Theory‐Guided Machine Learning to Predict the Performance of Noble Metal Catalysts in the Water‐Gas Shift Reaction

Machine learning (ML) has widespread applications in catalyst discovery and reaction optimization. We present a theory‐guided machine learning framework to evaluate the carbon monoxide (CO) conversion performance of noble metal catalysts in water‐gas shift (WGS) reaction. Our study is based on an op...

Full description

Saved in:
Bibliographic Details
Published in:ChemCatChem Vol. 14; no. 16
Main Authors: Chattoraj, Joyjit, Hamadicharef, Brahim, Kong, Jian Feng, Pargi, Mohan Kashyap, Zeng, Yingzhi, Poh, Chee Kok, Chen, Luwei, Gao, Fei, Tan, Teck Leong
Format: Journal Article
Language:English
Published: Weinheim Wiley Subscription Services, Inc 19-08-2022
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Machine learning (ML) has widespread applications in catalyst discovery and reaction optimization. We present a theory‐guided machine learning framework to evaluate the carbon monoxide (CO) conversion performance of noble metal catalysts in water‐gas shift (WGS) reaction. Our study is based on an open source WGS dataset, which we modify significantly to be consistent with the chemical reaction principles. We apply state‐of‐the‐art ML models including artificial neural networks, extreme gradient boosting to predict CO conversion percentage. These models show superior regression performance than the previously reported results in the literature. We further generalize the existing data structure by including physical, chemical and surface chemistry properties as fingerprint features that rationalize the importance of all the input features for CO conversion. We noticed that purely data‐driven ML models frequently violate the thermodynamic equilibrium principle and predict unphysical CO conversion percentage. We address these two problems by developing a custom loss function and an additional activation function in our neural networks architecture. Our proposed theory‐guided ML model displays high accuracy (R2 score is 0.95 and root mean square error is 6.87) and physically robust predictions. The model also opens up promising possibilities to improve CO conversion percentage, which were previously unexplored in experiments. Theory‐guided machine learning for water‐gas shift reaction optimization. We showed that pure data‐driven models can violate the thermodynamic equilibrium principle as well as can predict non‐physical carbon monoxide conversion percentage. We resolved these two problems by developing a theory‐guided machine learning model with a unique thermodynamic loss function and one additional activation function. Our model outperforms the known models in the literature. It also shows promising reaction conditions to achieve high carbon monoxide conversion.
AbstractList Machine learning (ML) has widespread applications in catalyst discovery and reaction optimization. We present a theory‐guided machine learning framework to evaluate the carbon monoxide (CO) conversion performance of noble metal catalysts in water‐gas shift (WGS) reaction. Our study is based on an open source WGS dataset, which we modify significantly to be consistent with the chemical reaction principles. We apply state‐of‐the‐art ML models including artificial neural networks, extreme gradient boosting to predict CO conversion percentage. These models show superior regression performance than the previously reported results in the literature. We further generalize the existing data structure by including physical, chemical and surface chemistry properties as fingerprint features that rationalize the importance of all the input features for CO conversion. We noticed that purely data‐driven ML models frequently violate the thermodynamic equilibrium principle and predict unphysical CO conversion percentage. We address these two problems by developing a custom loss function and an additional activation function in our neural networks architecture. Our proposed theory‐guided ML model displays high accuracy (R2 score is 0.95 and root mean square error is 6.87) and physically robust predictions. The model also opens up promising possibilities to improve CO conversion percentage, which were previously unexplored in experiments.
Machine learning (ML) has widespread applications in catalyst discovery and reaction optimization. We present a theory‐guided machine learning framework to evaluate the carbon monoxide (CO) conversion performance of noble metal catalysts in water‐gas shift (WGS) reaction. Our study is based on an open source WGS dataset, which we modify significantly to be consistent with the chemical reaction principles. We apply state‐of‐the‐art ML models including artificial neural networks, extreme gradient boosting to predict CO conversion percentage. These models show superior regression performance than the previously reported results in the literature. We further generalize the existing data structure by including physical, chemical and surface chemistry properties as fingerprint features that rationalize the importance of all the input features for CO conversion. We noticed that purely data‐driven ML models frequently violate the thermodynamic equilibrium principle and predict unphysical CO conversion percentage. We address these two problems by developing a custom loss function and an additional activation function in our neural networks architecture. Our proposed theory‐guided ML model displays high accuracy ( R 2 score is 0.95 and root mean square error is 6.87) and physically robust predictions. The model also opens up promising possibilities to improve CO conversion percentage, which were previously unexplored in experiments.
Machine learning (ML) has widespread applications in catalyst discovery and reaction optimization. We present a theory‐guided machine learning framework to evaluate the carbon monoxide (CO) conversion performance of noble metal catalysts in water‐gas shift (WGS) reaction. Our study is based on an open source WGS dataset, which we modify significantly to be consistent with the chemical reaction principles. We apply state‐of‐the‐art ML models including artificial neural networks, extreme gradient boosting to predict CO conversion percentage. These models show superior regression performance than the previously reported results in the literature. We further generalize the existing data structure by including physical, chemical and surface chemistry properties as fingerprint features that rationalize the importance of all the input features for CO conversion. We noticed that purely data‐driven ML models frequently violate the thermodynamic equilibrium principle and predict unphysical CO conversion percentage. We address these two problems by developing a custom loss function and an additional activation function in our neural networks architecture. Our proposed theory‐guided ML model displays high accuracy (R2 score is 0.95 and root mean square error is 6.87) and physically robust predictions. The model also opens up promising possibilities to improve CO conversion percentage, which were previously unexplored in experiments. Theory‐guided machine learning for water‐gas shift reaction optimization. We showed that pure data‐driven models can violate the thermodynamic equilibrium principle as well as can predict non‐physical carbon monoxide conversion percentage. We resolved these two problems by developing a theory‐guided machine learning model with a unique thermodynamic loss function and one additional activation function. Our model outperforms the known models in the literature. It also shows promising reaction conditions to achieve high carbon monoxide conversion.
Author Hamadicharef, Brahim
Kong, Jian Feng
Pargi, Mohan Kashyap
Poh, Chee Kok
Gao, Fei
Chen, Luwei
Tan, Teck Leong
Chattoraj, Joyjit
Zeng, Yingzhi
Author_xml – sequence: 1
  givenname: Joyjit
  orcidid: 0000-0003-1910-8954
  surname: Chattoraj
  fullname: Chattoraj, Joyjit
  email: joyjit_chattoraj@ihpc.a-star.edu.sg
  organization: Agency for Science Technology and Research
– sequence: 2
  givenname: Brahim
  orcidid: 0000-0003-4192-3517
  surname: Hamadicharef
  fullname: Hamadicharef, Brahim
  organization: Agency for Science Technology and Research
– sequence: 3
  givenname: Jian Feng
  orcidid: 0000-0001-5980-4140
  surname: Kong
  fullname: Kong, Jian Feng
  organization: Agency for Science Technology and Research
– sequence: 4
  givenname: Mohan Kashyap
  orcidid: 0000-0001-5360-8704
  surname: Pargi
  fullname: Pargi, Mohan Kashyap
  organization: Agency for Science Technology and Research
– sequence: 5
  givenname: Yingzhi
  orcidid: 0000-0001-5849-9519
  surname: Zeng
  fullname: Zeng, Yingzhi
  organization: Agency for Science Technology and Research
– sequence: 6
  givenname: Chee Kok
  orcidid: 0000-0002-3175-8493
  surname: Poh
  fullname: Poh, Chee Kok
  organization: Agency for Science Technology and Research
– sequence: 7
  givenname: Luwei
  orcidid: 0000-0002-1042-2034
  surname: Chen
  fullname: Chen, Luwei
