Regulating Intercalation of Layered Compounds for Electrochemical Energy Storage and Electrocatalysis
Layered materials have received extensive attention for widespread applications such as energy storage and conversion, catalysis, and ion transport owing to their fast ion diffusion, exfoliative feature, superior mechanical flexibility, tunable bandgap structure, etc. The presence of large interlaye...
Saved in:
Published in: | Advanced functional materials Vol. 31; no. 52 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Hoboken
Wiley Subscription Services, Inc
01-12-2021
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Layered materials have received extensive attention for widespread applications such as energy storage and conversion, catalysis, and ion transport owing to their fast ion diffusion, exfoliative feature, superior mechanical flexibility, tunable bandgap structure, etc. The presence of large interlayer space between each layer enhances intercalation of the guest ion or molecule, which is beneficial for fast ion diffusion and charge transport along the channels. This intercalation reaction of layered compounds with guest species results in material with improved mechanical and electronic properties for efficient energy storage and conversion, catalysis, ion transport, and other applications. This review extensively discusses the intercalation of guest ionic or molecular species into layered materials used for various types of applications. It assesses the intercalation strategies, mechanism of ionic or molecular intercalation reactions, and highlights recent advancements. The electrochemical performances of several typical intercalated materials in batteries, supercapacitors, and electrocatalytic systems have been thoroughly discussed. Moreover, the challenges in the design and intercalation of layered materials, as well as prospects of future development are highlighted.
This review systematically discusses the intercalation mechanism and method of guest species into layered materials, highlights their recent application such as lithium ion batteries, sodium ion batteries, aqueous zinc batteries, supercapacitors, hydrogen evolution reaction and oxygen evolution reaction, and emphasizes the strategies to enhance their properties and fundamental issues of the intercalated layered materials. |
---|---|
AbstractList | Layered materials have received extensive attention for widespread applications such as energy storage and conversion, catalysis, and ion transport owing to their fast ion diffusion, exfoliative feature, superior mechanical flexibility, tunable bandgap structure, etc. The presence of large interlayer space between each layer enhances intercalation of the guest ion or molecule, which is beneficial for fast ion diffusion and charge transport along the channels. This intercalation reaction of layered compounds with guest species results in material with improved mechanical and electronic properties for efficient energy storage and conversion, catalysis, ion transport, and other applications. This review extensively discusses the intercalation of guest ionic or molecular species into layered materials used for various types of applications. It assesses the intercalation strategies, mechanism of ionic or molecular intercalation reactions, and highlights recent advancements. The electrochemical performances of several typical intercalated materials in batteries, supercapacitors, and electrocatalytic systems have been thoroughly discussed. Moreover, the challenges in the design and intercalation of layered materials, as well as prospects of future development are highlighted.
This review systematically discusses the intercalation mechanism and method of guest species into layered materials, highlights their recent application such as lithium ion batteries, sodium ion batteries, aqueous zinc batteries, supercapacitors, hydrogen evolution reaction and oxygen evolution reaction, and emphasizes the strategies to enhance their properties and fundamental issues of the intercalated layered materials. Layered materials have received extensive attention for widespread applications such as energy storage and conversion, catalysis, and ion transport owing to their fast ion diffusion, exfoliative feature, superior mechanical flexibility, tunable bandgap structure, etc. The presence of large interlayer space between each layer enhances intercalation of the guest ion or molecule, which is beneficial for fast ion diffusion and charge transport along the channels. This intercalation reaction of layered compounds with guest species results in material with improved mechanical and electronic properties for efficient energy storage and conversion, catalysis, ion transport, and other applications. This review extensively discusses the intercalation of guest ionic or molecular species into layered materials used for various types of applications. It assesses the intercalation strategies, mechanism of ionic or molecular intercalation reactions, and highlights recent advancements. The electrochemical performances of several typical intercalated materials in batteries, supercapacitors, and electrocatalytic systems have been thoroughly discussed. Moreover, the challenges in the design and intercalation of layered materials, as well as prospects of future development are highlighted. Layered materials have received extensive attention for widespread applications such as energy storage and conversion, catalysis, and ion transport owing to their fast ion diffusion, exfoliative feature, superior mechanical flexibility, tunable bandgap structure, etc. The presence of large interlayer space between each layer enhances intercalation of the guest ion or molecule, which is beneficial for fast ion diffusion and charge transport along the channels. This intercalation reaction of layered compounds with guest species results in material with improved mechanical and electronic properties for efficient energy storage and conversion, catalysis, ion transport, and other applications. This review extensively discusses the intercalation of guest ionic or molecular species into layered materials used for various types of applications. It assesses the intercalation strategies, mechanism of ionic or molecular intercalation reactions, and highlights recent advancements. The electrochemical performances of several typical intercalated materials in batteries, supercapacitors, and electrocatalytic systems have been thoroughly discussed. Moreover, the challenges in the design and intercalation of layered materials, as well as prospects of future development are highlighted. |
