Theory‐Guided Machine Learning to Predict the Performance of Noble Metal Catalysts in the Water‐Gas Shift Reaction
Machine learning (ML) has widespread applications in catalyst discovery and reaction optimization. We present a theory‐guided machine learning framework to evaluate the carbon monoxide (CO) conversion performance of noble metal catalysts in water‐gas shift (WGS) reaction. Our study is based on an op...
Saved in:
Published in: | ChemCatChem Vol. 14; no. 16 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Weinheim
Wiley Subscription Services, Inc
19-08-2022
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Machine learning (ML) has widespread applications in catalyst discovery and reaction optimization. We present a theory‐guided machine learning framework to evaluate the carbon monoxide (CO) conversion performance of noble metal catalysts in water‐gas shift (WGS) reaction. Our study is based on an open source WGS dataset, which we modify significantly to be consistent with the chemical reaction principles. We apply state‐of‐the‐art ML models including artificial neural networks, extreme gradient boosting to predict CO conversion percentage. These models show superior regression performance than the previously reported results in the literature. We further generalize the existing data structure by including physical, chemical and surface chemistry properties as fingerprint features that rationalize the importance of all the input features for CO conversion. We noticed that purely data‐driven ML models frequently violate the thermodynamic equilibrium principle and predict unphysical CO conversion percentage. We address these two problems by developing a custom loss function and an additional activation function in our neural networks architecture. Our proposed theory‐guided ML model displays high accuracy (R2 score is 0.95 and root mean square error is 6.87) and physically robust predictions. The model also opens up promising possibilities to improve CO conversion percentage, which were previously unexplored in experiments.
Theory‐guided machine learning for water‐gas shift reaction optimization. We showed that pure data‐driven models can violate the thermodynamic equilibrium principle as well as can predict non‐physical carbon monoxide conversion percentage. We resolved these two problems by developing a theory‐guided machine learning model with a unique thermodynamic loss function and one additional activation function. Our model outperforms the known models in the literature. It also shows promising reaction conditions to achieve high carbon monoxide conversion. |
---|---|
AbstractList | Machine learning (ML) has widespread applications in catalyst discovery and reaction optimization. We present a theory‐guided machine learning framework to evaluate the carbon monoxide (CO) conversion performance of noble metal catalysts in water‐gas shift (WGS) reaction. Our study is based on an open source WGS dataset, which we modify significantly to be consistent with the chemical reaction principles. We apply state‐of‐the‐art ML models including artificial neural networks, extreme gradient boosting to predict CO conversion percentage. These models show superior regression performance than the previously reported results in the literature. We further generalize the existing data structure by including physical, chemical and surface chemistry properties as fingerprint features that rationalize the importance of all the input features for CO conversion. We noticed that purely data‐driven ML models frequently violate the thermodynamic equilibrium principle and predict unphysical CO conversion percentage. We address these two problems by developing a custom loss function and an additional activation function in our neural networks architecture. Our proposed theory‐guided ML model displays high accuracy (R2 score is 0.95 and root mean square error is 6.87) and physically robust predictions. The model also opens up promising possibilities to improve CO conversion percentage, which were previously unexplored in experiments. Machine learning (ML) has widespread applications in catalyst discovery and reaction optimization. We present a theory‐guided machine learning framework to evaluate the carbon monoxide (CO) conversion performance of noble metal catalysts in water‐gas shift (WGS) reaction. Our study is based on an open source WGS dataset, which we modify significantly to be consistent with the chemical reaction principles. We apply state‐of‐the‐art ML models including artificial neural networks, extreme gradient boosting to predict CO conversion percentage. These models show superior regression performance than the previously reported results in the literature. We further generalize the existing data structure by including physical, chemical and surface chemistry properties as fingerprint features that rationalize the importance of all the input features for CO conversion. We noticed that purely data‐driven ML models frequently violate the thermodynamic equilibrium principle and predict unphysical CO conversion percentage. We address these two problems by developing a custom loss function and an additional activation function in our neural networks architecture. Our proposed theory‐guided ML model displays high accuracy ( R 2 score is 0.95 and root mean square error is 6.87) and physically robust predictions. The model also opens up promising possibilities to improve CO conversion percentage, which were previously unexplored in experiments. Machine learning (ML) has widespread applications in catalyst discovery and reaction optimization. We present a theory‐guided machine learning framework to evaluate the carbon monoxide (CO) conversion performance of noble metal catalysts in water‐gas shift (WGS) reaction. Our study is based on an open source WGS dataset, which we modify significantly to be consistent with the chemical reaction principles. We apply state‐of‐the‐art ML models including artificial neural networks, extreme gradient boosting to predict CO conversion percentage. These models show superior regression performance than the previously reported results in the literature. We further generalize the existing data structure by including physical, chemical and surface chemistry properties as fingerprint features that rationalize the importance of all the input features for CO conversion. We noticed that purely data‐driven ML models frequently violate the thermodynamic equilibrium principle and predict unphysical CO conversion percentage. We address these two problems by developing a custom loss function and an additional activation function in our neural networks architecture. Our proposed theory‐guided ML model displays high accuracy (R2 score is 0.95 and root mean square error is 6.87) and physically robust predictions. The model also opens up promising possibilities to improve CO conversion percentage, which were previously unexplored in experiments. Theory‐guided machine learning for water‐gas shift reaction optimization. We showed that pure data‐driven models can violate the thermodynamic equilibrium principle as well as can predict non‐physical carbon monoxide conversion percentage. We resolved these two problems by developing a theory‐guided machine learning model with a unique thermodynamic loss function and one additional activation function. Our model outperforms the known models in the literature. It also shows promising reaction conditions to achieve high carbon monoxide conversion. |
Author | Hamadicharef, Brahim Kong, Jian Feng Pargi, Mohan Kashyap Poh, Chee Kok Gao, Fei Chen, Luwei Tan, Teck Leong Chattoraj, Joyjit Zeng, Yingzhi |
Author_xml | – sequence: 1 givenname: Joyjit orcidid: 0000-0003-1910-8954 surname: Chattoraj fullname: Chattoraj, Joyjit email: joyjit_chattoraj@ihpc.a-star.edu.sg organization: Agency for Science Technology and Research – sequence: 2 givenname: Brahim orcidid: 0000-0003-4192-3517 surname: Hamadicharef fullname: Hamadicharef, Brahim organization: Agency for Science Technology and Research – sequence: 3 givenname: Jian Feng orcidid: 0000-0001-5980-4140 surname: Kong fullname: Kong, Jian Feng organization: Agency for Science Technology and Research – sequence: 4 givenname: Mohan Kashyap orcidid: 0000-0001-5360-8704 surname: Pargi fullname: Pargi, Mohan Kashyap organization: Agency for Science Technology and Research – sequence: 5 givenname: Yingzhi orcidid: 0000-0001-5849-9519 surname: Zeng fullname: Zeng, Yingzhi organization: Agency for Science Technology and Research – sequence: 6 givenname: Chee Kok orcidid: 0000-0002-3175-8493 surname: Poh fullname: Poh, Chee Kok organization: Agency for Science Technology and Research – sequence: 7 givenname: Luwei orcidid: 0000-0002-1042-2034 surname: Chen fullname: Chen, Luwei organization: Agency for Science Technology and Research – sequence: 8 givenname: Fei orcidid: 0000-0002-1623-4296 surname: Gao fullname: Gao, Fei organization: Agency for Science Technology and Research – sequence: 9 givenname: Teck Leong orcidid: 0000-0002-7089-8966 surname: Tan fullname: Tan, Teck Leong email: tantl@ihpc.a-star.edu.sg organization: Agency for Science Technology and Research |
BookMark | eNqFkLtOAzEQRS0EEhBoqS1RJ_ix9npLtOIlJYAgiHLl9Y6JUWIH2wGl4xP4Rr6EhCAoaWamOPeOdPbRtg8eEDqiZEAJYSfGZDNghDFCuBBbaI8qWfa5qqrt31uRXbSf0jMhsuKl2EOv4wmEuPx8_7hYuA46PNJm4jzgIejonX_COeDbCJ0zGecJ4FuINsSZ9gZwsPg6tFPAI8h6imu9msuUE3b-m33UGeK6Wid8P3E24zvQJrvgD9CO1dMEhz-7hx7Oz8b1ZX94c3FVnw77htNS9BlRQsnWloIJWXStFFxZriTtBJFUF6USleRM00pD2wnbUdFp1bLCWE65LHgPHW965zG8LCDl5jksol-9bFhJCiqFqNSKGmwoE0NKEWwzj26m47KhpFm7bdZum1-3q0C1Cby5KSz_oZu6Htd_2S8MTYCX |
CitedBy_id | crossref_primary_10_1021_acscatal_3c04467 crossref_primary_10_1021_acs_jpcc_2c09132 |
