Deep Neural Network a Posteriori Probability Detector for Two-Dimensional Magnetic Recording

In two-dimensional magnetic recording (TDMR) channels, intersymbol interference (within and between tracks) and pattern-dependent media noise are impediments to reaching higher areal density. We propose a novel deep neural network (DNN)-based a posteriori probability (APP) detection system with para...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on magnetics Vol. 56; no. 6; pp. 1 - 12
Main Authors: Shen, Jinlu, Aboutaleb, Ahmed, Sivakumar, Krishnamoorthy, Belzer, Benjamin J., Chan, Kheong Sann, James, Ashish
Format: Journal Article
Language:English
Published: New York IEEE 01-06-2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In two-dimensional magnetic recording (TDMR) channels, intersymbol interference (within and between tracks) and pattern-dependent media noise are impediments to reaching higher areal density. We propose a novel deep neural network (DNN)-based a posteriori probability (APP) detection system with parallel multi-track detection for TDMR channels. The proposed DNN-based APP detector replaces the trellis-based Bahl-Cocke-Jelinek-Raviv (BCJR) or Viterbi algorithm and pattern-dependent noise prediction (PDNP) in a typical TDMR scenario, in which it directly outputs log-likelihood ratios of the coded bits and iteratively exchanges them with a subsequent channel decoder to minimize bit error rate (BER). We investigate three DNN architectures-fully connected DNN, convolutional neural network (CNN), and long short-term memory (LSTM) network. The DNN's complexity is limited by employing linear partial response (PR) equalizer pre-processing. The best performing DNN architecture, CNN, is selected for iterative decoding with a channel decoder. Simulation results on a grain-flipping-probability (GFP) media model show that all three DNN architectures yield significant BER reductions over a recently proposed 2D-PDNP system and a previously proposed local area influence probabilistic (LAIP)-BCJR system. On a GFP model with 18 nm track pitch and 11.4 Teragrains/in 2 , the CNN detection system achieves an information areal density of 3.08 Terabits/in 2 , i.e., a 21.72% density gain over a standard BCJR-based 1D-PDNP; the CNN-based system also has <inline-formula> <tex-math notation="LaTeX">3\times </tex-math></inline-formula> the throughput of 1D-PDNP, yet requires only 1/10th the computer run time.
AbstractList In two-dimensional magnetic recording (TDMR) channels, intersymbol interference (within and between tracks) and pattern-dependent media noise are impediments to reaching higher areal density. We propose a novel deep neural network (DNN)-based a posteriori probability (APP) detection system with parallel multi-track detection for TDMR channels. The proposed DNN-based APP detector replaces the trellis-based Bahl-Cocke-Jelinek-Raviv (BCJR) or Viterbi algorithm and pattern-dependent noise prediction (PDNP) in a typical TDMR scenario, in which it directly outputs log-likelihood ratios of the coded bits and iteratively exchanges them with a subsequent channel decoder to minimize bit error rate (BER). We investigate three DNN architectures-fully connected DNN, convolutional neural network (CNN), and long short-term memory (LSTM) network. The DNN's complexity is limited by employing linear partial response (PR) equalizer pre-processing. The best performing DNN architecture, CNN, is selected for iterative decoding with a channel decoder. Simulation results on a grain-flipping-probability (GFP) media model show that all three DNN architectures yield significant BER reductions over a recently proposed 2D-PDNP system and a previously proposed local area influence probabilistic (LAIP)-BCJR system. On a GFP model with 18 nm track pitch and 11.4 Teragrains/in 2 , the CNN detection system achieves an information areal density of 3.08 Terabits/in 2 , i.e., a 21.72% density gain over a standard BCJR-based 1D-PDNP; the CNN-based system also has <inline-formula> <tex-math notation="LaTeX">3\times </tex-math></inline-formula> the throughput of 1D-PDNP, yet requires only 1/10th the computer run time.
In two-dimensional magnetic recording (TDMR) channels, intersymbol interference (within and between tracks) and pattern-dependent media noise are impediments to reaching higher areal density. We propose a novel deep neural network (DNN)-based a posteriori probability (APP) detection system with parallel multi-track detection for TDMR channels. The proposed DNN-based APP detector replaces the trellis-based Bahl–Cocke–Jelinek–Raviv (BCJR) or Viterbi algorithm and pattern-dependent noise prediction (PDNP) in a typical TDMR scenario, in which it directly outputs log-likelihood ratios of the coded bits and iteratively exchanges them with a subsequent channel decoder to minimize bit error rate (BER). We investigate three DNN architectures—fully connected DNN, convolutional neural network (CNN), and long short-term memory (LSTM) network. The DNN’s complexity is limited by employing linear partial response (PR) equalizer pre-processing. The best performing DNN architecture, CNN, is selected for iterative decoding with a channel decoder. Simulation results on a grain-flipping-probability (GFP) media model show that all three DNN architectures yield significant BER reductions over a recently proposed 2D-PDNP system and a previously proposed local area influence probabilistic (LAIP)-BCJR system. On a GFP model with 18 nm track pitch and 11.4 Teragrains/in2, the CNN detection system achieves an information areal density of 3.08 Terabits/in2, i.e., a 21.72% density gain over a standard BCJR-based 1D-PDNP; the CNN-based system also has [Formula Omitted] the throughput of 1D-PDNP, yet requires only 1/10th the computer run time.
Author Belzer, Benjamin J.
Shen, Jinlu
Sivakumar, Krishnamoorthy
James, Ashish
Chan, Kheong Sann
Aboutaleb, Ahmed
Author_xml – sequence: 1
  givenname: Jinlu
  orcidid: 0000-0003-4190-5044
  surname: Shen
  fullname: Shen, Jinlu
  organization: School of Electrical Engineering and Computer Science, Washington State University, Pullman, WA, USA
– sequence: 2
  givenname: Ahmed
  orcidid: 0000-0003-0791-7762
  surname: Aboutaleb
  fullname: Aboutaleb, Ahmed
  organization: School of Electrical Engineering and Computer Science, Washington State University, Pullman, WA, USA
– sequence: 3
  givenname: Krishnamoorthy
  orcidid: 0000-0002-4026-7768
  surname: Sivakumar
  fullname: Sivakumar, Krishnamoorthy
  organization: School of Electrical Engineering and Computer Science, Washington State University, Pullman, WA, USA
– sequence: 4
  givenname: Benjamin J.
  orcidid: 0000-0001-9419-9281
  surname: Belzer
  fullname: Belzer, Benjamin J.
  email: belzer@wsu.edu
  organization: School of Electrical Engineering and Computer Science, Washington State University, Pullman, WA, USA
– sequence: 5
  givenname: Kheong Sann
  orcidid: 0000-0002-6835-3895
  surname: Chan
  fullname: Chan, Kheong Sann
  organization: Nanjing Institute of Technology, Nanjing, China
– sequence: 6
  givenname: Ashish
  surname: James
  fullname: James, Ashish
  organization: Institute for Infocomm Research, ASTAR, Singapore
BookMark eNo9kE1Lw0AQhhdRsFZ_gHgJeE6d_cgmeyytVqHVIvUmLJvNpGxts3U3pfTfm9LiYXgZeN5heG7IZeMbJOSewoBSUE-L2XAyYMBgwFSRSS4vSI8qQVMAqS5JD4AWqRJSXJObGFfdKjIKPfI9Rtwm77gLZt1Fu_fhJzHJ3McWg_PBJfPgS1O6tWsPyRhbtK0PSd3NYu_TsdtgE51vuvbMLBtsnU0-0fpQuWZ5S65qs454d84--Xp5Xoxe0-nH5G00nKaW01ymXBimaIV5VpSF5Ka2hapysKUxQuWmqlXFZIU2R8osMiwBqVVVJTIsOQPgffJ4ursN_neHsdUrvwvdT1EzAQK4YpB1FD1RNvgYA9Z6G9zGhIOmoI8S9VGiPkrUZ4ld5-HUcYj4zyvIZK4E_wMOrXBh
CODEN IEMGAQ
CitedBy_id crossref_primary_10_1016_j_jmmm_2022_169670
crossref_primary_10_1063_9_0000008
crossref_primary_10_3390_electronics12071746
crossref_primary_10_1109_TMAG_2020_3038435
crossref_primary_10_1063_5_0051085
crossref_primary_10_1109_TMAG_2022_3216640
crossref_primary_10_1109_TMAG_2020_3038419
crossref_primary_10_1109_TMAG_2022_3213591
crossref_primary_10_1109_TMAG_2021_3122136
crossref_primary_10_1109_ACCESS_2022_3210330
crossref_primary_10_1109_TMAG_2021_3121200
crossref_primary_10_1109_TMAG_2023_3285946
crossref_primary_10_1109_TMAG_2022_3210067
crossref_primary_10_1016_j_aeue_2022_154521
crossref_primary_10_1109_TMAG_2020_3035705
crossref_primary_10_1002_jnm_3133
crossref_primary_10_1109_ACCESS_2020_3018466
crossref_primary_10_1109_TMAG_2020_3026979
crossref_primary_10_1109_TMAG_2023_3325899
crossref_primary_10_1109_TMAG_2021_3131139
crossref_primary_10_1109_TMAG_2024_3370929
crossref_primary_10_3390_app11104387
Cites_doi 10.1109/TMAG.2015.2451112
10.1109/TMAG.2013.2249580
10.1109/TMAG.2019.2894110
10.1109/TMAG.2011.2156770
10.1109/18.817531
10.1109/ICC.2019.8761903
10.1109/49.920181
10.1166/jnn.2011.2738
10.1038/nature14539
10.1109/TIT.1974.1055186
10.1109/TMAG.2012.2194988
10.1109/TMAG.2008.2010676
10.1109/TMAG.2015.2441742
10.1109/ICC.2015.7248357
10.1162/neco.1997.9.8.1735
10.1201/9780203490310.ch33
10.1109/TMAG.2011.2157808
10.1109/TMAG.2009.2035635
10.1109/TMAG.2015.2511721
10.1109/TMAG.2016.2606651
10.1109/ICC.2018.8422905
10.1109/TMAG.2017.2747627
10.1109/ICC.1995.524253
10.1109/TMAG.2016.2569530
10.1063/1.3679383
10.1109/TMAG.2019.2939863
10.1016/j.jmmm.2010.12.022
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8BQ
8FD
JG9
L7M
DOI 10.1109/TMAG.2020.2985636
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library Online
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
Electronics & Communications Abstracts
DatabaseTitleList
Materials Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1941-0069
EndPage 12
ExternalDocumentID 10_1109_TMAG_2020_2985636
9056794
Genre orig-research
GrantInformation_xml – fundername: United States National Science Foundation (NSF)
  grantid: CCF-1817083
  funderid: 10.13039/100000001
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AASAJ
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AI.
AIBXA
AKJIK
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RIG
RNS
TN5
TWZ
VH1
VJK
XFK
XXG
AAYXX
CITATION
7SP
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c3176-34a291de758b863afc89d70cbaa497adf9d26dec7e12ce2eb0e1c9dd45eb32003
IEDL.DBID RIE
ISSN 0018-9464
IngestDate Thu Oct 10 14:41:27 EDT 2024
Fri Aug 23 00:29:14 EDT 2024
Wed Jun 26 19:28:55 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3176-34a291de758b863afc89d70cbaa497adf9d26dec7e12ce2eb0e1c9dd45eb32003
ORCID 0000-0003-4190-5044
0000-0001-9419-9281
0000-0002-6835-3895
0000-0003-0791-7762
0000-0002-4026-7768
OpenAccessLink https://doi.org/10.1109/tmag.2020.2985636
PQID 2404039205
PQPubID 85461
PageCount 12
ParticipantIDs proquest_journals_2404039205
crossref_primary_10_1109_TMAG_2020_2985636
ieee_primary_9056794
PublicationCentury 2000
PublicationDate 2020-06-01
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-06-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on magnetics
PublicationTitleAbbrev TMAG
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
lecun (ref11) 1995
ref14
ref31
ref32
ref10
scholz (ref30) 2008
ref2
goodfellow (ref26) 2016
ref1
ref17
ref16
ref19
ref18
kingma (ref27) 2014
ref24
ref23
ref20
ref22
ref21
jin (ref25) 2000
ref28
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref28
  doi: 10.1109/TMAG.2015.2451112
– ident: ref23
  doi: 10.1109/TMAG.2013.2249580
– ident: ref9
  doi: 10.1109/TMAG.2019.2894110
– ident: ref20
  doi: 10.1109/TMAG.2011.2156770
– ident: ref2
  doi: 10.1109/18.817531
– year: 1995
  ident: ref11
  article-title: Convolutional networks for images, speech, and time-series
  publication-title: The Handbook of Brain Theory and Neural Networks
  contributor:
    fullname: lecun
– year: 2008
  ident: ref30
  publication-title: Confidence Bounds and Intervals for Parameters Relating to the Binomial Negative Binomial Poisson and Hypergeometric Distributions With Applications to Rare Events
  contributor:
    fullname: scholz
– ident: ref7
  doi: 10.1109/ICC.2019.8761903
– ident: ref3
  doi: 10.1109/49.920181
– ident: ref22
  doi: 10.1166/jnn.2011.2738
– ident: ref10
  doi: 10.1038/nature14539
– ident: ref31
  doi: 10.1109/TIT.1974.1055186
– ident: ref14
  doi: 10.1109/TMAG.2012.2194988
– ident: ref1
  doi: 10.1109/TMAG.2008.2010676
– ident: ref19
  doi: 10.1109/TMAG.2015.2441742
– ident: ref4
  doi: 10.1109/ICC.2015.7248357
– year: 2014
  ident: ref27
  article-title: Adam: A method for stochastic optimization
  publication-title: arXiv 1412 6980
  contributor:
    fullname: kingma
– start-page: 1
  year: 2000
  ident: ref25
  article-title: Irregular repeat-accumulate codes
  publication-title: Proc 2nd Int Symp Turbo Codes & Related Topics
  contributor:
    fullname: jin
– year: 2016
  ident: ref26
  publication-title: Deep Learning
  contributor:
    fullname: goodfellow
– ident: ref12
  doi: 10.1162/neco.1997.9.8.1735
– ident: ref24
  doi: 10.1201/9780203490310.ch33
– ident: ref13
  doi: 10.1109/TMAG.2011.2157808
– ident: ref16
  doi: 10.1109/TMAG.2009.2035635
– ident: ref5
  doi: 10.1109/TMAG.2015.2511721
– ident: ref8
  doi: 10.1109/TMAG.2016.2606651
– ident: ref6
  doi: 10.1109/ICC.2018.8422905
– ident: ref29
  doi: 10.1109/TMAG.2017.2747627
– ident: ref32
  doi: 10.1109/ICC.1995.524253
– ident: ref15
  doi: 10.1109/TMAG.2016.2569530
– ident: ref18
  doi: 10.1063/1.3679383
– ident: ref21
  doi: 10.1109/TMAG.2019.2939863
– ident: ref17
  doi: 10.1016/j.jmmm.2010.12.022
SSID ssj0014510
Score 2.4705632
Snippet In two-dimensional magnetic recording (TDMR) channels, intersymbol interference (within and between tracks) and pattern-dependent media noise are impediments...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Publisher
StartPage 1
SubjectTerms Algorithms
Artificial neural networks
Bit error rate
Channel detection
Channels
Computer architecture
Computer simulation
convolutional neural network (CNN)
Decoding
deep learning
Density
Detectors
Equalizers
Error analysis
grain-flipping-probability (GFP) model
Iterative methods
long short-term memory (LSTM)
Magnetic recording
Magnetism
Media
Neural networks
Noise prediction
recurrent neural network
Statistical analysis
Two dimensional displays
two-dimensional magnetic recording (TDMR)
Viterbi algorithm detectors
Title Deep Neural Network a Posteriori Probability Detector for Two-Dimensional Magnetic Recording
URI https://ieeexplore.ieee.org/document/9056794
https://www.proquest.com/docview/2404039205
Volume 56
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB6sIOjBt1hf5OBJXM2-8jiKbfWiCFbwICzZZCJeWmkt4r93kl2roBdve8hjmUkyr29mAI5zp6XnziV1JjUZKLVKDD3FSV4WQnDSF7AOPt3re3n7qHr9UCbndJ4Lg4gRfIZn4TPG8t3YzoKr7FyTtKbz04GO1KrJ1ZpHDIoybdJNUhXaxhdtBDPl-nx4c3FFlmDGzzKtShGrMX_LoNhU5ddLHMXLYO1_P7YOq60ayS4avm_AAo42YeVHccFNWIrgTjvdgqce4isLZThoym2D-2aGhT69NHY8eWF3E7rWESb7wXr4Fj35jNRZNnwfJ73QAKAp3sFuzPMopD2yxmyljbbhYdAfXl4nbVeFxJKuIJK8MJlOHZKhUCuRG2-VdpLb2phCS-O8dplwaCWmmcUMa46p1c4VJdndAcq2A4uj8Qh3gdWp97WRMvfCF-i1Ua7Mrc8VipyWFF04-aJz9doUz6ii0cF1FZhSBaZULVO6sBUIOx_Y0rQLB1-cqdrrNa1IDSk4aXa83Pt71j4sh7UbTNcBLL5NZngInambHcVj8wniOME0
link.rule.ids 315,782,786,798,27933,27934,54767
linkProvider IEEE
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB6VRVXhAC1QsYWCDz0hAk7i2PERsdBFsKtKXSQOlSLHHqNedtE-hPj3jJ2wRYJLbzn4Ec3Yntc3MwA_cqeV584ldaY0GSh1mRh6ipO8EFJy0hewDj7d_m81vCt7F6FMzvEyFwYRI_gMT8JnjOW7iV0EV9mpJmlN52cFVguhpGqytZYxA1GkTcJJWobG8aKNYaZcn44GZz_JFsz4SabLQsZ6zP-kUGyr8uYtjgLmcvP_fu0zbLSKJDtrOP8FPuB4C9ZflRfcgo8R3mln2_Cnh_jAQiEOmjJskN_MsNCpl8ZOpn_Zryld7AiUfWI9nEdfPiOFlo0eJ0kvtABoynewgbkfh8RH1hiutNEO3F5ejM77SdtXIbGkLcgkFybTqUMyFepS5sbbUjvFbW2M0Mo4r10mHVqFaWYxw5pjarVzoiDLO4DZvkJnPBnjLrA69b42SuVeeoFem9IVufV5iTKnJWUXjl7oXD005TOqaHZwXQWmVIEpVcuULmwHwi4HtjTtwv4LZ6r2gs0qUkQEJ92OF9_en3UIn_qjwU11czW83oO1sE-D8NqHzny6wO-wMnOLg3iEngE3XsSF
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Neural+Network+a+Posteriori+Probability+Detector+for+Two-Dimensional+Magnetic+Recording&rft.jtitle=IEEE+transactions+on+magnetics&rft.au=Shen%2C+Jinlu&rft.au=Aboutaleb%2C+Ahmed&rft.au=Sivakumar%2C+Krishnamoorthy&rft.au=Belzer%2C+Benjamin+J.&rft.date=2020-06-01&rft.pub=IEEE&rft.issn=0018-9464&rft.eissn=1941-0069&rft.volume=56&rft.issue=6&rft.spage=1&rft.epage=12&rft_id=info:doi/10.1109%2FTMAG.2020.2985636&rft.externalDocID=9056794
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9464&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9464&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9464&client=summon