White Lasing and White Fluorescence from the Simplified Two‐Dyes Organic System

The invention of lasers, which took place a few decades ago, marks a milestone in the past, present, and future technologies in optoelectronics. In particular, the colorful and white tones produced by lasers are appealing from a utilization standpoint and align well with human eye perception. In thi...

Full description

Saved in:
Bibliographic Details
Published in:Advanced optical materials Vol. 11; no. 16
Main Authors: Szukalska, Alina, Szukalski, Adam, Adaszynski, Marek, Mysliwiec, Jaroslaw
Format: Journal Article
Language:English
Published: Weinheim Wiley Subscription Services, Inc 01-08-2023
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The invention of lasers, which took place a few decades ago, marks a milestone in the past, present, and future technologies in optoelectronics. In particular, the colorful and white tones produced by lasers are appealing from a utilization standpoint and align well with human eye perception. In this paper, an idea for a white laser based on the attractive perylene family of luminescent dyes is introduced. This concept provides multicolor emission and brilliant photostability upon external optical pumping. The main advantage of the approach is the construction of a fully organic and two‐component white laser. The versatility of the system is demonstrated by assembling multicolor, tunable, and efficient fluorescent systems using a liquid crystalline matrix, which is supported by comprehensive experimental studies. Additionally, by utilizing laser spectroscopy techniques, it is able to narrow the emission bandwidth and enhance the light in a typical synthetic polymeric matrix. This leads to the realization of white lasing emission with just two luminescent dyes: perylene blue and perylene orange. A simplified system capable of white lasing and fluorescence with the use of only two perylene chromophores is demonstrated. The versatile, tunable, and efficient white fluorescence in a liquid crystalline environment is presented. By narrowing the emission bandwidth and employing laser spectroscopy techniques, white random lasing is successfully achieved. The findings suggest potential applications in future lighting and optical imaging systems.
AbstractList The invention of lasers, which took place a few decades ago, marks a milestone in the past, present, and future technologies in optoelectronics. In particular, the colorful and white tones produced by lasers are appealing from a utilization standpoint and align well with human eye perception. In this paper, an idea for a white laser based on the attractive perylene family of luminescent dyes is introduced. This concept provides multicolor emission and brilliant photostability upon external optical pumping. The main advantage of the approach is the construction of a fully organic and two‐component white laser. The versatility of the system is demonstrated by assembling multicolor, tunable, and efficient fluorescent systems using a liquid crystalline matrix, which is supported by comprehensive experimental studies. Additionally, by utilizing laser spectroscopy techniques, it is able to narrow the emission bandwidth and enhance the light in a typical synthetic polymeric matrix. This leads to the realization of white lasing emission with just two luminescent dyes: perylene blue and perylene orange.
The invention of lasers, which took place a few decades ago, marks a milestone in the past, present, and future technologies in optoelectronics. In particular, the colorful and white tones produced by lasers are appealing from a utilization standpoint and align well with human eye perception. In this paper, an idea for a white laser based on the attractive perylene family of luminescent dyes is introduced. This concept provides multicolor emission and brilliant photostability upon external optical pumping. The main advantage of the approach is the construction of a fully organic and two‐component white laser. The versatility of the system is demonstrated by assembling multicolor, tunable, and efficient fluorescent systems using a liquid crystalline matrix, which is supported by comprehensive experimental studies. Additionally, by utilizing laser spectroscopy techniques, it is able to narrow the emission bandwidth and enhance the light in a typical synthetic polymeric matrix. This leads to the realization of white lasing emission with just two luminescent dyes: perylene blue and perylene orange. A simplified system capable of white lasing and fluorescence with the use of only two perylene chromophores is demonstrated. The versatile, tunable, and efficient white fluorescence in a liquid crystalline environment is presented. By narrowing the emission bandwidth and employing laser spectroscopy techniques, white random lasing is successfully achieved. The findings suggest potential applications in future lighting and optical imaging systems.
Author Szukalski, Adam
Adaszynski, Marek
Mysliwiec, Jaroslaw
Szukalska, Alina
Author_xml – sequence: 1
  givenname: Alina
  orcidid: 0000-0001-6035-0959
  surname: Szukalska
  fullname: Szukalska, Alina
  email: alina.szukalska@pwr.edu.pl
  organization: Wroclaw University of Science and Technology
– sequence: 2
  givenname: Adam
  surname: Szukalski
  fullname: Szukalski, Adam
  organization: Wroclaw University of Science and Technology
– sequence: 3
  givenname: Marek
  surname: Adaszynski
  fullname: Adaszynski, Marek
  organization: Wroclaw University of Science and Technology
– sequence: 4
  givenname: Jaroslaw
  surname: Mysliwiec
  fullname: Mysliwiec, Jaroslaw
  organization: Wroclaw University of Science and Technology
BookMark eNqFkE9Lw0AQxRepYK29el7wnLqzyebPsbRWhUqRVjyGbDLbbkmydbel5OZH8DP6SUyJqDdPM294v3nwLkmvNjUScg1sBIzx26ww1Ygz7rciDM9In0MiPGAR9P7sF2To3JYx1go_CaI-eX7d6D3SeeZ0vaZZXdDuMCsPxqLLsc6RKmsqut8gXepqV2qlsaCro_l8_5g26OjCrrNa53TZuD1WV-RcZaXD4fcckJfZ3Wry4M0X94-T8dzLfYhCDwTGRegLwBjDhIuiUEwmMmeBAhEViZSi4CwAKQPkIYAEP5YqZyBFlMSg_AG56f7urHk7oNunW3OwdRuZ8lgE4AcsSFrXqHPl1jhnUaU7q6vMNimw9NRcemou_WmuBZIOOOoSm3_c6Xi6ePplvwDjTnPS
CitedBy_id crossref_primary_10_1016_j_optmat_2024_115400
crossref_primary_10_1016_j_cej_2023_146436
crossref_primary_10_1002_adfm_202401288
crossref_primary_10_1063_5_0197073
Cites_doi 10.1364/OE.384246
10.1364/AO.36.005862
10.1364/OPTICA.3.000809
10.1088/1367-2630/13/8/083035
10.1038/s41467-019-11604-z
10.1143/JJAP.40.L440
10.1038/s41598-019-38484-z
10.1039/C3CS60271K
10.1063/1.4754286
10.1038/s41598-017-08625-3
10.1364/OE.19.002432
10.1038/srep28363
10.1016/B978-012513745-4/50057-3
10.1002/adfm.201808803
10.1533/9780857098764.1.3
10.1021/jp5061123
10.1021/acsphotonics.7b00301
10.1063/1.1516270
10.1039/B305649J
10.1557/mrs2003.100
10.1002/jps.21079
10.1103/PhysRevApplied.11.064055
10.1016/S0939-6411(99)00039-9
10.1364/OE.24.002273
10.1038/s41377-020-0252-9
10.1038/nnano.2015.149
10.1177/153303460500400308
10.1039/C7SM01068K
10.1063/1.2939582
10.1002/adma.201901117
10.1039/D1NR01052B
10.1063/1.1753706
10.1111/j.1478-4408.2010.00247.x
10.1038/s41598-018-21228-w
10.1039/c2jm16745j
10.1021/acs.chemrev.0c00080
10.1364/OME.2.000490
10.1038/nphoton.2011.99
10.1016/S0925-4005(00)00632-8
10.1021/acsnano.8b03035
10.1016/S1010-6030(01)00562-7
10.1002/adma.202103262
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7U5
8FD
H8D
L7M
DOI 10.1002/adom.202300266
DatabaseName CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Aerospace Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 2195-1071
EndPage n/a
ExternalDocumentID 10_1002_adom_202300266
ADOM202300266
Genre article
GrantInformation_xml – fundername: National Science Centre, Poland
  funderid: 2018/31/B/ST8/02832
GroupedDBID 0R~
1OC
33P
8-1
A00
AAESR
AAHHS
AAIHA
AANLZ
AAXRX
AAZKR
ABCUV
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
AZFZN
AZVAB
BFHJK
BMXJE
BRXPI
D-B
DCZOG
DPXWK
EBS
G-S
HGLYW
HZ~
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY~
O9-
P2W
R.K
ROL
SUPJJ
WBKPD
WOHZO
WXSBR
WYJ
ZZTAW
31~
AAMNL
AAYXX
CITATION
EJD
GODZA
7SP
7U5
8FD
H8D
L7M
ID FETCH-LOGICAL-c3176-15e8d6351e8e6925ddf0b9bc04f157d9bb5d2041bb4e2611b138bfc01b57981f3
IEDL.DBID 33P
ISSN 2195-1071
IngestDate Tue Nov 19 04:38:59 EST 2024
Thu Nov 21 22:51:03 EST 2024
Sat Aug 24 00:57:45 EDT 2024
IsPeerReviewed false
IsScholarly true
Issue 16
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3176-15e8d6351e8e6925ddf0b9bc04f157d9bb5d2041bb4e2611b138bfc01b57981f3
ORCID 0000-0001-6035-0959
PQID 2854134049
PQPubID 2034581
PageCount 11
ParticipantIDs proquest_journals_2854134049
crossref_primary_10_1002_adom_202300266
wiley_primary_10_1002_adom_202300266_ADOM202300266
PublicationCentury 2000
PublicationDate 2023-08-01
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced optical materials
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2014; 118
2017; 7
2019; 9
2001; 72
2001; 145
2012; 101
2017; 4
2013; 2
2019; 31
2020; 120
2019; 11
2019; 10
2010; 126
1999; 48
1962; 1
2015; 10
2011; 13
2008; 103
2008; 97
2011; 19
2011; 5
2001; 40
2014; 43
2021; 13
2016; 6
2018; 8
2012; 2
2014; 5
2016; 3
2001
2021
1997; 36
2017; 13
2020; 9
2020; 28
2005; 4
2003; 3
2019; 29
2003; 28
2002; 92
2014
2013
2018; 12
2012; 22
2016; 24
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
Choudhury A. K. R. (e_1_2_8_37_1) 2014
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_40_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_19_1
e_1_2_8_13_1
Sharma R. R. (e_1_2_8_33_1) 2014; 5
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_16_1
Wyman C. (e_1_2_8_38_1) 2013; 2
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_30_1
References_xml – volume: 145
  start-page: 23
  year: 2001
  publication-title: J. Photochem. Photobiol., A
– volume: 97
  start-page: 123
  year: 2008
  publication-title: J. Pharm. Sci.
– year: 2021
  publication-title: Adv. Mater.
– volume: 1
  start-page: 82
  year: 1962
  publication-title: Appl. Phys. Lett.
– volume: 2
  start-page: 2
  year: 2013
  publication-title: J. Comput. Graphics Tech.
– volume: 24
  start-page: 2273
  year: 2016
  publication-title: Opt. Express
– volume: 4
  start-page: 1539
  year: 2017
  publication-title: ACS Photonics
– volume: 101
  year: 2012
  publication-title: Appl. Phys. Lett.
– year: 2001
– volume: 28
  start-page: 354
  year: 2003
  publication-title: MRS Bull.
– volume: 43
  start-page: 16
  year: 2014
  publication-title: Chem. Soc. Rev.
– volume: 72
  start-page: 51
  year: 2001
  publication-title: Sens. Actuators, B
– volume: 22
  start-page: 8938
  year: 2012
  publication-title: J. Mater. Chem.
– volume: 13
  start-page: 6227
  year: 2017
  publication-title: Soft Matter
– volume: 120
  start-page: 9363
  year: 2020
  publication-title: Chem. Rev.
– volume: 11
  year: 2019
  publication-title: Phys. Rev. Appl.
– volume: 118
  year: 2014
  publication-title: J. Phys. Chem. B
– volume: 126
  start-page: 177
  year: 2010
  publication-title: Color. Technol.