Cites_doi | 10.1016/j.ijhydene.2011.10.014 10.1080/01614940903048661 10.1002/cctc.201900971 10.1021/cr1001645 10.1016/j.molcata.2014.08.021 10.1016/0009-2509(86)87177-9 10.1021/acscatal.1c00178 10.1016/j.apcatb.2016.08.016 10.1109/TKDE.2021.3079836 10.1246/cl.210645 10.1007/s42247-020-00116-y 10.1038/s41586-019-1540-5 10.1021/acscatal.7b00086 10.1016/j.apcata.2015.12.012 10.1021/acscatal.9b04186 10.1021/jacs.1c12005 10.1109/TKDE.2017.2720168 10.1016/j.ijhydene.2014.01.160 10.1126/science.aaw4741 10.1016/j.cattod.2010.07.020 10.1016/j.inffus.2019.12.012 10.1016/j.ijhydene.2016.12.091 10.1002/aic.12062 10.1007/s11244-020-01380-2 10.1016/j.jenvman.2019.02.092 10.1016/j.apcatb.2019.118257 10.1016/j.apcatb.2003.10.016 10.1016/j.cattod.2008.06.027 10.1038/s41467-019-10343-5 10.1016/S0920-5861(01)00477-1 10.1016/j.apcatb.2016.07.039 10.1021/acs.chemmater.9b03043 10.1103/PhysRevB.86.035438 10.1016/S0039-6028(03)00953-1 10.1021/cs500323u 10.1016/j.apcata.2009.01.027 10.1016/S0926-860X(02)00657-9 10.1016/j.cattod.2007.05.010 10.1021/acscatal.0c04525 10.1002/aic.16198 10.1038/s41551-018-0304-0 |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH |
DBID | AAYXX CITATION |
DOI | 10.1002/cctc.202200355 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1867-3899 |
EndPage | n/a |
ExternalDocumentID | 10_1002_cctc_202200355 CCTC202200355 |
Genre | article |
GrantInformation_xml | – fundername: Agency for Science, Technology and Research funderid: Z20F3RE006 |
GroupedDBID | 05W 0R~ 1OC 33P 4.4 5DZ 77Q 8-1 A00 AAESR AAHHS AAIHA AANLZ AAXRX AAZKR ABCUV ABDBF ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFGKR AFZJQ AHBTC AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB AZVAB BDRZF BFHJK BMXJE BRXPI DCZOG DRFUL DRSTM DU5 EBS ESX G-S HGLYW HZ~ I-F LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MXFUL MXSTM MY~ NNB O9- P2W P4E ROL SUPJJ TUS WBKPD WOHZO WXSBR WYJ XV2 ZZTAW AAMNL AAYXX CITATION |
ID | FETCH-LOGICAL-c3175-208586bf752564db6538f3861d5061a47859632a19aebd5fd15da8b24cf313643 |
IEDL.DBID | 33P |
ISSN | 1867-3880 |
IngestDate | Tue Nov 19 06:38:39 EST 2024 Fri Nov 22 00:40:54 EST 2024 Sat Aug 24 00:54:44 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 16 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3175-208586bf752564db6538f3861d5061a47859632a19aebd5fd15da8b24cf313643 |
ORCID | 0000-0003-4192-3517 0000-0002-1042-2034 0000-0002-7089-8966 0000-0001-5980-4140 0000-0002-3175-8493 0000-0001-5849-9519 0000-0003-1910-8954 0000-0001-5360-8704 0000-0002-1623-4296 |
PQID | 2704165598 |
PQPubID | 986343 |
PageCount | 11 |
ParticipantIDs | proquest_journals_2704165598 crossref_primary_10_1002_cctc_202200355 wiley_primary_10_1002_cctc_202200355_CCTC202200355 |
PublicationCentury | 2000 |
PublicationDate | August 19, 2022 |
PublicationDateYYYYMMDD | 2022-08-19 |
PublicationDate_xml | – month: 08 year: 2022 text: August 19, 2022 day: 19 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | ChemCatChem |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2010; 56 2017; 7 2017; 42 2007; 127 2020; 63 2019; 11 2002; 72 2020; 263 2022; 51 2019; 10 2004; 48 2016; 52 2020; 58 2017; 29 2020; 367 2020; 10 2020; 32 2012; 37 2007; 31 2014; 395 2018; 64 2009; 357 2009; 139 2022; 144 2020; 3 2009; 51 2014; 4 2018; 2 1953; 28 2021; 11 1986; 41 2021 2010; 158 2016; 518 2010; 110 2019; 237 2014; 39 2017; 200 2017; 201 2003; 245 2003; 541 2019; 573 2012; 86 2017; 30, 4765–4774 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_26_1 e_1_2_8_27_1 Oensan Z. I. (e_1_2_8_5_1) 2007; 31 Lundberg S. M. (e_1_2_8_36_1) 2017; 30 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_40_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_16_1 e_1_2_8_37_1 Shapley L. S. (e_1_2_8_38_1) 1953; 28 Palma V. (e_1_2_8_11_1) 2016; 52 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_30_1 |
References_xml | – volume: 201 start-page: 169 year: 2017 end-page: 181 publication-title: Appl. Catal. B – volume: 58 start-page: 82 year: 2020 end-page: 115 publication-title: Inf Fusion – volume: 367 start-page: 1026 year: 2020 end-page: 1030 publication-title: Sci. J. – volume: 29 start-page: 2318 year: 2017 end-page: 2331 publication-title: IEEE Trans. Knowl. Data Eng – volume: 31 start-page: 531 year: 2007 end-page: 550 publication-title: Turk. J. Chem. – volume: 4 start-page: 2088 year: 2014 end-page: 2096 publication-title: ACS Catal. – volume: 127 start-page: 319 year: 2007 end-page: 329 publication-title: Catal. Today – volume: 86 year: 2012 publication-title: Phys. Rev. B – volume: 395 start-page: 117 year: 2014 end-page: 123 publication-title: J. Mol. Catal. A – volume: 11 start-page: 3930 year: 2021 end-page: 3937 publication-title: ACS Catal. – volume: 573 start-page: 251 year: 2019 end-page: 255 publication-title: Nature – volume: 144 start-page: 4819 year: 2022 end-page: 4827 publication-title: J. Am. Chem. Soc. – volume: 72 start-page: 51 year: 2002 end-page: 57 publication-title: Catal. Today – volume: 30, 4765–4774 year: 2017 publication-title: Adv. Neural Inf. Process. Syst. – volume: 63 start-page: 1683 year: 2020 end-page: 1699 publication-title: Top. Catal. – volume: 10 start-page: 2260 year: 2020 end-page: 2297 publication-title: ACS Catal. – volume: 51 start-page: 325 year: 2009 end-page: 440 publication-title: Catal. Rev. – volume: 357 start-page: 159 year: 2009 end-page: 169 publication-title: Appl. Catal. A – volume: 39 start-page: 5733 year: 2014 end-page: 5746 publication-title: Int. J. Hydrogen Energy – volume: 200 start-page: 420 year: 2017 end-page: 427 publication-title: Appl. Catal. B – volume: 158 start-page: 481 year: 2010 end-page: 489 publication-title: Catal. Today – volume: 237 start-page: 585 year: 2019 end-page: 594 publication-title: J. Environ. Manage. – volume: 11 start-page: 6059 year: 2021 end-page: 6072 publication-title: ACS Catal. – volume: 245 start-page: 343 year: 2003 end-page: 351 publication-title: Appl. Catal. A: Gen – volume: 139 start-page: 280 year: 2009 end-page: 290 publication-title: Catal. Today – volume: 518 start-page: 18 year: 2016 end-page: 47 publication-title: Appl. Catal. A – volume: 541 start-page: 21 year: 2003 end-page: 30 publication-title: Surf. Sci. – volume: 7 start-page: 2597 year: 2017 end-page: 2606 publication-title: ACS Catal. – volume: 37 start-page: 1465 year: 2012 end-page: 1474 publication-title: Int. J. Hydrogen Energy – volume: 41 start-page: 929 year: 1986 end-page: 936 publication-title: Chem. Eng. Sci. – volume: 110 start-page: 6503 year: 2010 end-page: 6570 publication-title: Chem. Rev. – volume: 32 start-page: 157 year: 2020 end-page: 165 publication-title: Chem. Mater. – volume: 263 year: 2020 publication-title: Appl. Catal. B – volume: 48 start-page: 195 year: 2004 end-page: 203 publication-title: Appl. Catal. B – volume: 64 start-page: 2311 year: 2018 end-page: 2323 publication-title: AIChE J. – volume: 42 start-page: 23326 year: 2017 end-page: 23333 publication-title: Int. J. Hydrogen Energy – volume: 10 start-page: 1 year: 2019 end-page: 10 publication-title: Nat. Commun. – volume: 11 start-page: 4537 year: 2019 end-page: 4547 publication-title: ChemCatChem – volume: 3 start-page: 881 year: 2020 end-page: 917 publication-title: Emergent Materials – volume: 56 start-page: 1315 year: 2010 end-page: 1324 publication-title: AIChE J. – volume: 28 start-page: 307 year: 1953 end-page: 317 publication-title: Contributions to the Theory of Games 2 – volume: 51 year: 2022 publication-title: Chem. Lett. – volume: 2 start-page: 749 year: 2018 end-page: 760 publication-title: Nat. Biomed. Eng. – start-page: 1 year: 2021 end-page: 1 publication-title: IEEE Trans. Knowl. Data Eng – volume: 52 start-page: 481 year: 2016 end-page: 486 publication-title: Chemical Engineering Transactions – ident: e_1_2_8_40_1 doi: 10.1016/j.ijhydene.2011.10.014 – ident: e_1_2_8_6_1 doi: 10.1080/01614940903048661 – ident: e_1_2_8_23_1 doi: 10.1002/cctc.201900971 – ident: e_1_2_8_1_1 doi: 10.1021/cr1001645 – volume: 31 start-page: 531 year: 2007 ident: e_1_2_8_5_1 publication-title: Turk. J. Chem. contributor: fullname: Oensan Z. I. – ident: e_1_2_8_9_1 doi: 10.1016/j.molcata.2014.08.021 – volume: 52 start-page: 481 year: 2016 ident: e_1_2_8_11_1 publication-title: Chemical Engineering Transactions contributor: fullname: Palma V. – ident: e_1_2_8_39_1 doi: 10.1016/0009-2509(86)87177-9 – ident: e_1_2_8_19_1 doi: 10.1021/acscatal.1c00178 – ident: e_1_2_8_12_1 doi: 10.1016/j.apcatb.2016.08.016 – ident: e_1_2_8_29_1 doi: 10.1109/TKDE.2021.3079836 – ident: e_1_2_8_27_1 doi: 10.1246/cl.210645 – ident: e_1_2_8_4_1 doi: 10.1007/s42247-020-00116-y – ident: e_1_2_8_44_1 doi: 10.1038/s41586-019-1540-5 – ident: e_1_2_8_14_1 doi: 10.1021/acscatal.7b00086 – ident: e_1_2_8_10_1 doi: 10.1016/j.apcata.2015.12.012 – ident: e_1_2_8_17_1 doi: 10.1021/acscatal.9b04186 – ident: e_1_2_8_43_1 doi: 10.1021/jacs.1c12005 – ident: e_1_2_8_28_1 doi: 10.1109/TKDE.2017.2720168 – ident: e_1_2_8_20_1 doi: 10.1016/j.ijhydene.2014.01.160 – ident: e_1_2_8_2_1 – ident: e_1_2_8_32_1 doi: 10.1126/science.aaw4741 – ident: e_1_2_8_42_1 doi: 10.1016/j.cattod.2010.07.020 – ident: e_1_2_8_30_1 doi: 10.1016/j.inffus.2019.12.012 – ident: e_1_2_8_21_1 doi: 10.1016/j.ijhydene.2016.12.091 – ident: e_1_2_8_35_1 doi: 10.1002/aic.12062 – ident: e_1_2_8_45_1 doi: 10.1007/s11244-020-01380-2 – ident: e_1_2_8_22_1 doi: 10.1016/j.jenvman.2019.02.092 – ident: e_1_2_8_24_1 doi: 10.1016/j.apcatb.2019.118257 – ident: e_1_2_8_26_1 doi: 10.1016/j.apcatb.2003.10.016 – ident: e_1_2_8_3_1 doi: 10.1016/j.cattod.2008.06.027 – ident: e_1_2_8_31_1 doi: 10.1038/s41467-019-10343-5 – ident: e_1_2_8_41_1 doi: 10.1016/S0920-5861(01)00477-1 – ident: e_1_2_8_13_1 doi: 10.1016/j.apcatb.2016.07.039 – ident: e_1_2_8_18_1 doi: 10.1021/acs.chemmater.9b03043 – ident: e_1_2_8_15_1 doi: 10.1103/PhysRevB.86.035438 – ident: e_1_2_8_33_1 doi: 10.1016/S0039-6028(03)00953-1 – ident: e_1_2_8_8_1 doi: 10.1021/cs500323u – ident: e_1_2_8_7_1 doi: 10.1016/j.apcata.2009.01.027 – ident: e_1_2_8_25_1 doi: 10.1016/S0926-860X(02)00657-9 – ident: e_1_2_8_34_1 doi: 10.1016/j.cattod.2007.05.010 – volume: 30 year: 2017 ident: e_1_2_8_36_1 publication-title: Adv. Neural Inf. Process. Syst. contributor: fullname: Lundberg S. M. – volume: 28 start-page: 307 year: 1953 ident: e_1_2_8_38_1 publication-title: Contributions to the Theory of Games 2 contributor: fullname: Shapley L. S. – ident: e_1_2_8_46_1 doi: 10.1021/acscatal.0c04525 – ident: e_1_2_8_16_1 doi: 10.1002/aic.16198 – ident: e_1_2_8_37_1 doi: 10.1038/s41551-018-0304-0 |
SSID | ssj0069375 |
Score | 2.4029095 |
Snippet | Machine learning (ML) has widespread applications in catalyst discovery and reaction optimization. We present a theory‐guided machine learning framework to... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Publisher |
