Bismuth Coordination Polymers with 2,4,6‐Pyridine Tricarboxylic Acid: High‐Throughput Investigations, Crystal Structures and Luminescence Properties

Four new coordination polymers (CPs) were obtained under hydrothermal reaction conditions using 2,4,6‐pyridinetricarboxylic acid (H3PTC) and Bi(NO3)3·5H2O. The systematic high‐throughput investigation of the system Bi3+/H3PTC/NaOH/HNO3/H2O led to the compounds [Bi(PTC)(H2O)2] (1), (H3O)[Bi2(PTC)(HPT...

Full description

Saved in:
Bibliographic Details
Published in:European journal of inorganic chemistry Vol. 2018; no. 27; pp. 3232 - 3240
Main Authors: Rhauderwiek, Timo, dos Santos Cunha, César, Terraschke, Huayna, Stock, Norbert
Format: Journal Article
Language:English
Published: Weinheim Wiley Subscription Services, Inc 23-07-2018
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Four new coordination polymers (CPs) were obtained under hydrothermal reaction conditions using 2,4,6‐pyridinetricarboxylic acid (H3PTC) and Bi(NO3)3·5H2O. The systematic high‐throughput investigation of the system Bi3+/H3PTC/NaOH/HNO3/H2O led to the compounds [Bi(PTC)(H2O)2] (1), (H3O)[Bi2(PTC)(HPTC)2(H2O)2] (2), α‐[Bi(PTC)] (3) and β‐[Bi(PTC)] (4), which were structurally characterised by single‐crystal X‐ray diffraction. Compounds 1 and 2 crystallise in 2D layered structures, whereas 3 and 4 form 3D coordination networks. Employing the nomenclature proposed by Cheetham et al. 1 and 2 are classified as I1O1 (mixed inorganic–organic layers), 3 as I0O3 (3D coordination polymers) and 4 as I1O2 (mixed inorganic–organic 3D framework). In all cases the nitrogen atom of the linker is coordinated to the Bi3+ ion, which therefore acts as a tridentate pincer‐type ligand. All title compounds were obtained as phase‐pure products employing conventional or microwave‐assisted heating, but the reproducibility of the synthesis depends on reactor size and material. In addition, the luminescence properties of 1 and 2 were studied resulting in a yellow and blue–green luminescence under UV light with emission maxima at 570 nm (λex = 343 nm) and 483 nm (λex = 347 nm) for 1 and 2, respectively. The differences in the spectroscopic properties could be assigned to the distinct coordination and chemical environments of the Bi3+ ions within these compounds. The systematic high‐throughput investigation of the system Bi3+/pyridine tricarboxylic acid (H3PTC)/NaOH/HNO3 in H2O under solvothermal reaction conditions resulted in the discovery of four new Bi carboxylates exhibiting various coordination modes, inorganic building units and luminescence properties.
AbstractList Four new coordination polymers (CPs) were obtained under hydrothermal reaction conditions using 2,4,6‐pyridinetricarboxylic acid (H3PTC) and Bi(NO3)3·5H2O. The systematic high‐throughput investigation of the system Bi3+/H3PTC/NaOH/HNO3/H2O led to the compounds [Bi(PTC)(H2O)2] (1), (H3O)[Bi2(PTC)(HPTC)2(H2O)2] (2), α‐[Bi(PTC)] (3) and β‐[Bi(PTC)] (4), which were structurally characterised by single‐crystal X‐ray diffraction. Compounds 1 and 2 crystallise in 2D layered structures, whereas 3 and 4 form 3D coordination networks. Employing the nomenclature proposed by Cheetham et al. 1 and 2 are classified as I1O1 (mixed inorganic–organic layers), 3 as I0O3 (3D coordination polymers) and 4 as I1O2 (mixed inorganic–organic 3D framework). In all cases the nitrogen atom of the linker is coordinated to the Bi3+ ion, which therefore acts as a tridentate pincer‐type ligand. All title compounds were obtained as phase‐pure products employing conventional or microwave‐assisted heating, but the reproducibility of the synthesis depends on reactor size and material. In addition, the luminescence properties of 1 and 2 were studied resulting in a yellow and blue–green luminescence under UV light with emission maxima at 570 nm (λex = 343 nm) and 483 nm (λex = 347 nm) for 1 and 2, respectively. The differences in the spectroscopic properties could be assigned to the distinct coordination and chemical environments of the Bi3+ ions within these compounds. The systematic high‐throughput investigation of the system Bi3+/pyridine tricarboxylic acid (H3PTC)/NaOH/HNO3 in H2O under solvothermal reaction conditions resulted in the discovery of four new Bi carboxylates exhibiting various coordination modes, inorganic building units and luminescence properties.