Author | Tamirat, Andebet Gedamu Yao, Yong Yang, Beibei Xia, Yongyao Lu, Hongbin Bin, Duan |
Author_xml | – sequence: 1 givenname: Beibei surname: Yang fullname: Yang, Beibei organization: Nantong University – sequence: 2 givenname: Andebet Gedamu surname: Tamirat fullname: Tamirat, Andebet Gedamu organization: Kotebe Metropolitan University – sequence: 3 givenname: Duan orcidid: 0000-0002-4142-9052 surname: Bin fullname: Bin, Duan email: dbin17@fudan.edu.cn organization: Nantong University – sequence: 4 givenname: Yong surname: Yao fullname: Yao, Yong organization: Nantong University – sequence: 5 givenname: Hongbin surname: Lu fullname: Lu, Hongbin email: luhb@nju.edu.cn organization: Nantong University – sequence: 6 givenname: Yongyao surname: Xia fullname: Xia, Yongyao email: yyxia@fudan.edu.cn organization: Fudan University |
BookMark | eNqFkE1Lw0AQhhepYFu9el7wnLofaTY9llq1UBH8AG9hujsbU5Ldupsi-femVOrR08zA88ww74gMnHdIyDVnE86YuAVjm4lggrN0msozMuQZzxLJRD449fzjgoxi3DLGlZLpkOALlvsa2sqVdOVaDBoOk3fUW7qGDgMauvDNzu-didT6QJc16jZ4_YlN1dN06TCUHX1tfYASKThzQqCFuotVvCTnFuqIV791TN7vl2-Lx2T9_LBazNeJllzJhGOK0ljQIAG14jjFmTDCGG2Vgs10YzJUPJeZVphpxtBYg7p3wPb_5SDH5Oa4dxf81x5jW2z9Prj-ZCEyLmQ-EyztqcmR0sHHGNAWu1A1ELqCs-IQZXGIsjhF2Quzo_Bd1dj9Qxfzu_unP_cH6bh86A |
CitedBy_id | crossref_primary_10_1002_adma_202300347 crossref_primary_10_1016_j_apmt_2024_102069 crossref_primary_10_1016_j_cej_2023_145864 crossref_primary_10_1002_smll_202307033 crossref_primary_10_1039_D2TA05309H crossref_primary_10_1002_advs_202205944 crossref_primary_10_1002_aenm_202400373 crossref_primary_10_1002_celc_202400101 crossref_primary_10_1021_acsaem_2c02846 crossref_primary_10_1021_acssensors_2c01748 crossref_primary_10_1021_acssuschemeng_4c00034 crossref_primary_10_1016_j_cej_2023_148370 crossref_primary_10_1016_j_jallcom_2023_173205 crossref_primary_10_1016_j_cej_2023_144090 crossref_primary_10_1016_j_jallcom_2023_172756 crossref_primary_10_1002_cssc_202400641 crossref_primary_10_1016_j_apsusc_2022_153334 crossref_primary_10_1016_j_ensm_2022_08_007 crossref_primary_10_1021_acs_jpcc_2c06045 crossref_primary_10_1016_j_ensm_2022_10_039 crossref_primary_10_1016_j_cej_2022_141162 crossref_primary_10_1002_cnl2_110 crossref_primary_10_1021_acssuschemeng_2c01975 crossref_primary_10_1016_j_cej_2023_143971 crossref_primary_10_1016_j_colsurfa_2023_130991 crossref_primary_10_1016_j_ensm_2022_09_017 crossref_primary_10_1016_j_electacta_2023_143135 crossref_primary_10_1016_j_jcis_2022_02_081 crossref_primary_10_1016_j_jece_2022_108206 crossref_primary_10_1016_j_jpowsour_2024_234824 crossref_primary_10_1016_j_ensm_2023_102822 crossref_primary_10_1016_j_cej_2022_136349 crossref_primary_10_1002_smll_202303227 crossref_primary_10_1016_j_colsurfa_2023_131703 |
Cites_doi | 10.1002/adfm.201802564 10.1021/cm301515z 10.1021/acs.nanolett.7b02958 10.1038/nmat3478 10.1149/1.2432056 10.1021/acsnano.0c08630 10.1016/j.apcata.2005.03.009 10.1021/acsenergylett.7b00865 10.1021/ja0584471 10.1002/adma.202001113 10.1021/acs.nanolett.7b04889 10.1149/1.2140678 10.1016/j.ijhydene.2019.11.038 10.1038/nmat4251 10.1039/C8TA06670A 10.1021/acsami.9b03159 10.1039/C7EE03016A 10.1126/science.1241488 10.1126/sciadv.aay4092 10.1016/j.jpowsour.2008.12.148 10.1039/C8TA09600G 10.1021/ja207176c 10.1002/cnma.202000384 10.1039/C9TA07822C 10.1039/C4TA05769D 10.1038/ncomms2664 10.1002/chem.202003987 10.1039/C8EE01651H 10.1039/b100040n 10.1016/j.cej.2020.126314 10.1016/j.nanoen.2020.104891 10.1002/adfm.202005223 10.1021/acs.nanolett.6b04339 10.1039/B414922J 10.1039/C9CC09316H 10.1021/acsenergylett.7b01278 10.1021/acsnano.6b07668 10.1021/acsenergylett.8b01426 10.1002/aenm.201300600 10.1002/adfm.201804306 10.1021/jp048859g 10.1038/nmat4792 10.1016/j.mtener.2018.12.003 10.1038/nature14340 10.1016/j.nanoen.2019.05.005 10.1016/0022-4596(90)90279-7 10.1038/s41560-018-0147-7 10.1038/s41560-018-0108-1 10.1002/aenm.201702463 10.1038/ncomms7544 10.1002/adma.201504705 10.1021/acsenergylett.9b02048 10.1039/C9NH00571D 10.1021/jp030209 10.1038/s41560-021-00865-y 10.1021/acs.chemrev.7b00212 10.1021/acs.jpclett.7b03374 10.1021/acsenergylett.8b01423 10.1021/acs.nanolett.8b03030 10.1002/adfm.201801568 10.1016/j.pmatsci.2019.100631 10.1021/jacs.7b04471 10.1021/cm901452z 10.1002/adma.201802569 10.1021/la011677i 10.1039/D0CC01107J 10.1021/acs.accounts.0c00362 10.1021/nn901689k 10.1039/C8DT04374D 10.1039/b005559j 10.1016/j.jpowsour.2017.02.062 10.1021/acs.nanolett.9b00697 10.1038/s41586-018-0008-3 10.1021/acs.chemmater.5b04605 10.1002/eem2.12131 10.1002/anie.201713291 10.1002/jrs.1385 10.1021/acs.chemmater.9b02568 10.1002/smll.201901901 10.1016/j.cej.2019.123678 10.1021/acsami.9b04583 10.1016/j.jcis.2018.05.075 10.1016/j.jallcom.2019.153135 10.1103/PhysRevB.39.10047 10.1039/C9TA11098D 10.1002/cssc.201300874 10.1002/adma.201907818 10.1021/ja810109g 10.1021/acsenergylett.0c01138 10.1038/ncomms6716 10.1039/a908139i 10.1038/nchem.1589 10.1021/cm0616026 10.1149/1.1837571 10.1126/science.174.4008.493 10.1557/JMR.1990.1703 10.1021/cm960071q 10.1016/j.mattod.2015.11.003 10.1021/acsaem.9b01632 10.1021/la3021589 10.1039/D0SC03226C 