relating to the Binomial Negative Binomial Poisson and Hypergeometric Distributions With Applications to Rare Events contributor: fullname: scholz – ident: ref7 doi: 10.1109/ICC.2019.8761903 – ident: ref3 doi: 10.1109/49.920181 – ident: ref22 doi: 10.1166/jnn.2011.2738 – ident: ref10 doi: 10.1038/nature14539 – ident: ref31 doi: 10.1109/TIT.1974.1055186 – ident: ref14 doi: 10.1109/TMAG.2012.2194988 – ident: ref1 doi: 10.1109/TMAG.2008.2010676 – ident: ref19 doi: 10.1109/TMAG.2015.2441742 – ident: ref4 doi: 10.1109/ICC.2015.7248357 – year: 2014 ident: ref27 article-title: Adam: A method for stochastic optimization publication-title: arXiv 1412 6980 contributor: fullname: kingma – start-page: 1 year: 2000 ident: ref25 article-title: Irregular repeat-accumulate codes publication-title: Proc 2nd Int Symp Turbo Codes & Related Topics contributor: fullname: jin – year: 2016 ident: ref26 publication-title: Deep Learning contributor: fullname: goodfellow – ident: ref12 doi: 10.1162/neco.1997.9.8.1735 – ident: ref24 doi: 10.1201/9780203490310.ch33 – ident: ref13 doi: 10.1109/TMAG.2011.2157808 – ident: ref16 doi: 10.1109/TMAG.2009.2035635 – ident: ref5 doi: 10.1109/TMAG.2015.2511721 – ident: ref8 doi: 10.1109/TMAG.2016.2606651 – ident: ref6 doi: 10.1109/ICC.2018.8422905 – ident: ref29 doi: 10.1109/TMAG.2017.2747627 – ident: ref32 doi: 10.1109/ICC.1995.524253 – ident: ref15 doi: 10.1109/TMAG.2016.2569530 – ident: ref18 doi: 10.1063/1.3679383 – ident: ref21 doi: 10.1109/TMAG.2019.2939863 – ident: ref17 doi: 10.1016/j.jmmm.2010.12.022 |
SSID | ssj0014510 |
Score | 2.4705632 |
Snippet | In two-dimensional magnetic recording (TDMR) channels, intersymbol interference (within and between tracks) and pattern-dependent media noise are impediments... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Publisher |
StartPage | 1 |
SubjectTerms | Algorithms Artificial neural networks Bit error rate Channel detection Channels Computer architecture Computer simulation convolutional neural network (CNN) Decoding deep learning Density Detectors Equalizers Error analysis grain-flipping-probability (GFP) model Iterative methods long short-term memory (LSTM) Magnetic recording Magnetism Media Neural networks Noise prediction recurrent neural network Statistical analysis Two dimensional displays two-dimensional magnetic recording (TDMR) Viterbi algorithm detectors |
Title | Deep Neural Network a Posteriori Probability Detector for Two-Dimensional Magnetic Recording |
URI | https://ieeexplore.ieee.org/document/9056794 https://www.proquest.com/docview/2404039205 |
Volume | 56 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB6sIOjBt1hf5OBJXM2-8jiKbfWiCFbwICzZZCJeWmkt4r93kl2roBdve8hjmUkyr29mAI5zp6XnziV1JjUZKLVKDD3FSV4WQnDSF7AOPt3re3n7qHr9UCbndJ4Lg4gRfIZn4TPG8t3YzoKr7FyTtKbz04GO1KrJ1ZpHDIoybdJNUhXaxhdtBDPl-nx4c3FFlmDGzzKtShGrMX_LoNhU5ddLHMXLYO1_P7YOq60ayS4avm_AAo42YeVHccFNWIrgTjvdgqce4isLZThoym2D-2aGhT69NHY8eWF3E7rWESb7wXr4Fj35jNRZNnwfJ73QAKAp3sFuzPMopD2yxmyljbbhYdAfXl4nbVeFxJKuIJK8MJlOHZKhUCuRG2-VdpLb2phCS-O8dplwaCWmmcUMa46p1c4VJdndAcq2A4uj8Qh3gdWp97WRMvfCF-i1Ua7Mrc8VipyWFF04-aJz9doUz6ii0cF1FZhSBaZULVO6sBUIOx_Y0rQLB1-cqdrrNa1IDSk4aXa83Pt71j4sh7UbTNcBLL5NZngInambHcVj8wniOME0 |
link.rule.ids | 315,782,786,798,27933,27934,54767 |
linkProvider | IEEE |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB6VRVXhAC1QsYWCDz0hAk7i2PERsdBFsKtKXSQOlSLHHqNedtE-hPj3jJ2wRYJLbzn4Ec3Yntc3MwA_cqeV584ldaY0GSh1mRh6ipO8EFJy0hewDj7d_m81vCt7F6FMzvEyFwYRI_gMT8JnjOW7iV0EV9mpJmlN52cFVguhpGqytZYxA1GkTcJJWobG8aKNYaZcn44GZz_JFsz4SabLQsZ6zP-kUGyr8uYtjgLmcvP_fu0zbLSKJDtrOP8FPuB4C9ZflRfcgo8R3mln2_Cnh_jAQiEOmjJskN_MsNCpl8ZOpn_Zryld7AiUfWI9nEdfPiOFlo0eJ0kvtABoynewgbkfh8RH1hiutNEO3F5ejM77SdtXIbGkLcgkFybTqUMyFepS5sbbUjvFbW2M0Mo4r10mHVqFaWYxw5pjarVzoiDLO4DZvkJnPBnjLrA69b42SuVeeoFem9IVufV5iTKnJWUXjl7oXD005TOqaHZwXQWmVIEpVcuULmwHwi4HtjTtwv4LZ6r2gs0qUkQEJ92OF9_en3UIn_qjwU11czW83oO1sE-D8NqHzny6wO-wMnOLg3iEngE3XsSF |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Neural+Network+a+Posteriori+Probability+Detector+for+Two-Dimensional+Magnetic+Recording&rft.jtitle=IEEE+transactions+on+magnetics&rft.au=Shen%2C+Jinlu&rft.au=Aboutaleb%2C+Ahmed&rft.au=Sivakumar%2C+Krishnamoorthy&rft.au=Belzer%2C+Benjamin+J.&rft.date=2020-06-01&rft.pub=IEEE&rft.issn=0018-9464&rft.eissn=1941-0069&rft.volume=56&rft.issue=6&rft.spage=1&rft.epage=12&rft_id=info:doi/10.1109%2FTMAG.2020.2985636&rft.externalDocID=9056794 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9464&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9464&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9464&client=summon |