  organization: Agency for Science Technology and Research
– sequence: 8
  givenname: Fei
  orcidid: 0000-0002-1623-4296
  surname: Gao
  fullname: Gao, Fei
  organization: Agency for Science Technology and Research
– sequence: 9
  givenname: Teck Leong
  orcidid: 0000-0002-7089-8966
  surname: Tan
  fullname: Tan, Teck Leong
  email: tantl@ihpc.a-star.edu.sg
  organization: Agency for Science Technology and Research
BookMark eNqFkLtOAzEQRS0EEhBoqS1RJ_ix9npLtOIlJYAgiHLl9Y6JUWIH2wGl4xP4Rr6EhCAoaWamOPeOdPbRtg8eEDqiZEAJYSfGZDNghDFCuBBbaI8qWfa5qqrt31uRXbSf0jMhsuKl2EOv4wmEuPx8_7hYuA46PNJm4jzgIejonX_COeDbCJ0zGecJ4FuINsSZ9gZwsPg6tFPAI8h6imu9msuUE3b-m33UGeK6Wid8P3E24zvQJrvgD9CO1dMEhz-7hx7Oz8b1ZX94c3FVnw77htNS9BlRQsnWloIJWXStFFxZriTtBJFUF6USleRM00pD2wnbUdFp1bLCWE65LHgPHW965zG8LCDl5jksol-9bFhJCiqFqNSKGmwoE0NKEWwzj26m47KhpFm7bdZum1-3q0C1Cby5KSz_oZu6Htd_2S8MTYCX
CitedBy_id crossref_primary_10_1021_acscatal_3c04467
crossref_primary_10_1021_acs_jpcc_2c09132
Cites_doi 10.1016/j.ijhydene.2011.10.014
10.1080/01614940903048661
10.1002/cctc.201900971
10.1021/cr1001645
10.1016/j.molcata.2014.08.021
10.1016/0009-2509(86)87177-9
10.1021/acscatal.1c00178
10.1016/j.apcatb.2016.08.016
10.1109/TKDE.2021.3079836
10.1246/cl.210645
10.1007/s42247-020-00116-y
10.1038/s41586-019-1540-5
10.1021/acscatal.7b00086
10.1016/j.apcata.2015.12.012
10.1021/acscatal.9b04186
10.1021/jacs.1c12005
10.1109/TKDE.2017.2720168
10.1016/j.ijhydene.2014.01.160
10.1126/science.aaw4741
10.1016/j.cattod.2010.07.020
10.1016/j.inffus.2019.12.012
10.1016/j.ijhydene.2016.12.091
10.1002/aic.12062
10.1007/s11244-020-01380-2
10.1016/j.jenvman.2019.02.092
10.1016/j.apcatb.2019.118257
10.1016/j.apcatb.2003.10.016
10.1016/j.cattod.2008.06.027
10.1038/s41467-019-10343-5
10.1016/S0920-5861(01)00477-1
10.1016/j.apcatb.2016.07.039
10.1021/acs.chemmater.9b03043
10.1103/PhysRevB.86.035438
10.1016/S0039-6028(03)00953-1
10.1021/cs500323u
10.1016/j.apcata.2009.01.027
10.1016/S0926-860X(02)00657-9
10.1016/j.cattod.2007.05.010
10.1021/acscatal.0c04525
10.1002/aic.16198
10.1038/s41551-018-0304-0
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
DBID AAYXX
CITATION
DOI 10.1002/cctc.202200355
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1867-3899
EndPage n/a
ExternalDocumentID 10_1002_cctc_202200355
CCTC202200355
Genre article
GrantInformation_xml – fundername: Agency for Science, Technology and Research
  funderid: Z20F3RE006
GroupedDBID 05W
0R~
1OC
33P
4.4
5DZ
77Q
8-1
A00
AAESR
AAHHS
AAIHA
AANLZ
AAXRX
AAZKR
ABCUV
ABDBF
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
DCZOG
DRFUL
DRSTM
DU5
EBS
ESX
G-S
HGLYW
HZ~
I-F
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MXFUL
MXSTM
MY~
NNB
O9-
P2W
P4E
ROL
SUPJJ
TUS
WBKPD
WOHZO
WXSBR
WYJ
XV2
ZZTAW
AAMNL
AAYXX
CITATION
ID FETCH-LOGICAL-c3175-208586bf752564db6538f3861d5061a47859632a19aebd5fd15da8b24cf313643
IEDL.DBID 33P
ISSN 1867-3880
IngestDate Tue Nov 19 06:38:39 EST 2024
Fri Nov 22 00:40:54 EST 2024
Sat Aug 24 00:54:44 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 16
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3175-208586bf752564db6538f3861d5061a47859632a19aebd5fd15da8b24cf313643
ORCID 0000-0003-4192-3517
0000-0002-1042-2034
0000-0002-7089-8966
0000-0001-5980-4140
0000-0002-3175-8493
0000-0001-5849-9519
0000-0003-1910-8954
0000-0001-5360-8704
0000-0002-1623-4296
PQID 2704165598
PQPubID 986343
PageCount 11
ParticipantIDs proquest_journals_2704165598
crossref_primary_10_1002_cctc_202200355
wiley_primary_10_1002_cctc_202200355_CCTC202200355
PublicationCentury 2000
PublicationDate August 19, 2022
PublicationDateYYYYMMDD 2022-08-19
PublicationDate_xml – month: 08
  year: 2022
  text: August 19, 2022
  day: 19
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle ChemCatChem
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2010; 56
2017; 7
2017; 42
2007; 127
2020; 63
2019; 11
2002; 72
2020; 263
2022; 51
2019; 10
2004; 48
2016; 52
2020; 58
2017; 29
2020; 367
2020; 10
2020; 32
2012; 37
2007; 31
2014; 395
2018; 64
2009; 357
2009; 139
2022; 144
2020; 3
2009; 51
2014; 4
2018; 2
1953; 28
2021; 11
1986; 41
2021
2010; 158
2016; 518
2010; 110
2019; 237
2014; 39
2017; 200
2017; 201
2003; 245
2003; 541
2019; 573
2012; 86
2017; 30, 4765–4774
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_26_1
e_1_2_8_27_1
Oensan Z. I. (e_1_2_8_5_1) 2007; 31
Lundberg S. M. (e_1_2_8_36_1) 2017; 30
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_40_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_16_1
e_1_2_8_37_1
Shapley L. S. (e_1_2_8_38_1) 1953; 28
Palma V. (e_1_2_8_11_1) 2016; 52
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – volume: 201
  start-page: 169
  year: 2017
  end-page: 181
  publication-title: Appl. Catal. B
– volume: 58
  start-page: 82
  year: 2020
  end-page: 115
  publication-title: Inf Fusion
– volume: 367
  start-page: 1026
  year: 2020
  end-page: 1030
  publication-title: Sci. J.
– volume: 29
  start-page: 2318
  year: 2017
  end-page: 2331
  publication-title: IEEE Trans. Knowl. Data Eng
– volume: 31
  start-page: 531
  year: 2007
  end-page: 550
  publication-title: Turk. J. Chem.
– volume: 4
  start-page: 2088
  year: 2014
  end-page: 2096
  publication-title: ACS Catal.
– volume: 127
  start-page: 319
  year: 2007
  end-page: 329
  publication-title: Catal. Today
– volume: 86
  year: 2012
  publication-title: Phys. Rev. B
– volume: 395
  start-page: 117
  year: 2014
  end-page: 123
  publication-title: J. Mol. Catal. A
– volume: 11
  start-page: 3930
  year: 2021
  end-page: 3937
  publication-title: ACS Catal.
– volume: 573
  start-page: 251
  year: 2019
  end-page: 255
  publication-title: Nature
– volume: 144
  start-page: 4819
  year: 2022
  end-page: 4827
  publication-title: J. Am. Chem. Soc.
– volume: 72
  start-page: 51
  year: 2002
  end-page: 57
  publication-title: Catal. Today
– volume: 30, 4765–4774
  year: 2017
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 63
  start-page: 1683
  year: 2020
  end-page: 1699
  publication-title: Top. Catal.
– volume: 10
  start-page: 2260
  year: 2020
  end-page: 2297
  publication-title: ACS Catal.
– volume: 51
  start-page: 325
  year: 2009
  end-page: 440
  publication-title: Catal. Rev.
– volume: 357
  start-page: 159
  year: 2009
  end-page: 169
  publication-title: Appl. Catal. A
– volume: 39
  start-page: 5733
  year: 2014
  end-page: 5746
  publication-title: Int. J. Hydrogen Energy
– volume: 200
  start-page: 420
  year: 2017
  end-page: 427
  publication-title: Appl. Catal. B
– volume: 158
  start-page: 481
  year: 2010
  end-page: 489
  publication-title: Catal. Today
– volume: 237
  start-page: 585
  year: 2019
  end-page: 594
  publication-title: J. Environ. Manage.
– volume: 11
  start-page: 6059
  year: 2021
  end-page: 6072
  publication-title: ACS Catal.