– volume: 5
  start-page: 150
  year: 2014
  publication-title: Int. J. Comput. Technol. Appl.
– volume: 2
  start-page: 490
  year: 2012
  publication-title: Opt. Mater. Express
– volume: 19
  start-page: 2432
  year: 2011
  publication-title: Opt. Express
– volume: 12
  year: 2018
  publication-title: ACS Nano
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 92
  start-page: 6367
  year: 2002
  publication-title: J. Appl. Phys.
– volume: 28
  year: 2020
  publication-title: Opt. Express
– volume: 4
  start-page: 283
  year: 2005
  publication-title: Technol. Cancer Res. Treat.
– volume: 48
  start-page: 101
  year: 1999
  publication-title: Eur. J. Pharm. Biopharm.
– volume: 9
  start-page: 19
  year: 2020
  publication-title: Light: Sci. Appl.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 3
  start-page: 809
  year: 2016
  publication-title: Optica
– volume: 40
  start-page: L440
  year: 2001
  publication-title: Jpn. J. Appl. Phys.
– volume: 10
  start-page: 3594
  year: 2019
  publication-title: Nat. Commun.
– volume: 36
  start-page: 5862
  year: 1997
  publication-title: Appl. Opt.
– volume: 10
  start-page: 796
  year: 2015
  publication-title: Nat. Nanotechnol.
– volume: 13
  year: 2011
  publication-title: New J. Phys.
– volume: 8
  start-page: 2720
  year: 2018
  publication-title: Sci. Rep.
– volume: 6
  year: 2016
  publication-title: Sci. Rep.
– volume: 5
  start-page: 406
  year: 2011
  publication-title: Nat. Photonics
– volume: 103
  year: 2008
  publication-title: J. Appl. Phys.
– volume: 13
  year: 2021
  publication-title: Nanoscale
– volume: 9
  start-page: 2143
  year: 2019
  publication-title: Sci. Rep.
– volume: 7
  start-page: 8385
  year: 2017
  publication-title: Sci. Rep.
– start-page: 1
  year: 2014
  end-page: 52
– volume: 3
  start-page: 2442
  year: 2003
  publication-title: Chem. Commun.
– year: 2013
– ident: e_1_2_8_29_1
  doi: 10.1364/OE.384246
– ident: e_1_2_8_42_1
  doi: 10.1364/AO.36.005862
– ident: e_1_2_8_10_1
  doi: 10.1364/OPTICA.3.000809
– ident: e_1_2_8_44_1
  doi: 10.1088/1367-2630/13/8/083035
– ident: e_1_2_8_12_1
  doi: 10.1038/s41467-019-11604-z
– ident: e_1_2_8_41_1
  doi: 10.1143/JJAP.40.L440
– ident: e_1_2_8_34_1
  doi: 10.1038/s41598-019-38484-z
– start-page: 1
  volume-title: Principle of Color and Appearance Measurement
  year: 2014
  ident: e_1_2_8_37_1
  contributor:
    fullname: Choudhury A. K. R.
– ident: e_1_2_8_8_1
  doi: 10.1039/C3CS60271K
– ident: e_1_2_8_18_1
  doi: 10.1063/1.4754286
– ident: e_1_2_8_9_1
  doi: 10.1038/s41598-017-08625-3
– ident: e_1_2_8_17_1
  doi: 10.1364/OE.19.002432
– ident: e_1_2_8_21_1
  doi: 10.1038/srep28363
– ident: e_1_2_8_2_1
  doi: 10.1016/B978-012513745-4/50057-3
– ident: e_1_2_8_15_1
  doi: 10.1002/adfm.201808803
– ident: e_1_2_8_1_1
  doi: 10.1533/9780857098764.1.3
– ident: e_1_2_8_36_1
  doi: 10.1021/jp5061123
– ident: e_1_2_8_23_1
  doi: 10.1021/acsphotonics.7b00301
– ident: e_1_2_8_35_1
  doi: 10.1063/1.1516270
– ident: e_1_2_8_43_1
  doi: 10.1039/B305649J
– ident: e_1_2_8_4_1
  doi: 10.1557/mrs2003.100
– ident: e_1_2_8_7_1
  doi: 10.1002/jps.21079
– ident: e_1_2_8_27_1
  doi: 10.1103/PhysRevApplied.11.064055
– ident: e_1_2_8_6_1
  doi: 10.1016/S0939-6411(99)00039-9
– volume: 5
  start-page: 150
  year: 2014
  ident: e_1_2_8_33_1
  publication-title: Int. J. Comput. Technol. Appl.
  contributor:
    fullname: Sharma R. R.
– ident: e_1_2_8_22_1
  doi: 10.1364/OE.24.002273
– ident: e_1_2_8_30_1
  doi: 10.1038/s41377-020-0252-9
– volume: 2
  start-page: 2
  year: 2013
  ident: e_1_2_8_38_1
  publication-title: J. Comput. Graphics Tech.
  contributor:
    fullname: Wyman C.
– ident: e_1_2_8_20_1
  doi: 10.1038/nnano.2015.149
– ident: e_1_2_8_5_1
  doi: 10.1177/153303460500400308
– ident: e_1_2_8_24_1
  doi: 10.1039/C7SM01068K
– ident: e_1_2_8_16_1
  doi: 10.1063/1.2939582
– ident: e_1_2_8_28_1
  doi: 10.1002/adma.201901117
– ident: e_1_2_8_31_1
  doi: 10.1039/D1NR01052B
– ident: e_1_2_8_14_1
  doi: 10.1063/1.1753706
– ident: e_1_2_8_13_1
  doi: 10.1111/j.1478-4408.2010.00247.x
– ident: e_1_2_8_26_1
  doi: 10.1038/s41598-018-21228-w
– ident: e_1_2_8_40_1
  doi: 10.1039/c2jm16745j
– ident: e_1_2_8_3_1
  doi: 10.1021/acs.chemrev.0c00080
– ident: e_1_2_8_19_1
  doi: 10.1364/OME.2.000490
– ident: e_1_2_8_11_1
  doi: 10.1038/nphoton.2011.99
– ident: e_1_2_8_39_1
  doi: 10.1016/S0925-4005(00)00632-8
– ident: e_1_2_8_25_1
  doi: 10.1021/acsnano.8b03035
– ident: e_1_2_8_45_1
  doi: 10.1016/S1010-6030(01)00562-7
– ident: e_1_2_8_32_1
  doi: 10.1002/adma.202103262
SSID ssj0001073947
Score 2.3957152
Snippet The invention of lasers, which took place a few decades ago, marks a milestone in the past, present, and future technologies in optoelectronics. In particular,...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Publisher
SubjectTerms Dyes
Fluorescence
Laser applications
laser spectroscopy
Lasers
Lasing
Liquid crystals
Materials science
Optical pumping
Optics
Optoelectronics
perylene
random lasing
soft matter
white fluorescence
white lasing
Title White Lasing and White Fluorescence from the Simplified Two‐Dyes Organic System
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadom.202300266
https://www.proquest.com/docview/2854134049
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFA66kxfnT5xOyUHwVJak6Zoch9vYwZ9sgreSNK8gSCurQ7z5J_g3-peYNF3nToLemkIf5SWv73tpvu8hdA5EA9jEFEhjsoCbvgwUSBoYFmXa9Xrh2pGTJ9P45lEMR04mp2Hxe32IZsPNRUb1vXYBrnTZW4mGKlM4JrmF0LaMcJrbtlSoOBzh3WqTxf2HqpqMMdeT0A7pUriRsN66hfXEtEKbPzFrlXTG7f-_7g7argEnHvgVsos2IN9D7Rp84jq0y310X7XKw1fKbR5glRvsb4yfF8W80nxKATsyCraQEU-f3En0zJmYvRVfH5_DdyixJ3am2MugH6CH8Wh2OQnqfgtBalFEP6ARCGMBCAUBfckiO3tES50SntEoNlLryDDCqdYcbOFFNQ2FzlJCdRRLQbPwELXyIocjhIUkBGIubHGkOAclWKyYSqUAW7-QTHbQxdLZyYuX1Ui8gDJLnKeSxlMd1F3ORVKHV5k42icNua1uOohVXv_FSjIY3l43o-O_PHSCtty1P_zXRa3X-QJO0WZpFmfVovsGfEDVtw
link.rule.ids 315,782,786,1408,27933,27934,46064,46488
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NSwMxEB20HvRi_cRq1RwET0uTNLubHIttqdhWpRW8LZtNFgRppbWIN3-Cv9FfYmZ329qTIB4T2LBMZjZvZvPeAFxYqq11B5OnjEk9YQLlxVYxz3A_1djrRWgkJ3cGYf9RNlsok9OYc2FyfYhFwQ0jI_teY4BjQbq2VA2NzRip5A5DuzwiWIcNEThvRBZH_W5ZZsE_UVmbMY5dCd2QzaUbKa-tLrF6NC3x5k_Umh077fI_vPAObBeYkzRyJ9mFNTvag3KBP0kR3dN9uM-65ZFujPUDEo8MySfaz7PxJJN9SixBPgpxqJEMnvAyeopLDN_GXx-fzXc7JTm3MyG5EvoBPLRbw6uOV7Rc8BIHJAKP-VYah0GYlTZQ3HcbSLXSCRUp80OjtPYNp4JpLazLvZhmdanThDLth0qytH4IpdF4ZI-ASEWpDYV0-VEshI0lD2MeJ0pal8LQVFXgcm7t6CVX1ohyDWUeoaWihaUqUJ1vRlRE2DRC5ierC5fgVIBnZv9llajRvO0tRsd_eegcNjvDXjfqXvdvTmAL5_O7gFUovU5m9hTWp2Z2lnngNxod2d8
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFH64CeLF-ROnU3MQPJUladomx-FWJs452QRvpWlSEGQdm0O8-Sf4N_qXmLTd5k6CHhPoo7zk9X0vzfc9gEuNpdYmMTlCqdRhyhdOrAVxFPVSaXu9MGnJyd1h0H_i7Y6VyVmy-At9iOWBm42M_HttA3yi0uZKNDRWmWWSGwhtygi_ApvMYHGrnu-6g9Upi_0RlXcZo7YpoRmShXIjps11E-uZaQU3f4LWPOuEtf-_7y7slIgTtYotsgcberwPtRJ9ojK2ZwfwkPfKQ73Ynh6geKxQMRG-zLNpLvqUaGTZKMhgRjR8tlfRU2ti9JZ9fXy23_UMFczOBBU66IfwGHZG112nbLjgJAZG-A7xNFcGgRDNtS-oZ5YPSyETzFLiBUpI6SmKGZGSaVN5EUlcLtMEE-kFgpPUPYLqOBvrY0BcYKwDxk11FDOmY06DmMaJ4NoUMDgVdbhaODuaFLoaUaGgTCPrqWjpqTo0FmsRlfE1iyzvk7jMlDd1oLnXf7EStdr3d8vRyV8euoCtQTuMejf921PYttPFRcAGVF-nc30GlZman-f77xuIotiF
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=White+Lasing+and+White+Fluorescence+from+the+Simplified+Two%E2%80%90Dyes+Organic+System&rft.jtitle=Advanced+optical+materials&rft.au=Szukalska%2C+Alina&rft.au=Szukalski%2C+Adam&rft.au=Adaszynski%2C+Marek&rft.au=Mysliwiec%2C+Jaroslaw&rft.date=2023-08-01&rft.issn=2195-1071&rft.eissn=2195-1071&rft.volume=11&rft.issue=16&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadom.202300266&rft.externalDBID=10.1002%252Fadom.202300266&rft.externalDocID=ADOM202300266
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2195-1071&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2195-1071&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2195-1071&client=summon