Four new coordination polymers (CPs) were obtained under hydrothermal reaction conditions using 2,4,6‐pyridinetricarboxylic acid (H3PTC) and Bi(NO3)3·5H2O. The systematic high‐throughput investigation of the system Bi3+/H3PTC/NaOH/HNO3/H2O led to the compounds [Bi(PTC)(H2O)2] (1), (H3O)[Bi2(PTC)(HPTC)2(H2O)2] (2), α‐[Bi(PTC)] (3) and β‐[Bi(PTC)] (4), which were structurally characterised by single‐crystal X‐ray diffraction. Compounds 1 and 2 crystallise in 2D layered structures, whereas 3 and 4 form 3D coordination networks. Employing the nomenclature proposed by Cheetham et al. 1 and 2 are classified as I1O1 (mixed inorganic–organic layers), 3 as I0O3 (3D coordination polymers) and 4 as I1O2 (mixed inorganic–organic 3D framework). In all cases the nitrogen atom of the linker is coordinated to the Bi3+ ion, which therefore acts as a tridentate pincer‐type ligand. All title compounds were obtained as phase‐pure products employing conventional or microwave‐assisted heating, but the reproducibility of the synthesis depends on reactor size and material. In addition, the luminescence properties of 1 and 2 were studied resulting in a yellow and blue–green luminescence under UV light with emission maxima at 570 nm (λex = 343 nm) and 483 nm (λex = 347 nm) for 1 and 2, respectively. The differences in the spectroscopic properties could be assigned to the distinct coordination and chemical environments of the Bi3+ ions within these compounds.
Four new coordination polymers (CPs) were obtained under hydrothermal reaction conditions using 2,4,6‐pyridinetricarboxylic acid (H 3 PTC) and Bi(NO 3 ) 3 · 5H 2 O. The systematic high‐throughput investigation of the system Bi 3+ /H 3 PTC/NaOH/HNO 3 /H 2 O led to the compounds [Bi(PTC)(H 2 O) 2 ] ( 1 ), (H 3 O)[Bi 2 (PTC)(HPTC) 2 (H 2 O) 2 ] ( 2 ), α‐[Bi(PTC)] ( 3 ) and β‐[Bi(PTC)] ( 4 ), which were structurally characterised by single‐crystal X‐ray diffraction. Compounds 1 and 2 crystallise in 2D layered structures, whereas 3 and 4 form 3D coordination networks. Employing the nomenclature proposed by Cheetham et al. 1 and 2 are classified as I 1 O 1 (mixed inorganic–organic layers), 3 as I 0 O 3 (3D coordination polymers) and 4 as I 1 O 2 (mixed inorganic–organic 3D framework). In all cases the nitrogen atom of the linker is coordinated to the Bi 3+ ion, which therefore acts as a tridentate pincer‐type ligand. All title compounds were obtained as phase‐pure products employing conventional or microwave‐assisted heating, but the reproducibility of the synthesis depends on reactor size and material. In addition, the luminescence properties of 1 and 2 were studied resulting in a yellow and blue–green luminescence under UV light with emission maxima at 570 nm ( λ ex = 343 nm) and 483 nm ( λ ex = 347 nm) for 1 and 2 , respectively. The differences in the spectroscopic properties could be assigned to the distinct coordination and chemical environments of the Bi 3+ ions within these compounds.
Author Terraschke, Huayna
dos Santos Cunha, César
Stock, Norbert
Rhauderwiek, Timo
Author_xml – sequence: 1
  givenname: Timo
  surname: Rhauderwiek
  fullname: Rhauderwiek, Timo
  organization: Christian‐Albrechts‐Universität
– sequence: 2
  givenname: César
  surname: dos Santos Cunha
  fullname: dos Santos Cunha, César
  organization: University of São Paulo
– sequence: 3
  givenname: Huayna
  orcidid: 0000-0002-5479-7663
  surname: Terraschke
  fullname: Terraschke, Huayna
  email: hterraschke@ac.uni‐kiel.de
  organization: Christian‐Albrechts‐Universität
– sequence: 4
  givenname: Norbert
  orcidid: 0000-0002-0339-7352
  surname: Stock
  fullname: Stock, Norbert
  email: stock@ac.uni‐kiel.de
  organization: Christian‐Albrechts‐Universität