– volume: 245
  start-page: 343
  year: 2003
  end-page: 351
  publication-title: Appl. Catal. A: Gen
– volume: 139
  start-page: 280
  year: 2009
  end-page: 290
  publication-title: Catal. Today
– volume: 518
  start-page: 18
  year: 2016
  end-page: 47
  publication-title: Appl. Catal. A
– volume: 541
  start-page: 21
  year: 2003
  end-page: 30
  publication-title: Surf. Sci.
– volume: 7
  start-page: 2597
  year: 2017
  end-page: 2606
  publication-title: ACS Catal.
– volume: 37
  start-page: 1465
  year: 2012
  end-page: 1474
  publication-title: Int. J. Hydrogen Energy
– volume: 41
  start-page: 929
  year: 1986
  end-page: 936
  publication-title: Chem. Eng. Sci.
– volume: 110
  start-page: 6503
  year: 2010
  end-page: 6570
  publication-title: Chem. Rev.
– volume: 32
  start-page: 157
  year: 2020
  end-page: 165
  publication-title: Chem. Mater.
– volume: 263
  year: 2020
  publication-title: Appl. Catal. B
– volume: 48
  start-page: 195
  year: 2004
  end-page: 203
  publication-title: Appl. Catal. B
– volume: 64
  start-page: 2311
  year: 2018
  end-page: 2323
  publication-title: AIChE J.
– volume: 42
  start-page: 23326
  year: 2017
  end-page: 23333
  publication-title: Int. J. Hydrogen Energy
– volume: 10
  start-page: 1
  year: 2019
  end-page: 10
  publication-title: Nat. Commun.
– volume: 11
  start-page: 4537
  year: 2019
  end-page: 4547
  publication-title: ChemCatChem
– volume: 3
  start-page: 881
  year: 2020
  end-page: 917
  publication-title: Emergent Materials
– volume: 56
  start-page: 1315
  year: 2010
  end-page: 1324
  publication-title: AIChE J.
– volume: 28
  start-page: 307
  year: 1953
  end-page: 317
  publication-title: Contributions to the Theory of Games 2
– volume: 51
  year: 2022
  publication-title: Chem. Lett.
– volume: 2
  start-page: 749
  year: 2018
  end-page: 760
  publication-title: Nat. Biomed. Eng.
– start-page: 1
  year: 2021
  end-page: 1
  publication-title: IEEE Trans. Knowl. Data Eng
– volume: 52
  start-page: 481
  year: 2016
  end-page: 486
  publication-title: Chemical Engineering Transactions
– ident: e_1_2_8_40_1
  doi: 10.1016/j.ijhydene.2011.10.014
– ident: e_1_2_8_6_1
  doi: 10.1080/01614940903048661
– ident: e_1_2_8_23_1
  doi: 10.1002/cctc.201900971
– ident: e_1_2_8_1_1
  doi: 10.1021/cr1001645
– volume: 31
  start-page: 531
  year: 2007
  ident: e_1_2_8_5_1
  publication-title: Turk. J. Chem.
  contributor:
    fullname: Oensan Z. I.
– ident: e_1_2_8_9_1
  doi: 10.1016/j.molcata.2014.08.021
– volume: 52
  start-page: 481
  year: 2016
  ident: e_1_2_8_11_1
  publication-title: Chemical Engineering Transactions
  contributor:
    fullname: Palma V.
– ident: e_1_2_8_39_1
  doi: 10.1016/0009-2509(86)87177-9
– ident: e_1_2_8_19_1
  doi: 10.1021/acscatal.1c00178
– ident: e_1_2_8_12_1
  doi: 10.1016/j.apcatb.2016.08.016
– ident: e_1_2_8_29_1
  doi: 10.1109/TKDE.2021.3079836
– ident: e_1_2_8_27_1
  doi: 10.1246/cl.210645
– ident: e_1_2_8_4_1
  doi: 10.1007/s42247-020-00116-y
– ident: e_1_2_8_44_1
  doi: 10.1038/s41586-019-1540-5
– ident: e_1_2_8_14_1
  doi: 10.1021/acscatal.7b00086
– ident: e_1_2_8_10_1
  doi: 10.1016/j.apcata.2015.12.012
– ident: e_1_2_8_17_1
  doi: 10.1021/acscatal.9b04186
– ident: e_1_2_8_43_1
  doi: 10.1021/jacs.1c12005
– ident: e_1_2_8_28_1
  doi: 10.1109/TKDE.2017.2720168
– ident: e_1_2_8_20_1
  doi: 10.1016/j.ijhydene.2014.01.160
– ident: e_1_2_8_2_1
– ident: e_1_2_8_32_1
  doi: 10.1126/science.aaw4741
– ident: e_1_2_8_42_1
  doi: 10.1016/j.cattod.2010.07.020
– ident: e_1_2_8_30_1
  doi: 10.1016/j.inffus.2019.12.012
– ident: e_1_2_8_21_1
  doi: 10.1016/j.ijhydene.2016.12.091
– ident: e_1_2_8_35_1
  doi: 10.1002/aic.12062
– ident: e_1_2_8_45_1
  doi: 10.1007/s11244-020-01380-2
– ident: e_1_2_8_22_1
  doi: 10.1016/j.jenvman.2019.02.092
– ident: e_1_2_8_24_1
  doi: 10.1016/j.apcatb.2019.118257
– ident: e_1_2_8_26_1
  doi: 10.1016/j.apcatb.2003.10.016
– ident: e_1_2_8_3_1
  doi: 10.1016/j.cattod.2008.06.027
– ident: e_1_2_8_31_1
  doi: 10.1038/s41467-019-10343-5
– ident: e_1_2_8_41_1
  doi: 10.1016/S0920-5861(01)00477-1
– ident: e_1_2_8_13_1
  doi: 10.1016/j.apcatb.2016.07.039
– ident: e_1_2_8_18_1
  doi: 10.1021/acs.chemmater.9b03043
– ident: e_1_2_8_15_1
  doi: 10.1103/PhysRevB.86.035438
– ident: e_1_2_8_33_1
  doi: 10.1016/S0039-6028(03)00953-1
– ident: e_1_2_8_8_1
  doi: 10.1021/cs500323u
– ident: e_1_2_8_7_1
  doi: 10.1016/j.apcata.2009.01.027
– ident: e_1_2_8_25_1
  doi: 10.1016/S0926-860X(02)00657-9
– ident: e_1_2_8_34_1
  doi: 10.1016/j.cattod.2007.05.010
– volume: 30
  year: 2017
  ident: e_1_2_8_36_1
  publication-title: Adv. Neural Inf. Process. Syst.
  contributor:
    fullname: Lundberg S. M.
– volume: 28
  start-page: 307
  year: 1953
  ident: e_1_2_8_38_1
  publication-title: Contributions to the Theory of Games 2
  contributor:
    fullname: Shapley L. S.
– ident: e_1_2_8_46_1
  doi: 10.1021/acscatal.0c04525
– ident: e_1_2_8_16_1
  doi: 10.1002/aic.16198
– ident: e_1_2_8_37_1
  doi: 10.1038/s41551-018-0304-0
SSID ssj0069375
Score 2.4029095
Snippet Machine learning (ML) has widespread applications in catalyst discovery and reaction optimization. We present a theory‐guided machine learning framework to...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Publisher
SubjectTerms Artificial neural networks
Carbon monoxide
Catalysts
Chemical reactions
Data structures
extreme gradient boosting
Machine learning
Model accuracy
Neural networks
noble metal catalysts
Noble metals
Optimization
Principles
Shift reaction
Thermodynamic equilibrium
thermodynamic loss function
water-gas shift reaction
Title Theory‐Guided Machine Learning to Predict the Performance of Noble Metal Catalysts in the Water‐Gas Shift Reaction
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcctc.202200355
https://www.proquest.com/docview/2704165598
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09T8MwELWgCyx8IwoFeUBiitokdj5GlLZ0oapoEYglcmIbuqSoSZHY-An8Rn4Jd07S0gkJliiRYivy-e6eHb93hFzCMhZCr59aoRTcYpDjLBEk2gocwTXq3zFDFxuM_eFj0O2hTM6SxV_qQyw33NAzTLxGBxdJ3l6JhqapkSB0jKQnssxhqWA4HO6oDsUe5F48w4iibRaqntSqjR2nvd58PSutoOZPwGoyTn_3_9-6R3YqtEmvy-mxTzZUdkC2orrI2yF5K7n5Xx-fN4upVJLemsOVila6q8-0mNHRHP_mFBSwIh2tiAZ0pukQy9HQWwUQnka4E_SeFzmdZubdB8Cxc-xa5HT8MtUFvVMlj-KI3Pd7k2hgVaUYrBQBhoWVPAMv0T4HiMRk4kGc1G7g2ZIDIBDMDzh4siPsUKhEci1tLsHmDku1a7uAeo5JI5tl6oRQ7YeCqxQWgkwygGcidV3AHMwVAp6FbJKr2hTxa6m4EZfayk6M4xgvx7FJWrWl4srz8tjxO4AxUXa-SRxjk196iaNoEi2fTv_S6Ixs4z1uNdthizSK-UKdk81cLi7MfIQr7z59Ayad4L4
link.rule.ids 315,782,786,1405,1408,27933,27934,46064,46165,46488,46589
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwED7xGGDhjSgU8IDEFEESO0lHFFqKaKsKimCL3NiGLi1qUiQ2fgK_kV_CndO0MCEhRkexFfleny--7wBO8BiLrjdMnZqSwuEY4xwZ9Y0TeVIY4r_jtlyseRd2HqPLOtHkXJS1MAU_xCzhRpZh_TUZOCWkz-asoWlqOQg9y-kpFmGZB6iNVMXhd0tnHGD0pVuMRNvmEO9Jydt47p39nP8zLs3B5nfIamNOY_0fvnYD1qaAk10UGrIJC3q4BStx2edtG16L8vzP94-ryUBpxdr2fqVmU-rVJ5aPWHdMP3RyhnCRdee1BmxkWIc60rC2RhTPYkoGvWV5xgZD--4DQtkxLS0zdvc8MDm71UUpxQ7cN-q9uOlMuzE4KWEMh5p5RkHfhAJRElf9AF2l8aPAVQIxgeRhJNCYPenWpO4rYZQrFIrd46nxXR-Bzy4sDUdDvQfMhDUpdIpnQa44IjSZ-j7CDu5LiWOpKnBayiJ5KUg3koJe2UtoH5PZPlagWooqmRpflnjhOcJMYp6vgGeF8ssqSRz34tlo_y-TjmGl2Wu3ktZ15-YAVuk5ZZ7dWhWW8vFEH8JipiZHVjm_ABw34_I
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZgSMCFN2IwIAckTtXoI213RN3GEGyaeAjEpcqaBHbZprVD4sZP4DfyS7DTdYMTEhxTNVYVx_aX1P4McILHWHS9QWLVpOCWhzHOEmFPW6EjuCb-O8-Ui7Vug85jWG8QTc6sij_nh5hduJFlGH9NBj6SujonDU0SQ0HoGEpPvghLKNWnpD5efyp8sY_Bl5IYibXNItqTgrbxzKn-nP8zLM2x5nfEakJOc_3_H7sBa1O4yc7z_bEJC2qwBStR0eVtG17z4vzP94-LSV8qydomu1KxKfHqM8uGrDum3zkZQ7DIuvNKAzbUrEP9aFhbIYZnEV0FvaVZyvoD8-4DAtkxiRYpu33p64zdqLyQYgfum427qGVNezFYCSEMi1p5hn5PBxwxkid7PjpK7Ya-LTkiAuEFIUdTdoRdE6onuZY2l6h0x0u0a7sIe3ahNBgO1B4wHdQEVwmeBD3pIT4Tiesi6PBcIXAsZBlOC1XEo5xyI87JlZ2Y1jGerWMZKoWm4qnppbETnCHIJN75MjhGJ79IiaPoLpqN9v8y6RiWu_VmfH3ZuTqAVXpM1852rQKlbDxRh7CYysmR2Zpft4vi1A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Theory%E2%80%90Guided+Machine+Learning+to+Predict+the+Performance+of+Noble+Metal+Catalysts+in+the+Water%E2%80%90Gas+Shift+Reaction&rft.jtitle=ChemCatChem&rft.au=Chattoraj%2C+Joyjit&rft.au=Hamadicharef%2C+Brahim&rft.au=Kong%2C+Jian+Feng&rft.au=Pargi%2C+Mohan+Kashyap&rft.date=2022-08-19&rft.issn=1867-3880&rft.eissn=1867-3899&rft.volume=14&rft.issue=16&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fcctc.202200355&rft.externalDBID=10.1002%252Fcctc.202200355&rft.externalDocID=CCTC202200355
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1867-3880&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1867-3880&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1867-3880&client=summon