SubjectTerms | Artificial neural networks Carbon monoxide Catalysts Chemical reactions Data structures extreme gradient boosting Machine learning Model accuracy Neural networks noble metal catalysts Noble metals Optimization Principles Shift reaction Thermodynamic equilibrium thermodynamic loss function water-gas shift reaction |
Title | Theory‐Guided Machine Learning to Predict the Performance of Noble Metal Catalysts in the Water‐Gas Shift Reaction |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcctc.202200355 https://www.proquest.com/docview/2704165598 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09T8MwELWgCyx8IwoFeUBiitokdj5GlLZ0oapoEYglcmIbuqSoSZHY-An8Rn4Jd07S0gkJliiRYivy-e6eHb93hFzCMhZCr59aoRTcYpDjLBEk2gocwTXq3zFDFxuM_eFj0O2hTM6SxV_qQyw33NAzTLxGBxdJ3l6JhqapkSB0jKQnssxhqWA4HO6oDsUe5F48w4iibRaqntSqjR2nvd58PSutoOZPwGoyTn_3_9-6R3YqtEmvy-mxTzZUdkC2orrI2yF5K7n5Xx-fN4upVJLemsOVila6q8-0mNHRHP_mFBSwIh2tiAZ0pukQy9HQWwUQnka4E_SeFzmdZubdB8Cxc-xa5HT8MtUFvVMlj-KI3Pd7k2hgVaUYrBQBhoWVPAMv0T4HiMRk4kGc1G7g2ZIDIBDMDzh4siPsUKhEci1tLsHmDku1a7uAeo5JI5tl6oRQ7YeCqxQWgkwygGcidV3AHMwVAp6FbJKr2hTxa6m4EZfayk6M4xgvx7FJWrWl4srz8tjxO4AxUXa-SRxjk196iaNoEi2fTv_S6Ixs4z1uNdthizSK-UKdk81cLi7MfIQr7z59Ayad4L4 |
link.rule.ids | 315,782,786,1405,1408,27933,27934,46064,46165,46488,46589 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwED7xGGDhjSgU8IDEFEESO0lHFFqKaKsKimCL3NiGLi1qUiQ2fgK_kV_CndO0MCEhRkexFfleny--7wBO8BiLrjdMnZqSwuEY4xwZ9Y0TeVIY4r_jtlyseRd2HqPLOtHkXJS1MAU_xCzhRpZh_TUZOCWkz-asoWlqOQg9y-kpFmGZB6iNVMXhd0tnHGD0pVuMRNvmEO9Jydt47p39nP8zLs3B5nfIamNOY_0fvnYD1qaAk10UGrIJC3q4BStx2edtG16L8vzP94-ryUBpxdr2fqVmU-rVJ5aPWHdMP3RyhnCRdee1BmxkWIc60rC2RhTPYkoGvWV5xgZD--4DQtkxLS0zdvc8MDm71UUpxQ7cN-q9uOlMuzE4KWEMh5p5RkHfhAJRElf9AF2l8aPAVQIxgeRhJNCYPenWpO4rYZQrFIrd46nxXR-Bzy4sDUdDvQfMhDUpdIpnQa44IjSZ-j7CDu5LiWOpKnBayiJ5KUg3koJe2UtoH5PZPlagWooqmRpflnjhOcJMYp6vgGeF8ssqSRz34tlo_y-TjmGl2Wu3ktZ15-YAVuk5ZZ7dWhWW8vFEH8JipiZHVjm_ABw34_I |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZgSMCFN2IwIAckTtXoI213RN3GEGyaeAjEpcqaBHbZprVD4sZP4DfyS7DTdYMTEhxTNVYVx_aX1P4McILHWHS9QWLVpOCWhzHOEmFPW6EjuCb-O8-Ui7Vug85jWG8QTc6sij_nh5hduJFlGH9NBj6SujonDU0SQ0HoGEpPvghLKNWnpD5efyp8sY_Bl5IYibXNItqTgrbxzKn-nP8zLM2x5nfEakJOc_3_H7sBa1O4yc7z_bEJC2qwBStR0eVtG17z4vzP94-LSV8qydomu1KxKfHqM8uGrDum3zkZQ7DIuvNKAzbUrEP9aFhbIYZnEV0FvaVZyvoD8-4DAtkxiRYpu33p64zdqLyQYgfum427qGVNezFYCSEMi1p5hn5PBxwxkid7PjpK7Ya-LTkiAuEFIUdTdoRdE6onuZY2l6h0x0u0a7sIe3ahNBgO1B4wHdQEVwmeBD3pIT4Tiesi6PBcIXAsZBlOC1XEo5xyI87JlZ2Y1jGerWMZKoWm4qnppbETnCHIJN75MjhGJ79IiaPoLpqN9v8y6RiWu_VmfH3ZuTqAVXpM1852rQKlbDxRh7CYysmR2Zpft4vi1A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Theory%E2%80%90Guided+Machine+Learning+to+Predict+the+Performance+of+Noble+Metal+Catalysts+in+the+Water%E2%80%90Gas+Shift+Reaction&rft.jtitle=ChemCatChem&rft.au=Chattoraj%2C+Joyjit&rft.au=Hamadicharef%2C+Brahim&rft.au=Kong%2C+Jian+Feng&rft.au=Pargi%2C+Mohan+Kashyap&rft.date=2022-08-19&rft.issn=1867-3880&rft.eissn=1867-3899&rft.volume=14&rft.issue=16&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fcctc.202200355&rft.externalDBID=10.1002%252Fcctc.202200355&rft.externalDocID=CCTC202200355 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1867-3880&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1867-3880&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1867-3880&client=summon |