BookMark eNqFkMtu2zAQRYkiAfJot10T6NZyhg-JYnap4DYuDNRAnLWgUJRNQxbdoZRUu35Cl_2-fEmZOEiWWc0Ac-6dmXtGjjrfWUI-M5gyAH5ht85MObAcgKXyAzlloHUCWc6PYi-FTJiW-Qk5C2ELAAJEdkr-fXVhN_QbWniPteuq3vmOLn077iwG-uDiiE_kJHv883c5oouIpSt0psI7_3tsnaFXxtWX9NqtN5FZbdAP681-6Om8u7ehd-tnyzChBY6hr1p60-Ng-gFtoFVX08Wwi57B2M5YukS_t9g7Gz6S46Zqg_30Us_J7bfZqrhOFj-_z4urRWIEUzJRWc1qIbhModJpkze54ndWsSqvmdTCNPHLtElTbgzXRqWZVloC1KlVmchqK87Jl4PvHv2vIR5cbv2AXVxZclCC85xzFanpgTLoQ0DblHt0uwrHkkH5lH75lH75mn4U6IPgwbV2fIcuZz_mxZv2P7sRjqY
CitedBy_id crossref_primary_10_1016_j_jssc_2022_123005
crossref_primary_10_1039_D4SC00980K
crossref_primary_10_2139_ssrn_4021820
crossref_primary_10_1039_D0DT00265H
crossref_primary_10_1080_00958972_2021_1921167
crossref_primary_10_1039_D0QI01055C
crossref_primary_10_1016_j_jallcom_2024_175319
crossref_primary_10_1021_acs_inorgchem_0c01358
crossref_primary_10_1021_acs_inorgchem_3c03290
crossref_primary_10_1107_S2053229621011888
crossref_primary_10_1021_acs_cgd_2c01475
crossref_primary_10_1021_acs_inorgchem_1c01025
crossref_primary_10_1016_j_poly_2020_114564
Cites_doi 10.1002/adfm.200700231
10.1002/ange.200351718
10.1016/0009-2614(95)01363-6
10.1021/cr200101d
10.1002/smll.201400362
10.1016/j.matlet.2012.02.019
10.1016/j.jssc.2016.05.006
10.1002/ciuz.200700404
10.1039/c0ce00365d
10.1016/0022-1759(95)00107-L
10.1080/00958972.2012.685165
10.1016/0025-5408(95)00129-8
10.1016/0022-4596(84)90005-7
10.1016/0039-9140(96)01871-1
10.1039/B610264F
10.1039/c4cp00405a
10.1016/0040-4020(80)85034-4
10.1039/c0sc00179a
10.1016/j.optmat.2010.05.006
10.1021/cg200639b
10.1002/anie.200351718
10.1016/j.jallcom.2004.10.015
10.1039/b001404o
10.1021/cg501189n
10.1002/anie.200701575
10.1016/0022-4596(85)90295-6
10.1021/cr900053k
10.1002/anie.199702061
10.1016/0009-2614(95)00897-D
10.1107/S0108768185002051
10.1016/j.ica.2014.04.042
10.1002/ange.19971090305
10.1039/c1cc11720c
10.1021/cg2012205
10.1002/zaac.19653350106
10.1080/15533174.2013.776609
10.1016/j.materresbull.2009.03.015
10.1002/adfm.200301005
10.1016/0254-0584(87)90100-3
10.1002/ejic.201000535
10.1002/ange.200701575
10.1016/j.micromeso.2009.06.007
10.1016/S0025-5408(99)00149-X
10.1016/j.solidstatesciences.2012.03.019
10.1021/cr200166m
10.1039/C2DT31821K
10.1021/cr300014x
10.1039/C5CS00837A
10.1039/b815024a
10.1107/S1600536812032898
10.1002/ejic.200800315
10.1002/chem.201301139
10.1016/S0022-2313(02)00384-8
10.1107/S0108767307043930
10.1055/b-002-46985
10.1080/00958972.2010.531130
10.1515/pac-2014-1117
10.1039/b814066a
10.1002/anie.200501766
10.1038/16393
10.1039/b515549e
10.1021/ic9018037
10.1016/S0022-2313(99)00004-6
10.1039/C5CC02606G
10.1016/j.optmat.2005.09.076
10.1016/j.jssc.2014.11.027
10.1021/ic1014708
10.1016/j.jssc.2012.01.044
10.1016/0022-4596(92)90040-3
10.1002/ejic.201301126
10.1063/1.4757579
10.1039/b811883n
10.1039/DT9760001020
10.1039/b802352m
10.1021/ja801601y
10.1016/j.jssc.2012.01.038
10.1016/j.molstruc.2015.02.074
10.1107/S1600536810049275
10.1016/0009-2614(80)80456-8
10.1021/jacs.5b12484
10.1016/0022-2313(79)90265-5
10.1002/ange.200501766
ContentType Journal Article
Copyright 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/ejic.201800154
DatabaseName CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
Materials Research Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1099-0682
EndPage 3240
ExternalDocumentID 10_1002_ejic_201800154
EJIC201800154
Genre article
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
77Q
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACNCT
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
HBH
HGLYW
HHY
HHZ
HZ~
IX1
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBFHL
WBKPD
WH7
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~IA
~WT
AAMNL
AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c3174-76d1d332450a95f8f872be71a8d1493cf0365f552cc29c756979400d5e7636de3
IEDL.DBID 33P
ISSN 1434-1948
IngestDate Thu Oct 10 15:57:58 EDT 2024
Fri Nov 22 00:40:48 EST 2024
Sat Aug 24 00:41:50 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 27
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3174-76d1d332450a95f8f872be71a8d1493cf0365f552cc29c756979400d5e7636de3
ORCID 0000-0002-5479-7663
0000-0002-0339-7352
PQID 2073228227
PQPubID 2030176
PageCount 9
ParticipantIDs proquest_journals_2073228227
crossref_primary_10_1002_ejic_201800154
wiley_primary_10_1002_ejic_201800154_EJIC201800154
PublicationCentury 2000
PublicationDate July 23, 2018
PublicationDateYYYYMMDD 2018-07-23
PublicationDate_xml – month: 07
  year: 2018
  text: July 23, 2018
  day: 23
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle European journal of inorganic chemistry
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2004 2004; 43 116
2010; 2010
2014 2012 2012 2010 2009; 14 68 65 63
1984 1996 2012; 52 249 112
2014 1992; 419 97
2013; 42
1987 1985; 16 59
2016 2014 2013 2012 2011 2011 2010 2016; 239 44 19 195 47 11 49 138
1976
2006
2010 2006; 32 29
2014 2012 2011 2008; 10 14 13 10
1999; 81
2005 2005 2010; 44 117 129
2005 2003 2003 2008 2012 2013 2006 1999 2007 2009; 393 101 13 130 75 2013 16 397 17 48
2009 2015; 44 1091
2012 2011; 188 11
1999
1980; 36
2003 1996; 43
1965; 335
2012; 112
2015 2015 2016; 51 225 45
2000
1980 1979; 75 18
1999 1995; 34 30
2012 2015 2010 2008; 112 87 1
2005 2004
2011; 67
1985 2009; 41 109
1995; 243
2008; 64
1995; 185
2012 2009 2014 2014; 112 38 16 2014
2008 2007 2007; 2008 46 119
2007 1997 1997 2010; 41 36 109 82
e_1_2_6_32_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_32_2
e_1_2_6_15_3
e_1_2_6_17_1
e_1_2_6_17_2
e_1_2_6_15_1
e_1_2_6_15_2
e_1_2_6_20_1
e_1_2_6_7_7
e_1_2_6_7_6
e_1_2_6_7_8
e_1_2_6_7_3
e_1_2_6_9_1
e_1_2_6_5_4
e_1_2_6_7_2
e_1_2_6_7_5
e_1_2_6_7_4
e_1_2_6_28_3
e_1_2_6_3_3
e_1_2_6_5_1
e_1_2_6_3_2
Socrates G. (e_1_2_6_33_2) 2004
e_1_2_6_5_3
e_1_2_6_7_1
e_1_2_6_12_10
e_1_2_6_3_4
e_1_2_6_5_2
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_28_2
e_1_2_6_28_1
e_1_2_6_26_2
e_1_2_6_26_1
e_1_2_6_31_2
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_12_8
e_1_2_6_18_2
e_1_2_6_12_9
e_1_2_6_18_3
e_1_2_6_10_4
e_1_2_6_12_2
e_1_2_6_10_5
e_1_2_6_12_3
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_10_2
Gao C.‐H. (e_1_2_6_12_6) 2013; 2013
e_1_2_6_10_3
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_16_2
e_1_2_6_12_7
e_1_2_6_18_1
e_1_2_6_37_3
e_1_2_6_12_4
e_1_2_6_14_2
e_1_2_6_37_2
e_1_2_6_12_5
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_21_1
Stock N. (e_1_2_6_15_4) 2010; 82
e_1_2_6_6_4
e_1_2_6_6_3
e_1_2_6_8_1
e_1_2_6_29_2
e_1_2_6_4_2
e_1_2_6_4_1
e_1_2_6_6_2
e_1_2_6_4_3
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_23_2
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_21_2
e_1_2_6_29_1
e_1_2_6_27_2
e_1_2_6_27_1
References_xml – volume: 2008 46 119
  start-page: 5038 6857 6981
  year: 2008 2007 2007
  end-page: 5045 6860
  publication-title: Eur. J. Inorg. Chem. Angew. Chem. Int. Ed. Angew. Chem.
– volume: 81
  start-page: 293
  year: 1999
  end-page: 300
  publication-title: J. Lumin.
– year: 2005 2004
– volume: 51 225 45
  start-page: 12578 45 2327
  year: 2015 2015 2016
  end-page: 12581 52 2367
  publication-title: Chem. Commun. J. Solid State Chem. Chem. Soc. Rev.
– volume: 2010
  start-page: 3823
  year: 2010
  end-page: 3828
  publication-title: Eur. J. Inorg. Chem.
– volume: 112 87 1
  start-page: 673 1051 184 6348
  year: 2012 2015 2010 2008
  end-page: 674 1069 191 6350
  publication-title: Chem. Rev. Pure Appl. Chem. Chem. Sci. Chem. Commun.
– volume: 64
  start-page: 112
  year: 2008
  end-page: 122
  publication-title: Acta Crystallogr., Sect. A
– start-page: 1020
  year: 1976
  end-page: 1024
  publication-title: J. Chem. Soc., Dalton Trans.
– volume: 14 68 65 63
  start-page: 5310 m1133 1892 4068 1644
  year: 2014 2012 2012 2010 2009
  end-page: 5317 m1134 1904 4076 1658
  publication-title: Cryst. Growth Des. Acta Crystallogr., Sect. E J. Coord. Chem. J. Coord. Chem. Dalton Trans.
– volume: 52 249 112
  start-page: 222 59 073511
  year: 1984 1996 2012
  end-page: 232 63
  publication-title: J. Solid State Chem. Chem. Phys. Lett. J. Appl. Phys.
– volume: 41 36 109 82
  start-page: 390 206 214 1039
  year: 2007 1997 1997 2010
  end-page: 398 224 234 1047
  publication-title: Chem. Unserer Zeit Angew. Chem. Int. Ed. Angew. Chem. Chem. Eng. Technol.
– volume: 10 14 13 10
  start-page: 2927 682 2699 1645
  year: 2014 2012 2011 2008
  end-page: 2936 688 2708 1652
  publication-title: Small Solid State Sci. CrystEngComm CrystEngComm
– volume: 335
  start-page: 61
  year: 1965
  end-page: 73
  publication-title: Z. Anorg. Allg. Chem.
– volume: 239 44 19 195 47 11 49 138
  start-page: 274 507 12537 94 7371 4449 11001 1970
  year: 2016 2014 2013 2012 2011 2011 2010 2016
  end-page: 281 513 12546 100 7373 4457 11008 1976
  publication-title: J. Solid State Chem. Synth. React. Inorg. Met.‐Org. Nano‐Met. Chem. Chem. Eur. J. J. Solid State Chem. Chem. Commun. Cryst. Growth Des. Inorg. Chem. J. Am. Chem. Soc.
– volume: 393 101 13 130 75 2013 16 397 17 48
  start-page: 81 11 511 8114 186 7 1281 121 3477 10492
  year: 2005 2003 2003 2008 2012 2013 2006 1999 2007 2009
  end-page: 92 21 516 8115 188 1286 128 3485 10494
  publication-title: J. Alloys Compd. J. Lumin. Adv. Funct. Mater. J. Am. Chem. Soc. Mater. Lett. Int. J. Photoenergy J. Mater. Chem. Nature Adv. Funct. Mater. Inorg. Chem.
– volume: 419 97
  start-page: 82 319
  year: 2014 1992
  end-page: 88 331
  publication-title: Inorg. Chim. Acta J. Solid State Chem.
– start-page: 2349
  year: 2000
  end-page: 2356
  publication-title: J. Chem. Soc., Dalton Trans.
– volume: 32 29
  start-page: 1280 410
  year: 2010 2006
  end-page: 1282 415
  publication-title: Opt. Mater. Opt. Mater.
– volume: 43 116
  start-page: 749 767
  year: 2004 2004
  end-page: 752
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 243
  start-page: 559
  year: 1995
  end-page: 563
  publication-title: Chem. Phys. Lett.
– start-page: 4780
  year: 2006
  end-page: 4795
  publication-title: Chem. Commun.
– volume: 43
  start-page: 1187
  year: 2003 1996
  end-page: 1206
  publication-title: Talanta
– volume: 185
  start-page: 95
  year: 1995
  end-page: 102
  publication-title: J. Immunol. Methods
– volume: 112
  start-page: 4541
  year: 2012
  end-page: 4568
  publication-title: Chem. Rev.
– volume: 42
  start-page: 1088
  year: 2013
  end-page: 1093
  publication-title: Dalton Trans.
– volume: 44 1091
  start-page: 1734 43
  year: 2009 2015
  end-page: 1737 48
  publication-title: Mater. Res. Bull. J. Mol. Struct.
– volume: 67
  start-page: m15
  year: 2011
  end-page: m16
  publication-title: Acta Crystallogr., Sect. E
– volume: 16 59
  start-page: 201 280
  year: 1987 1985
  end-page: 236 290
  publication-title: Mater. Chem. Phys. J. Solid State Chem.
– volume: 34 30
  start-page: 1391 1359
  year: 1999 1995
  end-page: 1396 1362
  publication-title: Mater. Res. Bull. Mater. Res. Bull.
– volume: 41 109
  start-page: 240 6858
  year: 1985 2009
  end-page: 244 6919
  publication-title: Acta Crystallogr., Sect. B Chem. Rev.
– volume: 44 117 129
  start-page: 7608 7780 287
  year: 2005 2005 2010
  end-page: 7611 295
  publication-title: Angew. Chem. Int. Ed. Angew. Chem. Microporous Mesoporous Mater.
– volume: 112 38 16 2014
  start-page: 1126 1330 14858 1775
  year: 2012 2009 2014 2014
  end-page: 1162 1352 14866 1782
  publication-title: Chem. Rev. Chem. Soc. Rev. Phys. Chem. Chem. Phys. Eur. J. Inorg. Chem.
– volume: 188 11
  start-page: 44 5682
  year: 2012 2011
  end-page: 49 5687
  publication-title: J. Solid State Chem. Cryst. Growth Des.
– volume: 75 18
  start-page: 24 924
  year: 1980 1979
  end-page: 26 928
  publication-title: Chem. Phys. Lett. J. Lumin.
– volume: 36
  start-page: 123
  year: 1980
  end-page: 129
  publication-title: Tetrahedron
– year: 1999
– ident: e_1_2_6_12_9
  doi: 10.1002/adfm.200700231
– ident: e_1_2_6_16_2
  doi: 10.1002/ange.200351718
– ident: e_1_2_6_28_2
  doi: 10.1016/0009-2614(95)01363-6
– ident: e_1_2_6_6_1
  doi: 10.1021/cr200101d
– volume-title: Infrared and Raman Characteristic Group Frequencies: Tables and Charts
  year: 2004
  ident: e_1_2_6_33_2
  contributor:
    fullname: Socrates G.
– ident: e_1_2_6_5_1
  doi: 10.1002/smll.201400362
– ident: e_1_2_6_12_5
  doi: 10.1016/j.matlet.2012.02.019
– ident: e_1_2_6_7_1
  doi: 10.1016/j.jssc.2016.05.006
– ident: e_1_2_6_15_1
  doi: 10.1002/ciuz.200700404
– ident: e_1_2_6_5_3
  doi: 10.1039/c0ce00365d
– ident: e_1_2_6_11_1
  doi: 10.1016/0022-1759(95)00107-L
– ident: e_1_2_6_10_3
  doi: 10.1080/00958972.2012.685165
– ident: e_1_2_6_29_2
  doi: 10.1016/0025-5408(95)00129-8
– ident: e_1_2_6_28_1
  doi: 10.1016/0022-4596(84)90005-7
– ident: e_1_2_6_32_2
  doi: 10.1016/0039-9140(96)01871-1
– ident: e_1_2_6_2_1
  doi: 10.1039/B610264F
– ident: e_1_2_6_6_3
  doi: 10.1039/c4cp00405a
– ident: e_1_2_6_36_1
– ident: e_1_2_6_34_1
  doi: 10.1016/0040-4020(80)85034-4
– ident: e_1_2_6_3_3
  doi: 10.1039/c0sc00179a
– ident: e_1_2_6_31_1
  doi: 10.1016/j.optmat.2010.05.006
– ident: e_1_2_6_7_6
  doi: 10.1021/cg200639b
– ident: e_1_2_6_16_1
  doi: 10.1002/anie.200351718
– ident: e_1_2_6_12_1
  doi: 10.1016/j.jallcom.2004.10.015
– ident: e_1_2_6_20_1
  doi: 10.1039/b001404o
– ident: e_1_2_6_10_1
  doi: 10.1021/cg501189n
– ident: e_1_2_6_18_2
  doi: 10.1002/anie.200701575
– ident: e_1_2_6_27_2
  doi: 10.1016/0022-4596(85)90295-6
– ident: e_1_2_6_21_2
  doi: 10.1021/cr900053k
– ident: e_1_2_6_15_2
  doi: 10.1002/anie.199702061
– ident: e_1_2_6_30_1
  doi: 10.1016/0009-2614(95)00897-D
– ident: e_1_2_6_21_1
  doi: 10.1107/S0108768185002051
– ident: e_1_2_6_23_1
  doi: 10.1016/j.ica.2014.04.042
– volume: 82
  start-page: 1039
  year: 2010
  ident: e_1_2_6_15_4
  publication-title: Chem. Eng. Technol.
  contributor:
    fullname: Stock N.
– ident: e_1_2_6_15_3
  doi: 10.1002/ange.19971090305
– ident: e_1_2_6_7_5
  doi: 10.1039/c1cc11720c
– ident: e_1_2_6_17_2
  doi: 10.1021/cg2012205
– ident: e_1_2_6_13_1
  doi: 10.1002/zaac.19653350106
– ident: e_1_2_6_7_2
  doi: 10.1080/15533174.2013.776609
– ident: e_1_2_6_14_1
  doi: 10.1016/j.materresbull.2009.03.015
– ident: e_1_2_6_12_3
  doi: 10.1002/adfm.200301005
– ident: e_1_2_6_27_1
  doi: 10.1016/0254-0584(87)90100-3
– volume: 2013
  start-page: 7
  year: 2013
  ident: e_1_2_6_12_6
  publication-title: Int. J. Photoenergy
  contributor:
    fullname: Gao C.‐H.
– ident: e_1_2_6_19_1
  doi: 10.1002/ejic.201000535
– ident: e_1_2_6_18_3
  doi: 10.1002/ange.200701575
– ident: e_1_2_6_37_3
  doi: 10.1016/j.micromeso.2009.06.007
– ident: e_1_2_6_29_1
  doi: 10.1016/S0025-5408(99)00149-X
– ident: e_1_2_6_5_2
  doi: 10.1016/j.solidstatesciences.2012.03.019
– ident: e_1_2_6_24_1
  doi: 10.1021/cr200166m
– ident: e_1_2_6_8_1
  doi: 10.1039/C2DT31821K
– ident: e_1_2_6_3_1
  doi: 10.1021/cr300014x
– ident: e_1_2_6_4_3
  doi: 10.1039/C5CS00837A
– ident: e_1_2_6_3_4
  doi: 10.1039/b815024a
– ident: e_1_2_6_10_2
  doi: 10.1107/S1600536812032898
– ident: e_1_2_6_18_1
  doi: 10.1002/ejic.200800315
– ident: e_1_2_6_7_3
  doi: 10.1002/chem.201301139
– ident: e_1_2_6_12_2
  doi: 10.1016/S0022-2313(02)00384-8
– ident: e_1_2_6_35_1
  doi: 10.1107/S0108767307043930
– ident: e_1_2_6_33_1
  doi: 10.1055/b-002-46985
– ident: e_1_2_6_10_4
  doi: 10.1080/00958972.2010.531130
– ident: e_1_2_6_3_2
  doi: 10.1515/pac-2014-1117
– ident: e_1_2_6_10_5
  doi: 10.1039/b814066a
– ident: e_1_2_6_37_1
  doi: 10.1002/anie.200501766
– ident: e_1_2_6_12_8
  doi: 10.1038/16393
– ident: e_1_2_6_12_7
  doi: 10.1039/b515549e
– ident: e_1_2_6_12_10
  doi: 10.1021/ic9018037
– ident: e_1_2_6_25_1
  doi: 10.1016/S0022-2313(99)00004-6
– ident: e_1_2_6_4_1
  doi: 10.1039/C5CC02606G
– ident: e_1_2_6_31_2
  doi: 10.1016/j.optmat.2005.09.076
– ident: e_1_2_6_4_2
  doi: 10.1016/j.jssc.2014.11.027
– ident: e_1_2_6_7_7
  doi: 10.1021/ic1014708
– ident: e_1_2_6_17_1
  doi: 10.1016/j.jssc.2012.01.044
– ident: e_1_2_6_23_2
  doi: 10.1016/0022-4596(92)90040-3
– ident: e_1_2_6_6_4
  doi: 10.1002/ejic.201301126
– ident: e_1_2_6_32_1
– ident: e_1_2_6_28_3
  doi: 10.1063/1.4757579
– ident: e_1_2_6_5_4
  doi: 10.1039/b811883n
– ident: e_1_2_6_9_1
  doi: 10.1039/DT9760001020
– ident: e_1_2_6_6_2
  doi: 10.1039/b802352m
– ident: e_1_2_6_12_4
  doi: 10.1021/ja801601y
– ident: e_1_2_6_7_4
  doi: 10.1016/j.jssc.2012.01.038
– ident: e_1_2_6_14_2
  doi: 10.1016/j.molstruc.2015.02.074
– ident: e_1_2_6_22_1
  doi: 10.1107/S1600536810049275
– ident: e_1_2_6_26_1
  doi: 10.1016/0009-2614(80)80456-8
– ident: e_1_2_6_7_8
  doi: 10.1021/jacs.5b12484
– ident: e_1_2_6_26_2
  doi: 10.1016/0022-2313(79)90265-5
– ident: e_1_2_6_37_2
  doi: 10.1002/ange.200501766
SSID ssj0003036
Score 2.3551064
Snippet Four new coordination polymers (CPs) were obtained under hydrothermal reaction conditions using 2,4,6‐pyridinetricarboxylic acid (H3PTC) and Bi(NO3)3·5H2O. The...
Four new coordination polymers (CPs) were obtained under hydrothermal reaction conditions using 2,4,6‐pyridinetricarboxylic acid (H 3 PTC) and Bi(NO 3 ) 3 · 5H...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Publisher
StartPage 3232
SubjectTerms 2,4,6‐Pyridinetricarboxylic acid
Bismuth
Coordination polymers
Crystal structure
High‐throughput methods
Hydrothermal reactions
Inorganic chemistry
Luminescence
Optical properties
Organic chemistry
Polymers
Reproducibility
Sodium hydroxide
Ultraviolet radiation
X-ray diffraction
Title Bismuth Coordination Polymers with 2,4,6‐Pyridine Tricarboxylic Acid: High‐Throughput Investigations, Crystal Structures and Luminescence Properties
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fejic.201800154
https://www.proquest.com/docview/2073228227
Volume 2018
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09T8MwELWABRa-EeVLHpBYGtHaceywlVAECKFKFIktcmxHBJUWtY1EN34CI7-PX8Jd0gaYkGBLFDuK7uzndxf7HSGH0uqm5Qn3TOA7zxeJ9hTXzAucb7TSmjGLqeyLW3lzr87aKJNTneIv9SGqhBvOjAKvcYLrZHT8JRrqHjOUIGyqggYACEOoUJzh4J0KihGfi-NF3PcgWlcz1cYGO_7Z_eeq9EU1vxPWYsU5X_n_t66S5SnbpK1yeKyROddfJ4vRrMjbBnk_zUZP-fiBRgOIQrMyNUg7g94E89kUs7SU1f168PH61pkMM2jiaBexc5gMXia9zNCWyewJxf0i0KZblv15zsf0m4IHjOw6jYYTYKI9elso1uYQ5lPdt_Q6f8Kd9wYRhnbw18AQNV43yd15uxtdeNNiDZ4BCuJ7MrDgdKBnoqFDkapUSZY42dTKQhDGTQquEKkQzBgWGimCUGJNdiscIFxgHd8iC_1B320TqhqJnwijRZoC4Wzw0GimAj_UXOhUN3mNHM2cFT-Xmhxxqb7MYrR0XFm6RvZmvoync3METyWgGBAjWSOs8Novb4nbV5dRdbfzl067ZAmvMSnM-B5ZAEu7fTI_svlBMWI_AdjA7mQ
link.rule.ids 315,782,786,1408,27933,27934,46064,46488
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9NAEB3RcigXKF8i0MIekLjEarIf3jW31E2VQqgiNUjcrPXuWhilSZXUErnxEzjy-_glzNhx2p6QEEfbu5a1Mzv75nn3DcBb7W3fi1xELpYhkiq3kRGWR3GQzhprOfdEZY8u9PkXczIkmZxBexam0YfYEm40M-p4TROcCOmjG9XQ8K0kDcK-qXHADtyXMXojneIQk20wpghdHzASMsJ83bS6jT1-dLf_3XXpBmzehqz1mnP66D987T483ABONmg85DHcC_MnsJe2dd6ewq_jcnVZXX9l6QIT0bJhB9lkMVsTpc2IqGW8K7vx7x8_J-tliU0Cm1L4XOaL7-tZ6djAlf49oy0j2GbaVP65qq7ZLREPdO4uS5drBKMzdlGL1laY6TM792xcXdLme0dBhk3o78CSZF6fwefT4TQdRZt6DZFDFCIjHXu0OyI01bOJKkxhNM-D7lvjMQ8TrkBbqEIp7hxPnFZxoqksu1cBg1zsg3gOu_PFPLwAZnq5zJWzqigQc_ZE4iw3sUysULawfdGBd621sqtGliNrBJh5RiOdbUe6AwetMbPN9FzhU42BDLGR7gCvzfaXt2TDD2fp9urlv3R6A3uj6adxNj47__gKHtB94oi5OIBdHPVwCDsrX72u3fcP6rDyjA
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9NAEB3RIkEvfCMCBfaAxCVWk_3wrrkVN1ELVWWpQeJmrXfXwihNoqSWmhs_gSO_j1_CjJ247QkJjrZ3LWtm9-2b8e4bgHfa26EXhYhcLEMkVWEjIyyP4iCdNdZy7imVfXyuz76aoxHJ5HSn-Ft9iC7hRjOjwWua4AtfHlyLhobvFUkQDk1DA3bgrkQuTur5QmQdFhNAN-eLhIwwXDdb2cYBP7jd__aydM01bzLWZskZP_z_j30EDzZ0kx224-Mx3AmzJ3A_3VZ5ewq_Plari_ryG0vnGIZWbW6QZfPpmhLajNK0jPdlP_7942e2XlbYJLAJgeeymF-tp5Vjh67yHxhtGME2k7buz6K-ZDckPHBo91m6XCMVnbLzRrK2xjif2Zlnp_UFbb13BDEso38DSxJ5fQZfxqNJehxtqjVEDjmIjHTs0evIz9TAJqo0pdG8CHpojccoTLgSXaFKpbhzPHFaxYmmouxeBYS42AfxHHZn81l4AcwMClkoZ1VZIuMciMRZbmKZWKFsaYeiB--3zsoXrShH3sov85wsnXeW7sH-1pf5ZnKu8KlGGENmpHvAG6_95S356NNJ2l29_JdOb-FedjTOT0_OPr-CPbpNCWIu9mEXjR5ew87K12-awfsHA4zxMg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bismuth+Coordination+Polymers+with+2%2C4%2C6%E2%80%90Pyridine+Tricarboxylic+Acid%3A+High%E2%80%90Throughput+Investigations%2C+Crystal+Structures+and+Luminescence+Properties&rft.jtitle=European+journal+of+inorganic+chemistry&rft.au=Rhauderwiek%2C+Timo&rft.au=dos+Santos+Cunha%2C+C%C3%A9sar&rft.au=Terraschke%2C+Huayna&rft.au=Stock%2C+Norbert&rft.date=2018-07-23&rft.issn=1434-1948&rft.eissn=1099-0682&rft.volume=2018&rft.issue=27&rft.spage=3232&rft.epage=3240&rft_id=info:doi/10.1002%2Fejic.201800154&rft.externalDBID=10.1002%252Fejic.201800154&rft.externalDocID=EJIC201800154
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1434-1948&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1434-1948&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1434-1948&client=summon