10.1039/C9TA08418E 10.1039/c0nr00246a 10.1038/s41467-018-07646-4 10.1021/ar500346b 10.1039/D0CP02537B 10.1016/j.chempr.2019.02.014 10.1002/adma.201705851 10.1039/C3TC31993H 10.1016/j.jssc.2003.10.022 10.1007/s12274-017-1437-2 10.1021/ja026143y 10.1002/anie.201601935 10.1126/science.1194975 10.1021/acs.nanolett.6b05062 10.1007/s11665-011-9937-9 10.1016/j.carbon.2011.03.008 10.1038/s41565-018-0298-5 10.1002/cctc.201802019 10.1021/acsami.7b15617 10.1073/pnas.1803576115 10.1002/aenm.201900145 10.1038/381499a0 10.1016/j.nanoen.2019.01.053 10.1039/C8NR02365D 10.1038/s41467-018-04060-8 10.1021/nl200464j 10.1002/celc.201801803 10.1021/acs.nanolett.5b04610 10.1002/anie.201106307 10.1039/b107436a 10.1021/jacs.9b00574 10.1039/c0jm01722a 10.1021/ja00219a048 10.1021/cm500641a 10.1038/s41563-018-0063-z 10.1039/C5TA03087K 10.1016/j.tibtech.2019.09.001 10.1038/s41563-020-0657-0 10.1021/acsnano.8b04614 10.1021/acs.nanolett.7b05403 10.1002/adfm.201907684 10.1038/s41586-019-1175-6 10.1016/j.chempr.2020.02.001 10.1038/s41586-020-2241-9 10.1021/acs.nanolett.5b00284 10.1021/ar400076j 10.1002/advs.201700146 10.1038/s41467-018-04949-4 10.1021/acs.chemmater.6b05092 10.1021/acs.chemmater.0c00648 10.1039/C8TA09338E 10.1039/C8DT04610G 10.1039/C8TA11085A 10.1002/aenm.201900993 10.1021/acs.chemmater.5b02512 10.1021/acsami.0c10183 10.1002/smll.201902085 10.1016/j.apsusc.2019.144538 10.1021/cm504717p 10.1016/j.jpowsour.2019.01.031 10.1038/ncomms14548 10.1149/1.1836155 10.1039/C5TA03394B 10.1016/j.nanoen.2018.07.014 10.1002/adfm.201809261 10.1002/anie.198304121 10.1038/nmat3944 10.1039/C8CS00067K 10.1039/C5CC02585K 10.1038/nenergy.2016.119 10.1016/j.jpowsour.2017.03.138 10.1016/j.jcis.2020.08.097 10.1016/j.ensm.2018.01.009 10.1021/acs.nanolett.5b01013 10.1016/j.jechem.2019.04.018 10.1002/anie.201706426 10.1039/C9TA08086D 10.1038/natrevmats.2016.103 10.1039/C5CS00937E 10.1021/acscatal.0c02310 10.1038/ncomms14424 10.1038/ncomms14283 10.1016/j.joule.2020.03.002 10.1002/aenm.202002354 10.1039/b415041d 10.1002/smll.201702551 10.1038/s41467-017-00467-x 10.1039/D0EE01714K 10.1016/j.clay.2019.04.021 10.1039/C5CS00758E 10.1002/aenm.202003335 10.1039/D0TA08045D 10.1039/C4CS00218K 10.1016/j.nanoen.2020.104539 10.1002/anie.201908982 10.1016/j.jechem.2018.09.001 10.1021/acsenergylett.9b00945 10.1016/j.carbon.2004.09.005 10.1039/b819629j 10.1126/science.192.4244.1126 |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.202104543 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_202104543 ADFM202104543 |
Genre | reviewArticle |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 22072068; 21801139 – fundername: National Key Research and Development Program of China funderid: 2016YFB0901500 – fundername: Natural Science Foundation of Jiangsu Province funderid: BK20180942 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AAMNL AASGY AAYXX ACBWZ ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LW6 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
ID | FETCH-LOGICAL-c3173-1e4e3dfaca3aec71e5e92d2ddcf77ab5bd6e71836c7e6c00edfdec4e3af1618a3 |
IEDL.DBID | 33P |
ISSN | 1616-301X |
IngestDate | Thu Nov 21 04:26:07 EST 2024 Thu Nov 21 23:32:15 EST 2024 Sat Aug 24 00:58:31 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 52 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3173-1e4e3dfaca3aec71e5e92d2ddcf77ab5bd6e71836c7e6c00edfdec4e3af1618a3 |
ORCID | 0000-0002-4142-9052 |
PQID | 2612389204 |
PQPubID | 2045204 |
PageCount | 35 |
ParticipantIDs | proquest_journals_2612389204 crossref_primary_10_1002_adfm_202104543 wiley_primary_10_1002_adfm_202104543_ADFM202104543 |
PublicationCentury | 2000 |
PublicationDate | 2021-12-01 |
PublicationDateYYYYMMDD | 2021-12-01 |
PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2013; 4 2002; 18 2019; 11 2019; 10 2002; 12 2019; 17 1996; 381 2014; 26 2020; 16 2019; 19 2020; 13 2020; 12 2019; 569 2020; 10 2013; 5 2020; 19 2018; 47 2010; 22 2018; 6 2004; 177 2018; 9 2018; 8 2010; 20 2018; 3 2000; 10 1997; 144 2014; 13 2019; 29 2018; 30 2012; 28 1971; 174 2009; 19 2012; 24 2010; 2 2010; 4 2016; 45 1989; 39 1983; 22 2019; 7 2019; 9 2018; 28 2019; 4 2019; 6 2016; 19 2019; 5 2019; 31 2020; 41 2019; 30 2015; 51 2019; 2 2019; 33 2015; 520 2020; 820 2020; 38 2014; 47 2013; 341 2020; 33 2020; 32 2016; 16 2011; 133 2017; 139 2018; 18 2018; 17 2016; 1 2003; 107 2016; 2 2020; 30 2018; 118 2007; 154 2002; 124 2020; 392 2019; 48 2018; 115 2009; 189 2020; 22 2005; 15 2018; 12 2016; 28 2018; 11 2018; 10 1990; 5 2018; 13 2019; 176 2021; 27 2017; 8 2017; 2 2017; 3 2017; 4 2021; 403 2019; 56 2019; 58 2011; 11 2018; 528 2020; 56 2017; 353 2012; 51 2020; 8 2015; 48 2020; 6 2020; 5 2020; 4 2014; 4 2020; 3 1990; 89 2014; 2 2019; 61 2020; 53 2013; 12 2015; 44 2014; 58 2011; 21 2020; 45 2001; 11 2014; 7 2006; 128 1996; 8 2005; 36 2015; 15 2015; 14 2021; 6 2015; 6 2005; 152 2015; 3 2020; 581 2006; 18 2006; 153 2005; 43 2021; 582 2017; 29 2009; 131 1976; 192 2004; 108 2019; 141 2020; 505 2020; 109 2011; 331 2016; 55 2021; 15 2015; 27 2021; 12 2021; 11 2005; 286 2018; 556 2020; 74 2017; 17 2017; 16 2017; 11 2020; 70 2017; 10 2017; 13 1988; 110 2018; 51 2019; 414 2011; 49 2017; 347 2018; 57 e_1_2_7_3_1 e_1_2_7_104_1 e_1_2_7_127_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_83_1 e_1_2_7_191_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_142_1 e_1_2_7_165_1 e_1_2_7_188_1 e_1_2_7_202_1 e_1_2_7_116_1 e_1_2_7_94_1 e_1_2_7_71_1 e_1_2_7_180_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_56_1 e_1_2_7_79_1 e_1_2_7_131_1 e_1_2_7_154_1 e_1_2_7_177_1 e_1_2_7_139_1 e_1_2_7_4_1 e_1_2_7_128_1 e_1_2_7_105_1 e_1_2_7_82_1 e_1_2_7_120_1 e_1_2_7_192_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_67_1 e_1_2_7_143_1 e_1_2_7_189_1 e_1_2_7_29_1 e_1_2_7_203_1 e_1_2_7_166_1 e_1_2_7_117_1 e_1_2_7_70_1 e_1_2_7_93_1 e_1_2_7_181_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_78_1 e_1_2_7_193_1 e_1_2_7_132_1 e_1_2_7_155_1 e_1_2_7_178_1 e_1_2_7_106_1 e_1_2_7_129_1 e_1_2_7_9_1 e_1_2_7_81_1 e_1_2_7_121_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_170_1 e_1_2_7_89_1 e_1_2_7_182_1 e_1_2_7_28_1 e_1_2_7_144_1 e_1_2_7_167_1 e_1_2_7_204_1 e_1_2_7_118_1 e_1_2_7_110_1 e_1_2_7_92_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_77_1 e_1_2_7_54_1 e_1_2_7_194_1 e_1_2_7_39_1 e_1_2_7_133_1 e_1_2_7_156_1 e_1_2_7_179_1 e_1_2_7_107_1 e_1_2_7_80_1 e_1_2_7_122_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_88_1 e_1_2_7_65_1 e_1_2_7_160_1 e_1_2_7_183_1 e_1_2_7_27_1 e_1_2_7_145_1 e_1_2_7_168_1 e_1_2_7_119_1 e_1_2_7_91_1 e_1_2_7_111_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_76_1 e_1_2_7_99_1 e_1_2_7_172_1 e_1_2_7_195_1 e_1_2_7_38_1 e_1_2_7_134_1 e_1_2_7_157_1 e_1_2_7_108_1 e_1_2_7_7_1 e_1_2_7_100_1 e_1_2_7_123_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_87_1 e_1_2_7_161_1 e_1_2_7_184_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_146_1 e_1_2_7_169_1 e_1_2_7_90_1 e_1_2_7_112_1 e_1_2_7_52_1 e_1_2_7_98_1 e_1_2_7_75_1 e_1_2_7_150_1 e_1_2_7_196_1 e_1_2_7_37_1 e_1_2_7_173_1 e_1_2_7_135_1 e_1_2_7_158_1 e_1_2_7_109_1 e_1_2_7_8_1 e_1_2_7_124_1 e_1_2_7_101_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_63_1 e_1_2_7_86_1 e_1_2_7_185_1 e_1_2_7_48_1 e_1_2_7_162_1 e_1_2_7_147_1 Omwoma S. (e_1_2_7_171_1) 2014; 58 e_1_2_7_113_1 e_1_2_7_51_1 e_1_2_7_74_1 e_1_2_7_97_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_151_1 e_1_2_7_174_1 e_1_2_7_197_1 e_1_2_7_136_1 e_1_2_7_159_1 e_1_2_7_5_1 e_1_2_7_102_1 e_1_2_7_125_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_85_1 e_1_2_7_47_1 Wu Y. (e_1_2_7_72_1) 2016; 28 e_1_2_7_140_1 e_1_2_7_163_1 e_1_2_7_186_1 e_1_2_7_148_1 e_1_2_7_200_1 e_1_2_7_114_1 e_1_2_7_73_1 e_1_2_7_50_1 e_1_2_7_96_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_58_1 e_1_2_7_152_1 e_1_2_7_175_1 e_1_2_7_198_1 e_1_2_7_137_1 e_1_2_7_6_1 e_1_2_7_126_1 e_1_2_7_103_1 e_1_2_7_18_1 e_1_2_7_84_1 e_1_2_7_61_1 e_1_2_7_190_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_69_1 e_1_2_7_141_1 e_1_2_7_201_1 e_1_2_7_164_1 e_1_2_7_187_1 e_1_2_7_149_1 e_1_2_7_115_1 e_1_2_7_95_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_130_1 e_1_2_7_153_1 e_1_2_7_176_1 e_1_2_7_199_1 e_1_2_7_138_1 |
References_xml | – volume: 6 start-page: 5716 year: 2015 publication-title: Nat. Commun. – volume: 70 year: 2020 publication-title: Nano Energy – volume: 33 start-page: 100 year: 2019 publication-title: J. Energy Chem. – volume: 6 start-page: 1553 year: 2020 publication-title: ChemNanoMat – volume: 12 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 5 start-page: 1703 year: 1990 publication-title: J. Mater. Res. – volume: 15 start-page: 2180 year: 2015 publication-title: Nano Lett. – volume: 39 year: 1989 publication-title: Phys. Rev. B – volume: 48 start-page: 1084 year: 2019 publication-title: Dalton Trans. – volume: 11 year: 2021 publication-title: Adv. Energy. Mater. – volume: 4 start-page: 1227 year: 2010 publication-title: ACS Nano – volume: 16 start-page: 182 year: 2017 publication-title: Nat. Mater. – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 58 start-page: 347 year: 2019 publication-title: Nano Energy – volume: 153 start-page: A450 year: 2006 publication-title: J. Electrochem. Soc. – volume: 22 start-page: 412 year: 1983 publication-title: Angew. Chem., Int. Ed. – volume: 56 start-page: 2921 year: 2019 publication-title: Chem. Commun. – volume: 28 start-page: 9281 year: 2016 publication-title: Adv. Mater. – volume: 3 start-page: 2480 year: 2018 publication-title: ACS Energy Lett. – volume: 3 start-page: 7 year: 2017 publication-title: ACS Energy Lett. – volume: 26 start-page: 2374 year: 2014 publication-title: Chem. Mater. – volume: 3 start-page: 428 year: 2018 publication-title: Nat. Energy – volume: 38 start-page: 264 year: 2020 publication-title: Trends Biotechnol. – volume: 3 year: 2015 publication-title: J. Mater. Chem. A – volume: 7 year: 2019 publication-title: J. Mater. Chem. A – volume: 9 start-page: 817 year: 2018 publication-title: J. Phys. Chem. Lett. – volume: 48 start-page: 1747 year: 2019 publication-title: Dalton Trans. – volume: 28 start-page: 1517 year: 2016 publication-title: Adv. Mater. – volume: 520 start-page: 325 year: 2015 publication-title: Nature – volume: 7 start-page: 2334 year: 2019 publication-title: J. Mater. Chem. A – volume: 6 year: 2020 publication-title: Sci. Adv. – volume: 3 start-page: 562 year: 2018 publication-title: ACS Energy Lett. – volume: 2 start-page: 2131 year: 2010 publication-title: Nanoscale – volume: 2 start-page: 682 year: 2016 publication-title: Chem. Mater. – volume: 22 start-page: 587 year: 2010 publication-title: Chem. Mater. – volume: 2 year: 2017 publication-title: Nat. Rev. Mater. – volume: 528 start-page: 36 year: 2018 publication-title: J. Colloid Interface Sci. – volume: 4 start-page: 1733 year: 2019 publication-title: ACS Energy Lett. – volume: 331 start-page: 568 year: 2011 publication-title: Science – volume: 19 start-page: 322 year: 2016 publication-title: Mater. Today – volume: 24 start-page: 2414 year: 2012 publication-title: Chem. Mater. – volume: 108 year: 2004 publication-title: J. Phys. Chem. B – volume: 10 year: 2000 publication-title: J. Mater. Chem. – volume: 174 start-page: 493 year: 1971 publication-title: Science – volume: 11 start-page: 3157 year: 2018 publication-title: Energy Environ. Sci. – volume: 13 start-page: 3993 year: 2020 publication-title: Energy Environ. Sci. – volume: 10 start-page: 1732 year: 2017 publication-title: Nano Res. – volume: 115 start-page: 5670 year: 2018 publication-title: Proc. Natl. Acad. Sci. USA – volume: 31 start-page: 8774 year: 2019 publication-title: Chem. Mater. – volume: 133 year: 2011 publication-title: J. Am. Chem. Soc. – volume: 13 year: 2017 publication-title: Small – volume: 5 start-page: 235 year: 2020 publication-title: Nanoscale Horiz. – volume: 17 start-page: 384 year: 2017 publication-title: Nano Lett. – volume: 8 start-page: 2005 year: 1996 publication-title: Chem. Mater. – volume: 74 year: 2020 publication-title: Nano Energy – volume: 21 start-page: 339 year: 2011 publication-title: J. Mater. Eng. Perform. – volume: 9 year: 2019 publication-title: Adv. Energy. Mater. – volume: 5 start-page: 263 year: 2013 publication-title: Nat. Chem. – volume: 176 start-page: 29 year: 2019 publication-title: Appl. Clay Sci. – volume: 43 start-page: 189 year: 2005 publication-title: Carbon – volume: 27 start-page: 4249 year: 2021 publication-title: Chem. ‐ Eur. J. – volume: 11 start-page: 218 year: 2019 publication-title: Mater. Today Energy – volume: 15 start-page: 6302 year: 2015 publication-title: Nano Lett. – volume: 7 start-page: 940 year: 2019 publication-title: J. Mater. Chem. A – volume: 45 start-page: 1802 year: 2020 publication-title: Int. J. Hydrogen Energy – volume: 10 year: 2020 publication-title: ACS Catal. – volume: 341 start-page: 1502 year: 2013 publication-title: Science – volume: 3 start-page: 279 year: 2018 publication-title: Nat. Energy – volume: 18 start-page: 1758 year: 2018 publication-title: Nano Lett. – volume: 16 year: 2020 publication-title: Small – volume: 189 start-page: 1278 year: 2009 publication-title: J. Power Sources – volume: 17 start-page: 543 year: 2018 publication-title: Nat. Mater. – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 1 year: 2016 publication-title: Nat. Energy – volume: 10 start-page: 737 year: 2000 publication-title: J. Mater. Chem. – volume: 15 start-page: 2771 year: 2021 publication-title: ACS Nano – volume: 3 start-page: 221 year: 2020 publication-title: Energy Environ. Mater – volume: 820 year: 2020 publication-title: J. Alloys Compd. – volume: 28 year: 2012 publication-title: Langmuir – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 13 start-page: 168 year: 2018 publication-title: Energy Storage Mater. – volume: 131 start-page: 6198 year: 2009 publication-title: J. Am. Chem. Soc. – volume: 2 start-page: 925 year: 2014 publication-title: J. Mater. Chem. C – volume: 6 start-page: 844 year: 2021 publication-title: Nat. Energy – volume: 53 start-page: 1660 year: 2020 publication-title: Acc. Chem. Res. – volume: 6 year: 2018 publication-title: J. Mater. Chem. A – volume: 18 start-page: 6186 year: 2006 publication-title: Chem. Mater. – volume: 392 year: 2020 publication-title: Chem. Eng. J. – volume: 58 start-page: 258 year: 2014 publication-title: Coord. Chem. Rev. – volume: 109 year: 2020 publication-title: Prog. Mater. Sci. – volume: 48 start-page: 128 year: 2015 publication-title: Acc. Chem. Res. – volume: 56 start-page: 8392 year: 2020 publication-title: Chem. Commun. – volume: 141 start-page: 4730 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 1761 year: 2019 publication-title: ChemElectroChem – volume: 4 start-page: 1716 year: 2013 publication-title: Nat. Commun. – volume: 44 start-page: 699 year: 2015 publication-title: Chem. Soc. Rev. – volume: 107 start-page: 9243 year: 2003 publication-title: J. Phys. Chem. B – volume: 6 start-page: 6544 year: 2015 publication-title: Nat. Commun. – volume: 4 year: 2017 publication-title: Adv. Sci. – volume: 10 start-page: 696 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 11 start-page: 1689 year: 2019 publication-title: ChemCatChem – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 2 start-page: 8667 year: 2019 publication-title: ACS Appl. Energy Mater. – volume: 47 start-page: 4981 year: 2018 publication-title: Chem. Soc. Rev. – volume: 15 start-page: 902 year: 2005 publication-title: J. Mater. Chem. – volume: 569 start-page: 245 year: 2019 publication-title: Nature – volume: 6 start-page: 968 year: 2020 publication-title: Chem – volume: 581 start-page: 171 year: 2020 publication-title: Nature. – volume: 9 start-page: 1656 year: 2018 publication-title: Nat. Commun. – volume: 18 start-page: 6071 year: 2018 publication-title: Nano Lett. – volume: 36 start-page: 925 year: 2005 publication-title: J. Raman Spectrosc. – volume: 13 start-page: 994 year: 2018 publication-title: Nat. Nanotechnol. – volume: 16 start-page: 742 year: 2016 publication-title: Nano Lett. – volume: 13 start-page: 624 year: 2014 publication-title: Nat. Mater. – volume: 51 start-page: 9265 year: 2015 publication-title: Chem. Commun. – volume: 8 year: 2017 publication-title: Nat. Commun. – volume: 32 start-page: 3325 year: 2020 publication-title: Chem. Mater. – volume: 9 start-page: 2906 year: 2018 publication-title: Nat. Commun. – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 58 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 3 start-page: 2602 year: 2018 publication-title: ACS Energy Lett. – volume: 12 start-page: 559 year: 2021 publication-title: Chem. Sci. – volume: 47 start-page: 100 year: 2014 publication-title: Acc. Chem. Res. – volume: 7 start-page: 87 year: 2014 publication-title: ChemSusChem – volume: 286 start-page: 211 year: 2005 publication-title: Appl. Catal., A – volume: 5 start-page: 31 year: 2019 publication-title: ACS Energy Lett. – volume: 414 start-page: 460 year: 2019 publication-title: J. Power Sources – volume: 11 start-page: 1858 year: 2001 publication-title: J. Mater. Chem. – volume: 353 start-page: 77 year: 2017 publication-title: J. Power Sources – volume: 556 start-page: 355 year: 2018 publication-title: Nature. – volume: 19 start-page: 2526 year: 2009 publication-title: J. Mater. Chem. – volume: 347 start-page: 193 year: 2017 publication-title: J. Power Sources – volume: 505 year: 2020 publication-title: Appl. Surf. Sci. – volume: 12 start-page: 74 year: 2013 publication-title: Nat. Mater. – volume: 5 start-page: 1194 year: 2019 publication-title: Chem. – volume: 11 start-page: 1218 year: 2018 publication-title: Energy Environ. Sci. – volume: 57 start-page: 626 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 11 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 61 start-page: 617 year: 2019 publication-title: Nano Energy – volume: 8 start-page: 412 year: 2020 publication-title: J. Mater. Chem. A – volume: 5 start-page: 2842 year: 2020 publication-title: ACS Energy Lett. – volume: 118 start-page: 6134 year: 2018 publication-title: Chem. Rev. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 144 start-page: 1188 year: 1997 publication-title: J. Electrochem. Soc. – volume: 128 start-page: 4872 year: 2006 publication-title: J. Am. Chem. Soc. – volume: 152 start-page: A236 year: 2005 publication-title: J. Electrochem. Soc. – volume: 57 start-page: 3943 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 51 start-page: 933 year: 2012 publication-title: Angew. Chem., Int. Ed. – volume: 124 year: 2002 publication-title: J. Am. Chem. Soc. – volume: 381 start-page: 499 year: 1996 publication-title: Nature – volume: 17 start-page: 6273 year: 2017 publication-title: Nano Lett. – volume: 18 start-page: 4926 year: 2002 publication-title: Langmuir – volume: 177 start-page: 1173 year: 2004 publication-title: J. Solid State Chem. – volume: 11 start-page: 2459 year: 2017 publication-title: ACS Nano – volume: 11 start-page: 2032 year: 2011 publication-title: Nano Lett. – volume: 27 start-page: 3609 year: 2015 publication-title: Chem. Mater. – volume: 49 start-page: 2809 year: 2011 publication-title: Carbon – volume: 89 start-page: 372 year: 1990 publication-title: J. Solid State Chem. – volume: 41 start-page: 100 year: 2020 publication-title: J. Energy Chem. – volume: 582 start-page: 842 year: 2021 publication-title: J. Colloid Interface Sci. – volume: 45 start-page: 6742 year: 2016 publication-title: Chem. Soc. Rev. – volume: 51 start-page: 579 year: 2018 publication-title: Nano Energy – volume: 19 start-page: 894 year: 2020 publication-title: Nat. Mater. – volume: 3 start-page: 488 year: 2015 publication-title: J. Mater. Chem. A – volume: 29 start-page: 1684 year: 2017 publication-title: Chem. Mater. – volume: 17 year: 2019 publication-title: Small – volume: 4 year: 2014 publication-title: Adv. Energy Mater. – volume: 10 start-page: 5203 year: 2019 publication-title: Nat. Commun. – volume: 154 start-page: A228 year: 2007 publication-title: J. Electrochem. Soc. – volume: 18 start-page: 2402 year: 2018 publication-title: Nano Lett. – volume: 45 start-page: 4042 year: 2016 publication-title: Chem. Soc. Rev. – volume: 4 start-page: 771 year: 2020 publication-title: Joule – volume: 27 start-page: 5813 year: 2015 publication-title: Chem. Mater. – volume: 22 year: 2020 publication-title: Phys. Chem. Chem. Phys. – volume: 20 start-page: 9476 year: 2010 publication-title: J. Mater. Chem. – volume: 15 start-page: 1369 year: 2005 publication-title: J. Mater. Chem. – volume: 19 start-page: 3199 year: 2019 publication-title: Nano Lett. – volume: 33 year: 2020 publication-title: Adv. Mater. – volume: 110 start-page: 3653 year: 1988 publication-title: J. Am. Chem. Soc. – volume: 403 year: 2021 publication-title: Chem. Eng. J. – volume: 14 start-page: 622 year: 2015 publication-title: Nat. Mater. – volume: 10 year: 2018 publication-title: Nanoscale – volume: 8 start-page: 405 year: 2017 publication-title: Nat. Commun. – volume: 55 year: 2016 publication-title: Angew. Chem., Int. Ed. – volume: 9 year: 2019 publication-title: Adv. Energy Mater. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 8 year: 2020 publication-title: J. Mater. Chem A – volume: 192 start-page: 4244 year: 1976 publication-title: Science – volume: 17 start-page: 1741 year: 2017 publication-title: Nano Lett. – volume: 12 start-page: 8670 year: 2018 publication-title: ACS Nano – volume: 30 year: 2019 publication-title: Adv. Funct. Mater. – volume: 139 start-page: 9775 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 12 start-page: 1592 year: 2002 publication-title: J. Mater. Chem. – volume: 28 start-page: 9281 year: 2016 ident: e_1_2_7_72_1 publication-title: Adv. Mater. contributor: fullname: Wu Y. – ident: e_1_2_7_92_1 doi: 10.1002/adfm.201802564 – ident: e_1_2_7_26_1 doi: 10.1021/cm301515z – ident: e_1_2_7_131_1 doi: 10.1021/acs.nanolett.7b02958 – ident: e_1_2_7_86_1 doi: 10.1038/nmat3478 – ident: e_1_2_7_59_1 doi: 10.1149/1.2432056 – ident: e_1_2_7_157_1 doi: 10.1021/acsnano.0c08630 – ident: e_1_2_7_179_1 doi: 10.1016/j.apcata.2005.03.009 – ident: e_1_2_7_192_1 doi: 10.1021/acsenergylett.7b00865 – ident: e_1_2_7_170_1 doi: 10.1021/ja0584471 – ident: e_1_2_7_106_1 doi: 10.1002/adma.202001113 – ident: e_1_2_7_113_1 doi: 10.1021/acs.nanolett.7b04889 – ident: e_1_2_7_58_1 doi: 10.1149/1.2140678 – ident: e_1_2_7_177_1 doi: 10.1016/j.ijhydene.2019.11.038 – ident: e_1_2_7_20_1 doi: 10.1038/nmat4251 – ident: e_1_2_7_79_1 doi: 10.1039/C8TA06670A – ident: e_1_2_7_201_1 doi: 10.1021/acsami.9b03159 – ident: e_1_2_7_82_1 doi: 10.1039/C7EE03016A – ident: e_1_2_7_159_1 doi: 10.1126/science.1241488 – ident: e_1_2_7_200_1 doi: 10.1126/sciadv.aay4092 – ident: e_1_2_7_23_1 doi: 10.1016/j.jpowsour.2008.12.148 – ident: e_1_2_7_166_1 doi: 10.1039/C8TA09600G – ident: e_1_2_7_190_1 doi: 10.1021/ja207176c – ident: e_1_2_7_17_1 doi: 10.1002/cnma.202000384 – ident: e_1_2_7_111_1 doi: 10.1039/C9TA07822C – ident: e_1_2_7_37_1 doi: 10.1039/C4TA05769D – ident: e_1_2_7_163_1 doi: 10.1038/ncomms2664 – ident: e_1_2_7_66_1 doi: 10.1002/chem.202003987 – ident: e_1_2_7_96_1 doi: 10.1039/C8EE01651H – ident: e_1_2_7_128_1 doi: 10.1039/b100040n – ident: e_1_2_7_67_1 doi: 10.1016/j.cej.2020.126314 – ident: e_1_2_7_145_1 doi: 10.1016/j.nanoen.2020.104891 – ident: e_1_2_7_153_1 doi: 10.1002/adfm.202005223 – ident: e_1_2_7_28_1 doi: 10.1021/acs.nanolett.6b04339 – ident: e_1_2_7_46_1 doi: 10.1039/B414922J – ident: e_1_2_7_142_1 doi: 10.1039/C9CC09316H – ident: e_1_2_7_98_1 doi: 10.1021/acsenergylett.7b01278 – ident: e_1_2_7_162_1 doi: 10.1021/acsnano.6b07668 – ident: e_1_2_7_93_1 doi: 10.1021/acsenergylett.8b01426 – ident: e_1_2_7_80_1 doi: 10.1002/aenm.201300600 – ident: e_1_2_7_165_1 doi: 10.1002/adfm.201804306 – ident: e_1_2_7_108_1 doi: 10.1021/jp048859g – ident: e_1_2_7_1_1 doi: 10.1038/nmat4792 – ident: e_1_2_7_105_1 doi: 10.1016/j.mtener.2018.12.003 – ident: e_1_2_7_71_1 doi: 10.1038/nature14340 – ident: e_1_2_7_103_1 doi: 10.1016/j.nanoen.2019.05.005 – ident: e_1_2_7_117_1 doi: 10.1016/0022-4596(90)90279-7 – ident: e_1_2_7_135_1 doi: 10.1038/s41560-018-0147-7 – ident: e_1_2_7_65_1 doi: 10.1038/s41560-018-0108-1 – ident: e_1_2_7_97_1 doi: 10.1002/aenm.201702463 – ident: e_1_2_7_160_1 doi: 10.1038/ncomms7544 – ident: e_1_2_7_164_1 doi: 10.1002/adma.201504705 – ident: e_1_2_7_85_1 doi: 10.1021/acsenergylett.9b02048 – ident: e_1_2_7_152_1 doi: 10.1039/C9NH00571D – ident: e_1_2_7_169_1 doi: 10.1021/jp030209 – ident: e_1_2_7_125_1 doi: 10.1038/s41560-021-00865-y – ident: e_1_2_7_185_1 doi: 10.1021/acs.chemrev.7b00212 – ident: e_1_2_7_47_1 doi: 10.1021/acs.jpclett.7b03374 – ident: e_1_2_7_102_1 doi: 10.1021/acsenergylett.8b01423 – ident: e_1_2_7_132_1 doi: 10.1021/acs.nanolett.8b03030 – ident: e_1_2_7_191_1 doi: 10.1002/adfm.201801568 – ident: e_1_2_7_15_1 doi: 10.1016/j.pmatsci.2019.100631 – ident: e_1_2_7_60_1 doi: 10.1021/jacs.7b04471 – ident: e_1_2_7_63_1 doi: 10.1021/cm901452z – ident: e_1_2_7_138_1 doi: 10.1002/adma.201802569 – ident: e_1_2_7_22_1 doi: 10.1021/la011677i – ident: e_1_2_7_19_1 doi: 10.1039/D0CC01107J – ident: e_1_2_7_84_1 doi: 10.1021/acs.accounts.0c00362 – ident: e_1_2_7_25_1 doi: 10.1021/nn901689k – ident: e_1_2_7_35_1 doi: 10.1039/C8DT04374D – ident: e_1_2_7_118_1 doi: 10.1039/b005559j – ident: e_1_2_7_183_1 doi: 10.1016/j.jpowsour.2017.02.062 – ident: e_1_2_7_197_1 doi: 10.1021/acs.nanolett.9b00697 – ident: e_1_2_7_4_1 doi: 10.1038/s41586-018-0008-3 – ident: e_1_2_7_124_1 doi: 10.1021/acs.chemmater.5b04605 – ident: e_1_2_7_87_1 doi: 10.1002/eem2.12131 – ident: e_1_2_7_100_1 doi: 10.1002/anie.201713291 – ident: e_1_2_7_180_1 doi: 10.1002/jrs.1385 – ident: e_1_2_7_146_1 doi: 10.1021/acs.chemmater.9b02568 – ident: e_1_2_7_199_1 doi: 10.1002/smll.201901901 – ident: e_1_2_7_16_1 doi: 10.1016/j.cej.2019.123678 – ident: e_1_2_7_38_1 doi: 10.1021/acsami.9b04583 – ident: e_1_2_7_178_1 doi: 10.1016/j.jcis.2018.05.075 – ident: e_1_2_7_150_1 doi: 10.1016/j.jallcom.2019.153135 – ident: e_1_2_7_76_1 doi: 10.1103/PhysRevB.39.10047 – ident: e_1_2_7_61_1 doi: 10.1039/C9TA11098D – ident: e_1_2_7_78_1 doi: 10.1002/cssc.201300874 – ident: e_1_2_7_172_1 doi: 10.1002/adma.201907818 – ident: e_1_2_7_6_1 doi: 10.1021/ja810109g – ident: e_1_2_7_57_1 doi: 10.1021/acsenergylett.0c01138 – ident: e_1_2_7_69_1 doi: 10.1038/ncomms6716 – ident: e_1_2_7_129_1 doi: 10.1039/a908139i – ident: e_1_2_7_3_1 doi: 10.1038/nchem.1589 – ident: e_1_2_7_7_1 doi: 10.1021/cm0616026 – ident: e_1_2_7_123_1 doi: 10.1149/1.1837571 – ident: e_1_2_7_49_1 doi: 10.1126/science.174.4008.493 – ident: e_1_2_7_75_1 doi: 10.1557/JMR.1990.1703 – ident: e_1_2_7_44_1 doi: 10.1021/cm960071q – ident: e_1_2_7_2_1 doi: 10.1016/j.mattod.2015.11.003 – ident: e_1_2_7_130_1 doi: 10.1021/acsaem.9b01632 – ident: e_1_2_7_36_1 doi: 10.1021/la3021589 – ident: e_1_2_7_50_1 doi: 10.1039/D0SC03226C – ident: e_1_2_7_148_1 doi: 10.1039/C9TA08418E – ident: e_1_2_7_42_1 doi: 10.1039/c0nr00246a – ident: e_1_2_7_137_1 doi: 10.1038/s41467-018-07646-4 – ident: e_1_2_7_11_1 doi: 10.1021/ar500346b – ident: e_1_2_7_33_1 doi: 10.1039/D0CP02537B – ident: e_1_2_7_101_1 doi: 10.1016/j.chempr.2019.02.014 – ident: e_1_2_7_14_1 doi: 10.1002/adma.201705851 – ident: e_1_2_7_27_1 doi: 10.1039/C3TC31993H – ident: e_1_2_7_127_1 doi: 10.1016/j.jssc.2003.10.022 – ident: e_1_2_7_182_1 doi: 10.1007/s12274-017-1437-2 – ident: e_1_2_7_94_1 doi: 10.1021/ja026143y – ident: e_1_2_7_204_1 doi: 10.1002/anie.201601935 – ident: e_1_2_7_29_1 doi: 10.1126/science.1194975 – ident: e_1_2_7_54_1 doi: 10.1021/acs.nanolett.6b05062 – ident: e_1_2_7_77_1 doi: 10.1007/s11665-011-9937-9 – ident: e_1_2_7_51_1 doi: 10.1016/j.carbon.2011.03.008 – ident: e_1_2_7_9_1 doi: 10.1038/s41565-018-0298-5 – ident: e_1_2_7_18_1 doi: 10.1002/cctc.201802019 – ident: e_1_2_7_10_1 doi: 10.1021/acsami.7b15617 – ident: e_1_2_7_56_1 doi: 10.1073/pnas.1803576115 – ident: e_1_2_7_198_1 doi: 10.1002/aenm.201900145 – ident: e_1_2_7_31_1 doi: 10.1038/381499a0 – ident: e_1_2_7_109_1 doi: 10.1016/j.nanoen.2019.01.053 – ident: e_1_2_7_194_1 doi: 10.1039/C8NR02365D – ident: e_1_2_7_112_1 doi: 10.1038/s41467-018-04060-8 – ident: e_1_2_7_30_1 doi: 10.1021/nl200464j – ident: e_1_2_7_45_1 doi: 10.1002/celc.201801803 – ident: e_1_2_7_134_1 doi: 10.1021/acs.nanolett.5b04610 – ident: e_1_2_7_89_1 doi: 10.1002/anie.201106307 – ident: e_1_2_7_34_1 doi: 10.1021/ja0584471 – ident: e_1_2_7_40_1 doi: 10.1039/b107436a – ident: e_1_2_7_156_1 doi: 10.1021/jacs.9b00574 – ident: e_1_2_7_175_1 doi: 10.1039/c0jm01722a – ident: e_1_2_7_176_1 doi: 10.1021/ja00219a048 – ident: e_1_2_7_155_1 doi: 10.1021/cm500641a – ident: e_1_2_7_90_1 doi: 10.1038/s41563-018-0063-z – ident: e_1_2_7_81_1 doi: 10.1039/C5TA03087K – ident: e_1_2_7_151_1 doi: 10.1016/j.tibtech.2019.09.001 – ident: e_1_2_7_158_1 doi: 10.1038/s41563-020-0657-0 – ident: e_1_2_7_167_1 doi: 10.1021/acsnano.8b04614 – ident: e_1_2_7_114_1 doi: 10.1021/acs.nanolett.7b05403 – ident: e_1_2_7_104_1 doi: 10.1002/adfm.201907684 – ident: e_1_2_7_83_1 doi: 10.1038/s41586-019-1175-6 – ident: e_1_2_7_121_1 doi: 10.1016/j.chempr.2020.02.001 – ident: e_1_2_7_12_1 doi: 10.1038/s41586-020-2241-9 – ident: e_1_2_7_21_1 doi: 10.1021/acs.nanolett.5b00284 – ident: e_1_2_7_136_1 doi: 10.1021/ar400076j – ident: e_1_2_7_74_1 doi: 10.1002/advs.201700146 – ident: e_1_2_7_39_1 doi: 10.1038/s41467-018-04949-4 – ident: e_1_2_7_202_1 doi: 10.1021/acs.chemmater.6b05092 – ident: e_1_2_7_203_1 doi: 10.1021/acs.chemmater.0c00648 – ident: e_1_2_7_120_1 doi: 10.1039/C8TA09338E – ident: e_1_2_7_168_1 doi: 10.1039/C8DT04610G – ident: e_1_2_7_195_1 doi: 10.1039/C8TA11085A – ident: e_1_2_7_53_1 doi: 10.1002/aenm.201900993 – ident: e_1_2_7_41_1 doi: 10.1021/acs.chemmater.5b02512 – ident: e_1_2_7_43_1 doi: 10.1021/acsami.0c10183 – ident: e_1_2_7_154_1 doi: 10.1002/smll.201902085 – ident: e_1_2_7_161_1 doi: 10.1016/j.apsusc.2019.144538 – ident: e_1_2_7_140_1 doi: 10.1021/cm504717p – ident: e_1_2_7_122_1 doi: 10.1016/j.jpowsour.2019.01.031 – ident: e_1_2_7_193_1 doi: 10.1038/ncomms14548 – ident: e_1_2_7_95_1 doi: 10.1149/1.1836155 – ident: e_1_2_7_181_1 doi: 10.1039/C5TA03394B – ident: e_1_2_7_116_1 doi: 10.1016/j.nanoen.2018.07.014 – ident: e_1_2_7_187_1 doi: 10.1002/adfm.201809261 – ident: e_1_2_7_126_1 doi: 10.1002/anie.198304121 – ident: e_1_2_7_24_1 doi: 10.1038/nmat3944 – ident: e_1_2_7_189_1 doi: 10.1039/C8CS00067K – ident: e_1_2_7_55_1 doi: 10.1039/C5CC02585K – ident: e_1_2_7_99_1 doi: 10.1038/nenergy.2016.119 – ident: e_1_2_7_149_1 doi: 10.1016/j.jpowsour.2017.03.138 – ident: e_1_2_7_184_1 doi: 10.1016/j.jcis.2020.08.097 – ident: e_1_2_7_115_1 doi: 10.1016/j.ensm.2018.01.009 – ident: e_1_2_7_48_1 doi: 10.1021/acs.nanolett.5b01013 – ident: e_1_2_7_68_1 doi: 10.1016/j.jechem.2019.04.018 – ident: e_1_2_7_188_1 doi: 10.1002/anie.201706426 – ident: e_1_2_7_107_1 doi: 10.1039/C9TA08086D – ident: e_1_2_7_64_1 doi: 10.1038/natrevmats.2016.103 – ident: e_1_2_7_5_1 doi: 10.1039/C5CS00937E – ident: e_1_2_7_144_1 doi: 10.1021/acscatal.0c02310 – ident: e_1_2_7_147_1 doi: 10.1038/ncomms14424 – ident: e_1_2_7_73_1 doi: 10.1038/ncomms14283 – ident: e_1_2_7_88_1 doi: 10.1016/j.joule.2020.03.002 – ident: e_1_2_7_91_1 doi: 10.1002/aenm.202002354 – ident: e_1_2_7_110_1 doi: 10.1039/b415041d – ident: e_1_2_7_119_1 doi: 10.1002/smll.201702551 – ident: e_1_2_7_141_1 doi: 10.1038/s41467-017-00467-x – ident: e_1_2_7_174_1 doi: 10.1039/D0EE01714K – ident: e_1_2_7_32_1 doi: 10.1016/j.clay.2019.04.021 – volume: 58 start-page: 258 year: 2014 ident: e_1_2_7_171_1 publication-title: Coord. Chem. Rev. contributor: fullname: Omwoma S. – ident: e_1_2_7_13_1 doi: 10.1039/C5CS00758E – ident: e_1_2_7_62_1 doi: 10.1002/aenm.202003335 – ident: e_1_2_7_173_1 doi: 10.1039/D0TA08045D – ident: e_1_2_7_139_1 doi: 10.1039/C4CS00218K – ident: e_1_2_7_143_1 doi: 10.1016/j.nanoen.2020.104539 – ident: e_1_2_7_133_1 doi: 10.1002/anie.201908982 – ident: e_1_2_7_186_1 doi: 10.1016/j.jechem.2018.09.001 – ident: e_1_2_7_196_1 doi: 10.1021/acsenergylett.9b00945 – ident: e_1_2_7_70_1 doi: 10.1016/j.carbon.2004.09.005 – ident: e_1_2_7_8_1 doi: 10.1039/b819629j – ident: e_1_2_7_52_1 doi: 10.1126/science.192.4244.1126 |
SSID | ssj0017734 |
Score | 2.5837872 |
Snippet | Layered materials have received extensive attention for widespread applications such as energy storage and conversion, catalysis, and ion transport owing to... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Publisher |
SubjectTerms | Catalysis Charge transport Chemical reactions Conversion Diffusion layers Diffusion rate electrochemical performance Energy storage guest species Intercalation Interlayers Ion diffusion Ion transport Layered materials Materials science |
Title | Regulating Intercalation of Layered Compounds for Electrochemical Energy Storage and Electrocatalysis |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202104543 https://www.proquest.com/docview/2612389204 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagEwy8EYWCPCAxRU1sJ07GiqbqAAhRkLpFfo4pIu3Av8dnp2k7IcEWS7Fl-ey7z4_7PoTuhRAsl5JFuShAwsymkdQxj9JCMqUNia2X85nO-Ms8H5dAk9Nl8Qd-iO7ADVaG99ewwIVshhvSUKEtZJK7LQtLGdB9uq2Cz-Ggr901AufhWjlL4IFXMl-zNsZkuFt9NyptoOY2YPURZ3L8_76eoKMWbeJRmB6naM_UZ-hwi4PwHJm3oEbvCtgfDzqjeWvhhcVP4hu0PDF4DdBfarDDuLgM0jmq5RrApc8fxDO3fXfeCYtad7_A4RBwnlygj0n5_jiNWu2FSDlEQaPEMEO1FUpQYRRPTGoKoonWynIuZCp1ZlxYo5niJlNxbLTVRrk6wgIFv6CXqFcvanOFcMK10VwqXjg8kFHm2iMs15bSxMFPKvroYT321Weg2KgCmTKpYOCqbuD6aLA2TdUutaYCDjSHukjM-oh4I_zSSjUaT5670vVfKt2gA_gOz1oGqLf8WplbtN_o1Z2fgD8AqN0L |
link.rule.ids | 315,782,786,1408,27933,27934,46064,46488 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwED7RMgADb0ShgAckpqhJ7MTJWEGqItoK0SJ1ixw_xhRROvDv8eXVdkJCjLZyVuTz4_PZ930A90IIFmUZcyIRo4SZCZxMudwJ4oxJpX3XFHI-wymfzKOnBGly-nUuTMkP0QTccGYU6zVOcAxI99asoUIZTCW3ZxYWMNqCXRba0YhZHPS1uUjgvLxYDj184uXNa95G1-9t22_vS2uwuQlZiz1ncPQPf3sMhxXgJP1yhJzAjs5P4WCDhvAM9FspSG8LpIgQWr8VDiMLQ0biG-U8CS4cKMG0JBbmkqRUz5EV3QBJihRCMrUneLtAEZGr5hOMDyHtyTm8D5LZ49Cp5BccaUEFdTzNNFVGSEGFltzTgY595SslDeciCzIVaruz0VByHUrX1cooLa2NMMjCL-gFtPNFri-BeFxpxTPJYwsJQspsez6LlKHUswiUig481J2ffpQsG2nJp-yn2HFp03Ed6Na-SavZtkyRBs0CL99lHfALL_zSStp_Goyb0tVfjO5gbzgbj9LR8-TlGvaxvnzl0oX21-dK30BrqVa3xWj8AQX-4TM |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFH_oBNGD3-J0ag6Cp7I2SZv2OFzLxDmGU9gtpPk4dsO5g_-9Sdt120nQY0ITSl7y3i8f7_cDeBBC0DjPqReLxEmYmdDLlc-8MMmpVBr7ppTzGUzYaBr3U0eT02TxV_wQzYGbWxmlv3YLfK5Md00aKpRxmeR2y0JDSnZhj1os7tjzCRk39wiMVffKUeBeeAXTFW2jj7vb7bfD0hprbiLWMuRkx___2RM4quEm6lXz4xR2dHEGhxskhOeg3yo5eltA5fmgtVppLjQzaCi-nZgncm7DCTAtkAW5KK20c2RNNoDSMoEQTez-3bonJArVfOJOhxzpyQV8ZOn708CrxRc8aSEF8QJNNVFGSEGElizQoU6wwkpJw5jIw1xF2sY1EkmmI-n7WhmlpW0jjOPgF-QSWsWs0FeAAqa0YrlkiQUEEaG2P0xjZQgJLP4kog2Pq7Hn84pjg1dsypi7gePNwLWhszINr9fagjsSNAu7sE_bgEsj_NIL7_Wz16Z0_ZdG97A_7md8-Dx6uYEDV109celA6-tzqW9hd6GWd-Vc_AFgxN_Z |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regulating+Intercalation+of+Layered+Compounds+for+Electrochemical+Energy+Storage+and+Electrocatalysis&rft.jtitle=Advanced+functional+materials&rft.au=Yang%2C+Beibei&rft.au=Tamirat%2C+Andebet+Gedamu&rft.au=Bin%2C+Duan&rft.au=Yao%2C+Yong&rft.date=2021-12-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=31&rft.issue=52&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.202104543&rft.externalDBID=10.1002%252Fadfm.202104543&rft.externalDocID=ADFM202104543 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |