Regulating Intercalation of Layered Compounds for Electrochemical Energy Storage and Electrocatalysis

Layered materials have received extensive attention for widespread applications such as energy storage and conversion, catalysis, and ion transport owing to their fast ion diffusion, exfoliative feature, superior mechanical flexibility, tunable bandgap structure, etc. The presence of large interlaye...

Full description

Saved in:
Bibliographic Details
Published in:Advanced functional materials Vol. 31; no. 52
Main Authors: Yang, Beibei, Tamirat, Andebet Gedamu, Bin, Duan, Yao, Yong, Lu, Hongbin, Xia, Yongyao
Format: Journal Article
Language:English
Published: Hoboken Wiley Subscription Services, Inc 01-12-2021
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Layered materials have received extensive attention for widespread applications such as energy storage and conversion, catalysis, and ion transport owing to their fast ion diffusion, exfoliative feature, superior mechanical flexibility, tunable bandgap structure, etc. The presence of large interlayer space between each layer enhances intercalation of the guest ion or molecule, which is beneficial for fast ion diffusion and charge transport along the channels. This intercalation reaction of layered compounds with guest species results in material with improved mechanical and electronic properties for efficient energy storage and conversion, catalysis, ion transport, and other applications. This review extensively discusses the intercalation of guest ionic or molecular species into layered materials used for various types of applications. It assesses the intercalation strategies, mechanism of ionic or molecular intercalation reactions, and highlights recent advancements. The electrochemical performances of several typical intercalated materials in batteries, supercapacitors, and electrocatalytic systems have been thoroughly discussed. Moreover, the challenges in the design and intercalation of layered materials, as well as prospects of future development are highlighted. This review systematically discusses the intercalation mechanism and method of guest species into layered materials, highlights their recent application such as lithium ion batteries, sodium ion batteries, aqueous zinc batteries, supercapacitors, hydrogen evolution reaction and oxygen evolution reaction, and emphasizes the strategies to enhance their properties and fundamental issues of the intercalated layered materials.
AbstractList Layered materials have received extensive attention for widespread applications such as energy storage and conversion, catalysis, and ion transport owing to their fast ion diffusion, exfoliative feature, superior mechanical flexibility, tunable bandgap structure, etc. The presence of large interlayer space between each layer enhances intercalation of the guest ion or molecule, which is beneficial for fast ion diffusion and charge transport along the channels. This intercalation reaction of layered compounds with guest species results in material with improved mechanical and electronic properties for efficient energy storage and conversion, catalysis, ion transport, and other applications. This review extensively discusses the intercalation of guest ionic or molecular species into layered materials used for various types of applications. It assesses the intercalation strategies, mechanism of ionic or molecular intercalation reactions, and highlights recent advancements. The electrochemical performances of several typical intercalated materials in batteries, supercapacitors, and electrocatalytic systems have been thoroughly discussed. Moreover, the challenges in the design and intercalation of layered materials, as well as prospects of future development are highlighted. This review systematically discusses the intercalation mechanism and method of guest species into layered materials, highlights their recent application such as lithium ion batteries, sodium ion batteries, aqueous zinc batteries, supercapacitors, hydrogen evolution reaction and oxygen evolution reaction, and emphasizes the strategies to enhance their properties and fundamental issues of the intercalated layered materials.
Layered materials have received extensive attention for widespread applications such as energy storage and conversion, catalysis, and ion transport owing to their fast ion diffusion, exfoliative feature, superior mechanical flexibility, tunable bandgap structure, etc. The presence of large interlayer space between each layer enhances intercalation of the guest ion or molecule, which is beneficial for fast ion diffusion and charge transport along the channels. This intercalation reaction of layered compounds with guest species results in material with improved mechanical and electronic properties for efficient energy storage and conversion, catalysis, ion transport, and other applications. This review extensively discusses the intercalation of guest ionic or molecular species into layered materials used for various types of applications. It assesses the intercalation strategies, mechanism of ionic or molecular intercalation reactions, and highlights recent advancements. The electrochemical performances of several typical intercalated materials in batteries, supercapacitors, and electrocatalytic systems have been thoroughly discussed. Moreover, the challenges in the design and intercalation of layered materials, as well as prospects of future development are highlighted.
Layered materials have received extensive attention for widespread applications such as energy storage and conversion, catalysis, and ion transport owing to their fast ion diffusion, exfoliative feature, superior mechanical flexibility, tunable bandgap structure, etc. The presence of large interlayer space between each layer enhances intercalation of the guest ion or molecule, which is beneficial for fast ion diffusion and charge transport along the channels. This intercalation reaction of layered compounds with guest species results in material with improved mechanical and electronic properties for efficient energy storage and conversion, catalysis, ion transport, and other applications. This review extensively discusses the intercalation of guest ionic or molecular species into layered materials used for various types of applications. It assesses the intercalation strategies, mechanism of ionic or molecular intercalation reactions, and highlights recent advancements. The electrochemical performances of several typical intercalated materials in batteries, supercapacitors, and electrocatalytic systems have been thoroughly discussed. Moreover, the challenges in the design and intercalation of layered materials, as well as prospects of future development are highlighted.
Author Tamirat, Andebet Gedamu
Yao, Yong
Yang, Beibei
Xia, Yongyao
Lu, Hongbin
Bin, Duan
Author_xml – sequence: 1
  givenname: Beibei
  surname: Yang
  fullname: Yang, Beibei
  organization: Nantong University
– sequence: 2
  givenname: Andebet Gedamu
  surname: Tamirat
  fullname: Tamirat, Andebet Gedamu
  organization: Kotebe Metropolitan University
– sequence: 3
  givenname: Duan
  orcidid: 0000-0002-4142-9052
  surname: Bin
  fullname: Bin, Duan
  email: dbin17@fudan.edu.cn
  organization: Nantong University
– sequence: 4
  givenname: Yong
  surname: Yao
  fullname: Yao, Yong
  organization: Nantong University
– sequence: 5
  givenname: Hongbin
  surname: Lu
  fullname: Lu, Hongbin
  email: luhb@nju.edu.cn
  organization: Nantong University
– sequence: 6
  givenname: Yongyao
  surname: Xia
  fullname: Xia, Yongyao
  email: yyxia@fudan.edu.cn
  organization: Fudan University
BookMark eNqFkE1Lw0AQhhepYFu9el7wnLofaTY9llq1UBH8AG9hujsbU5Ldupsi-femVOrR08zA88ww74gMnHdIyDVnE86YuAVjm4lggrN0msozMuQZzxLJRD449fzjgoxi3DLGlZLpkOALlvsa2sqVdOVaDBoOk3fUW7qGDgMauvDNzu-didT6QJc16jZ4_YlN1dN06TCUHX1tfYASKThzQqCFuotVvCTnFuqIV791TN7vl2-Lx2T9_LBazNeJllzJhGOK0ljQIAG14jjFmTDCGG2Vgs10YzJUPJeZVphpxtBYg7p3wPb_5SDH5Oa4dxf81x5jW2z9Prj-ZCEyLmQ-EyztqcmR0sHHGNAWu1A1ELqCs-IQZXGIsjhF2Quzo_Bd1dj9Qxfzu_unP_cH6bh86A
CitedBy_id crossref_primary_10_1002_adma_202300347
crossref_primary_10_1016_j_apmt_2024_102069
crossref_primary_10_1016_j_cej_2023_145864
crossref_primary_10_1002_smll_202307033
crossref_primary_10_1039_D2TA05309H
crossref_primary_10_1002_advs_202205944
crossref_primary_10_1002_aenm_202400373
crossref_primary_10_1002_celc_202400101
crossref_primary_10_1021_acsaem_2c02846
crossref_primary_10_1021_acssensors_2c01748
crossref_primary_10_1021_acssuschemeng_4c00034
crossref_primary_10_1016_j_cej_2023_148370
crossref_primary_10_1016_j_jallcom_2023_173205
crossref_primary_10_1016_j_cej_2023_144090
crossref_primary_10_1016_j_jallcom_2023_172756
crossref_primary_10_1002_cssc_202400641
crossref_primary_10_1016_j_apsusc_2022_153334
crossref_primary_10_1016_j_ensm_2022_08_007
crossref_primary_10_1021_acs_jpcc_2c06045
crossref_primary_10_1016_j_ensm_2022_10_039
crossref_primary_10_1016_j_cej_2022_141162
crossref_primary_10_1002_cnl2_110
crossref_primary_10_1021_acssuschemeng_2c01975
crossref_primary_10_1016_j_cej_2023_143971
crossref_primary_10_1016_j_colsurfa_2023_130991
crossref_primary_10_1016_j_ensm_2022_09_017
crossref_primary_10_1016_j_electacta_2023_143135
crossref_primary_10_1016_j_jcis_2022_02_081
crossref_primary_10_1016_j_jece_2022_108206
crossref_primary_10_1016_j_jpowsour_2024_234824
crossref_primary_10_1016_j_ensm_2023_102822
crossref_primary_10_1016_j_cej_2022_136349
crossref_primary_10_1002_smll_202303227
crossref_primary_10_1016_j_colsurfa_2023_131703
Cites_doi 10.1002/adfm.201802564
10.1021/cm301515z
10.1021/acs.nanolett.7b02958
10.1038/nmat3478
10.1149/1.2432056
10.1021/acsnano.0c08630
10.1016/j.apcata.2005.03.009
10.1021/acsenergylett.7b00865
10.1021/ja0584471
10.1002/adma.202001113
10.1021/acs.nanolett.7b04889
10.1149/1.2140678
10.1016/j.ijhydene.2019.11.038
10.1038/nmat4251
10.1039/C8TA06670A
10.1021/acsami.9b03159
10.1039/C7EE03016A
10.1126/science.1241488
10.1126/sciadv.aay4092
10.1016/j.jpowsour.2008.12.148
10.1039/C8TA09600G
10.1021/ja207176c
10.1002/cnma.202000384
10.1039/C9TA07822C
10.1039/C4TA05769D
10.1038/ncomms2664
10.1002/chem.202003987
10.1039/C8EE01651H
10.1039/b100040n
10.1016/j.cej.2020.126314
10.1016/j.nanoen.2020.104891
10.1002/adfm.202005223
10.1021/acs.nanolett.6b04339
10.1039/B414922J
10.1039/C9CC09316H
10.1021/acsenergylett.7b01278
10.1021/acsnano.6b07668
10.1021/acsenergylett.8b01426
10.1002/aenm.201300600
10.1002/adfm.201804306
10.1021/jp048859g
10.1038/nmat4792
10.1016/j.mtener.2018.12.003
10.1038/nature14340
10.1016/j.nanoen.2019.05.005
10.1016/0022-4596(90)90279-7
10.1038/s41560-018-0147-7
10.1038/s41560-018-0108-1
10.1002/aenm.201702463
10.1038/ncomms7544
10.1002/adma.201504705
10.1021/acsenergylett.9b02048
10.1039/C9NH00571D
10.1021/jp030209
10.1038/s41560-021-00865-y
10.1021/acs.chemrev.7b00212
10.1021/acs.jpclett.7b03374
10.1021/acsenergylett.8b01423
10.1021/acs.nanolett.8b03030
10.1002/adfm.201801568
10.1016/j.pmatsci.2019.100631
10.1021/jacs.7b04471
10.1021/cm901452z
10.1002/adma.201802569
10.1021/la011677i
10.1039/D0CC01107J
10.1021/acs.accounts.0c00362
10.1021/nn901689k
10.1039/C8DT04374D
10.1039/b005559j
10.1016/j.jpowsour.2017.02.062
10.1021/acs.nanolett.9b00697
10.1038/s41586-018-0008-3
10.1021/acs.chemmater.5b04605
10.1002/eem2.12131
10.1002/anie.201713291
10.1002/jrs.1385
10.1021/acs.chemmater.9b02568
10.1002/smll.201901901
10.1016/j.cej.2019.123678
10.1021/acsami.9b04583
10.1016/j.jcis.2018.05.075
10.1016/j.jallcom.2019.153135
10.1103/PhysRevB.39.10047
10.1039/C9TA11098D
10.1002/cssc.201300874
10.1002/adma.201907818
10.1021/ja810109g
10.1021/acsenergylett.0c01138
10.1038/ncomms6716
10.1039/a908139i
10.1038/nchem.1589
10.1021/cm0616026
10.1149/1.1837571
10.1126/science.174.4008.493
10.1557/JMR.1990.1703
10.1021/cm960071q
10.1016/j.mattod.2015.11.003
10.1021/acsaem.9b01632
10.1021/la3021589
10.1039/D0SC03226C
10.1039/C9TA08418E
10.1039/c0nr00246a
10.1038/s41467-018-07646-4
10.1021/ar500346b
10.1039/D0CP02537B
10.1016/j.chempr.2019.02.014
10.1002/adma.201705851
10.1039/C3TC31993H
10.1016/j.jssc.2003.10.022
10.1007/s12274-017-1437-2
10.1021/ja026143y
10.1002/anie.201601935
10.1126/science.1194975
10.1021/acs.nanolett.6b05062
10.1007/s11665-011-9937-9
10.1016/j.carbon.2011.03.008
10.1038/s41565-018-0298-5
10.1002/cctc.201802019
10.1021/acsami.7b15617
10.1073/pnas.1803576115
10.1002/aenm.201900145
10.1038/381499a0
10.1016/j.nanoen.2019.01.053
10.1039/C8NR02365D
10.1038/s41467-018-04060-8
10.1021/nl200464j
10.1002/celc.201801803
10.1021/acs.nanolett.5b04610
10.1002/anie.201106307
10.1039/b107436a
10.1021/jacs.9b00574
10.1039/c0jm01722a
10.1021/ja00219a048
10.1021/cm500641a
10.1038/s41563-018-0063-z
10.1039/C5TA03087K
10.1016/j.tibtech.2019.09.001
10.1038/s41563-020-0657-0
10.1021/acsnano.8b04614
10.1021/acs.nanolett.7b05403
10.1002/adfm.201907684
10.1038/s41586-019-1175-6
10.1016/j.chempr.2020.02.001
10.1038/s41586-020-2241-9
10.1021/acs.nanolett.5b00284
10.1021/ar400076j
10.1002/advs.201700146
10.1038/s41467-018-04949-4
10.1021/acs.chemmater.6b05092
10.1021/acs.chemmater.0c00648
10.1039/C8TA09338E
10.1039/C8DT04610G
10.1039/C8TA11085A
10.1002/aenm.201900993
10.1021/acs.chemmater.5b02512
10.1021/acsami.0c10183
10.1002/smll.201902085
10.1016/j.apsusc.2019.144538
10.1021/cm504717p
10.1016/j.jpowsour.2019.01.031
10.1038/ncomms14548
10.1149/1.1836155
10.1039/C5TA03394B
10.1016/j.nanoen.2018.07.014
10.1002/adfm.201809261
10.1002/anie.198304121
10.1038/nmat3944
10.1039/C8CS00067K
10.1039/C5CC02585K
10.1038/nenergy.2016.119
10.1016/j.jpowsour.2017.03.138
10.1016/j.jcis.2020.08.097
10.1016/j.ensm.2018.01.009
10.1021/acs.nanolett.5b01013
10.1016/j.jechem.2019.04.018
10.1002/anie.201706426
10.1039/C9TA08086D
10.1038/natrevmats.2016.103
10.1039/C5CS00937E
10.1021/acscatal.0c02310
10.1038/ncomms14424
10.1038/ncomms14283
10.1016/j.joule.2020.03.002
10.1002/aenm.202002354
10.1039/b415041d
10.1002/smll.201702551
10.1038/s41467-017-00467-x
10.1039/D0EE01714K
10.1016/j.clay.2019.04.021
10.1039/C5CS00758E
10.1002/aenm.202003335
10.1039/D0TA08045D
10.1039/C4CS00218K
10.1016/j.nanoen.2020.104539
10.1002/anie.201908982
10.1016/j.jechem.2018.09.001
10.1021/acsenergylett.9b00945
10.1016/j.carbon.2004.09.005
10.1039/b819629j
10.1126/science.192.4244.1126
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202104543
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
Materials Research Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_202104543
ADFM202104543
Genre reviewArticle
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 22072068; 21801139
– fundername: National Key Research and Development Program of China
  funderid: 2016YFB0901500
– fundername: Natural Science Foundation of Jiangsu Province
  funderid: BK20180942
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AAMNL
AASGY
AAYXX
ACBWZ
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LW6
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c3173-1e4e3dfaca3aec71e5e92d2ddcf77ab5bd6e71836c7e6c00edfdec4e3af1618a3
IEDL.DBID 33P
ISSN 1616-301X
IngestDate Thu Nov 21 04:26:07 EST 2024
Thu Nov 21 23:32:15 EST 2024
Sat Aug 24 00:58:31 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 52
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3173-1e4e3dfaca3aec71e5e92d2ddcf77ab5bd6e71836c7e6c00edfdec4e3af1618a3
ORCID 0000-0002-4142-9052
PQID 2612389204
PQPubID 2045204
PageCount 35
ParticipantIDs proquest_journals_2612389204
crossref_primary_10_1002_adfm_202104543
wiley_primary_10_1002_adfm_202104543_ADFM202104543
PublicationCentury 2000
PublicationDate 2021-12-01
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2013; 4
2002; 18
2019; 11
2019; 10
2002; 12
2019; 17
1996; 381
2014; 26
2020; 16
2019; 19
2020; 13
2020; 12
2019; 569
2020; 10
2013; 5
2020; 19
2018; 47
2010; 22
2018; 6
2004; 177
2018; 9
2018; 8
2010; 20
2018; 3
2000; 10
1997; 144
2014; 13
2019; 29
2018; 30
2012; 28
1971; 174
2009; 19
2012; 24
2010; 2
2010; 4
2016; 45
1989; 39
1983; 22
2019; 7
2019; 9
2018; 28
2019; 4
2019; 6
2016; 19
2019; 5
2019; 31
2020; 41
2019; 30
2015; 51
2019; 2
2019; 33
2015; 520
2020; 820
2020; 38
2014; 47
2013; 341
2020; 33
2020; 32
2016; 16
2011; 133
2017; 139
2018; 18
2018; 17
2016; 1
2003; 107
2016; 2
2020; 30
2018; 118
2007; 154
2002; 124
2020; 392
2019; 48
2018; 115
2009; 189
2020; 22
2005; 15
2018; 12
2016; 28
2018; 11
2018; 10
1990; 5
2018; 13
2019; 176
2021; 27
2017; 8
2017; 2
2017; 3
2017; 4
2021; 403
2019; 56
2019; 58
2011; 11
2018; 528
2020; 56
2017; 353
2012; 51
2020; 8
2015; 48
2020; 6
2020; 5
2020; 4
2014; 4
2020; 3
1990; 89
2014; 2
2019; 61
2020; 53
2013; 12
2015; 44
2014; 58
2011; 21
2020; 45
2001; 11
2014; 7
2006; 128
1996; 8
2005; 36
2015; 15
2015; 14
2021; 6
2015; 6
2005; 152
2015; 3
2020; 581
2006; 18
2006; 153
2005; 43
2021; 582
2017; 29
2009; 131
1976; 192
2004; 108
2019; 141
2020; 505
2020; 109
2011; 331
2016; 55
2021; 15
2015; 27
2021; 12
2021; 11
2005; 286
2018; 556
2020; 74
2017; 17
2017; 16
2017; 11
2020; 70
2017; 10
2017; 13
1988; 110
2018; 51
2019; 414
2011; 49
2017; 347
2018; 57
e_1_2_7_3_1
e_1_2_7_104_1
e_1_2_7_127_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_83_1
e_1_2_7_191_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_142_1
e_1_2_7_165_1
e_1_2_7_188_1
e_1_2_7_202_1
e_1_2_7_116_1
e_1_2_7_94_1
e_1_2_7_71_1
e_1_2_7_180_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_56_1
e_1_2_7_79_1
e_1_2_7_131_1
e_1_2_7_154_1
e_1_2_7_177_1
e_1_2_7_139_1
e_1_2_7_4_1
e_1_2_7_128_1
e_1_2_7_105_1
e_1_2_7_82_1
e_1_2_7_120_1
e_1_2_7_192_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_67_1
e_1_2_7_143_1
e_1_2_7_189_1
e_1_2_7_29_1
e_1_2_7_203_1
e_1_2_7_166_1
e_1_2_7_117_1
e_1_2_7_70_1
e_1_2_7_93_1
e_1_2_7_181_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_78_1
e_1_2_7_193_1
e_1_2_7_132_1
e_1_2_7_155_1
e_1_2_7_178_1
e_1_2_7_106_1
e_1_2_7_129_1
e_1_2_7_9_1
e_1_2_7_81_1
e_1_2_7_121_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_170_1
e_1_2_7_89_1
e_1_2_7_182_1
e_1_2_7_28_1
e_1_2_7_144_1
e_1_2_7_167_1
e_1_2_7_204_1
e_1_2_7_118_1
e_1_2_7_110_1
e_1_2_7_92_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_77_1
e_1_2_7_54_1
e_1_2_7_194_1
e_1_2_7_39_1
e_1_2_7_133_1
e_1_2_7_156_1
e_1_2_7_179_1
e_1_2_7_107_1
e_1_2_7_80_1
e_1_2_7_122_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_88_1
e_1_2_7_65_1
e_1_2_7_160_1
e_1_2_7_183_1
e_1_2_7_27_1
e_1_2_7_145_1
e_1_2_7_168_1
e_1_2_7_119_1
e_1_2_7_91_1
e_1_2_7_111_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_76_1
e_1_2_7_99_1
e_1_2_7_172_1
e_1_2_7_195_1
e_1_2_7_38_1
e_1_2_7_134_1
e_1_2_7_157_1
e_1_2_7_108_1
e_1_2_7_7_1
e_1_2_7_100_1
e_1_2_7_123_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_87_1
e_1_2_7_161_1
e_1_2_7_184_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_146_1
e_1_2_7_169_1
e_1_2_7_90_1
e_1_2_7_112_1
e_1_2_7_52_1
e_1_2_7_98_1
e_1_2_7_75_1
e_1_2_7_150_1
e_1_2_7_196_1
e_1_2_7_37_1
e_1_2_7_173_1
e_1_2_7_135_1
e_1_2_7_158_1
e_1_2_7_109_1
e_1_2_7_8_1
e_1_2_7_124_1
e_1_2_7_101_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_63_1
e_1_2_7_86_1
e_1_2_7_185_1
e_1_2_7_48_1
e_1_2_7_162_1
e_1_2_7_147_1
Omwoma S. (e_1_2_7_171_1) 2014; 58
e_1_2_7_113_1
e_1_2_7_51_1
e_1_2_7_74_1
e_1_2_7_97_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_151_1
e_1_2_7_174_1
e_1_2_7_197_1
e_1_2_7_136_1
e_1_2_7_159_1
e_1_2_7_5_1
e_1_2_7_102_1
e_1_2_7_125_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_85_1
e_1_2_7_47_1
Wu Y. (e_1_2_7_72_1) 2016; 28
e_1_2_7_140_1
e_1_2_7_163_1
e_1_2_7_186_1
e_1_2_7_148_1
e_1_2_7_200_1
e_1_2_7_114_1
e_1_2_7_73_1
e_1_2_7_50_1
e_1_2_7_96_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_58_1
e_1_2_7_152_1
e_1_2_7_175_1
e_1_2_7_198_1
e_1_2_7_137_1
e_1_2_7_6_1
e_1_2_7_126_1
e_1_2_7_103_1
e_1_2_7_18_1
e_1_2_7_84_1
e_1_2_7_61_1
e_1_2_7_190_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_69_1
e_1_2_7_141_1
e_1_2_7_201_1
e_1_2_7_164_1
e_1_2_7_187_1
e_1_2_7_149_1
e_1_2_7_115_1
e_1_2_7_95_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_130_1
e_1_2_7_153_1
e_1_2_7_176_1
e_1_2_7_199_1
e_1_2_7_138_1
References_xml – volume: 6
  start-page: 5716
  year: 2015
  publication-title: Nat. Commun.
– volume: 70
  year: 2020
  publication-title: Nano Energy
– volume: 33
  start-page: 100
  year: 2019
  publication-title: J. Energy Chem.
– volume: 6
  start-page: 1553
  year: 2020
  publication-title: ChemNanoMat
– volume: 12
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 5
  start-page: 1703
  year: 1990
  publication-title: J. Mater. Res.
– volume: 15
  start-page: 2180
  year: 2015
  publication-title: Nano Lett.
– volume: 39
  year: 1989
  publication-title: Phys. Rev. B
– volume: 48
  start-page: 1084
  year: 2019
  publication-title: Dalton Trans.
– volume: 11
  year: 2021
  publication-title: Adv. Energy. Mater.
– volume: 4
  start-page: 1227
  year: 2010
  publication-title: ACS Nano
– volume: 16
  start-page: 182
  year: 2017
  publication-title: Nat. Mater.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 58
  start-page: 347
  year: 2019
  publication-title: Nano Energy
– volume: 153
  start-page: A450
  year: 2006
  publication-title: J. Electrochem. Soc.
– volume: 22
  start-page: 412
  year: 1983
  publication-title: Angew. Chem., Int. Ed.
– volume: 56
  start-page: 2921
  year: 2019
  publication-title: Chem. Commun.
– volume: 28
  start-page: 9281
  year: 2016
  publication-title: Adv. Mater.
– volume: 3
  start-page: 2480
  year: 2018
  publication-title: ACS Energy Lett.
– volume: 3
  start-page: 7
  year: 2017
  publication-title: ACS Energy Lett.
– volume: 26
  start-page: 2374
  year: 2014
  publication-title: Chem. Mater.
– volume: 3
  start-page: 428
  year: 2018
  publication-title: Nat. Energy
– volume: 38
  start-page: 264
  year: 2020
  publication-title: Trends Biotechnol.
– volume: 3
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 7
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 9
  start-page: 817
  year: 2018
  publication-title: J. Phys. Chem. Lett.
– volume: 48
  start-page: 1747
  year: 2019
  publication-title: Dalton Trans.
– volume: 28
  start-page: 1517
  year: 2016
  publication-title: Adv. Mater.
– volume: 520
  start-page: 325
  year: 2015
  publication-title: Nature
– volume: 7
  start-page: 2334
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 6
  year: 2020
  publication-title: Sci. Adv.
– volume: 3
  start-page: 562
  year: 2018
  publication-title: ACS Energy Lett.
– volume: 2
  start-page: 2131
  year: 2010
  publication-title: Nanoscale
– volume: 2
  start-page: 682
  year: 2016
  publication-title: Chem. Mater.
– volume: 22
  start-page: 587
  year: 2010
  publication-title: Chem. Mater.
– volume: 2
  year: 2017
  publication-title: Nat. Rev. Mater.
– volume: 528
  start-page: 36
  year: 2018
  publication-title: J. Colloid Interface Sci.
– volume: 4
  start-page: 1733
  year: 2019
  publication-title: ACS Energy Lett.
– volume: 331
  start-page: 568
  year: 2011
  publication-title: Science
– volume: 19
  start-page: 322
  year: 2016
  publication-title: Mater. Today
– volume: 24
  start-page: 2414
  year: 2012
  publication-title: Chem. Mater.
– volume: 108
  year: 2004
  publication-title: J. Phys. Chem. B
– volume: 10
  year: 2000
  publication-title: J. Mater. Chem.
– volume: 174
  start-page: 493
  year: 1971
  publication-title: Science
– volume: 11
  start-page: 3157
  year: 2018
  publication-title: Energy Environ. Sci.
– volume: 13
  start-page: 3993
  year: 2020
  publication-title: Energy Environ. Sci.
– volume: 10
  start-page: 1732
  year: 2017
  publication-title: Nano Res.
– volume: 115
  start-page: 5670
  year: 2018
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 31
  start-page: 8774
  year: 2019
  publication-title: Chem. Mater.
– volume: 133
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 13
  year: 2017
  publication-title: Small
– volume: 5
  start-page: 235
  year: 2020
  publication-title: Nanoscale Horiz.
– volume: 17
  start-page: 384
  year: 2017
  publication-title: Nano Lett.
– volume: 8
  start-page: 2005
  year: 1996
  publication-title: Chem. Mater.
– volume: 74
  year: 2020
  publication-title: Nano Energy
– volume: 21
  start-page: 339
  year: 2011
  publication-title: J. Mater. Eng. Perform.
– volume: 9
  year: 2019
  publication-title: Adv. Energy. Mater.
– volume: 5
  start-page: 263
  year: 2013
  publication-title: Nat. Chem.
– volume: 176
  start-page: 29
  year: 2019
  publication-title: Appl. Clay Sci.
– volume: 43
  start-page: 189
  year: 2005
  publication-title: Carbon
– volume: 27
  start-page: 4249
  year: 2021
  publication-title: Chem. ‐ Eur. J.
– volume: 11
  start-page: 218
  year: 2019
  publication-title: Mater. Today Energy
– volume: 15
  start-page: 6302
  year: 2015
  publication-title: Nano Lett.
– volume: 7
  start-page: 940
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 45
  start-page: 1802
  year: 2020
  publication-title: Int. J. Hydrogen Energy
– volume: 10
  year: 2020
  publication-title: ACS Catal.
– volume: 341
  start-page: 1502
  year: 2013
  publication-title: Science
– volume: 3
  start-page: 279
  year: 2018
  publication-title: Nat. Energy
– volume: 18
  start-page: 1758
  year: 2018
  publication-title: Nano Lett.
– volume: 16
  year: 2020
  publication-title: Small
– volume: 189
  start-page: 1278
  year: 2009
  publication-title: J. Power Sources
– volume: 17
  start-page: 543
  year: 2018
  publication-title: Nat. Mater.
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 1
  year: 2016
  publication-title: Nat. Energy
– volume: 10
  start-page: 737
  year: 2000
  publication-title: J. Mater. Chem.
– volume: 15
  start-page: 2771
  year: 2021
  publication-title: ACS Nano
– volume: 3
  start-page: 221
  year: 2020
  publication-title: Energy Environ. Mater
– volume: 820
  year: 2020
  publication-title: J. Alloys Compd.
– volume: 28
  year: 2012
  publication-title: Langmuir
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 13
  start-page: 168
  year: 2018
  publication-title: Energy Storage Mater.
– volume: 131
  start-page: 6198
  year: 2009
  publication-title: J. Am. Chem. Soc.
– volume: 2
  start-page: 925
  year: 2014
  publication-title: J. Mater. Chem. C
– volume: 6
  start-page: 844
  year: 2021
  publication-title: Nat. Energy
– volume: 53
  start-page: 1660
  year: 2020
  publication-title: Acc. Chem. Res.
– volume: 6
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 18
  start-page: 6186
  year: 2006
  publication-title: Chem. Mater.
– volume: 392
  year: 2020
  publication-title: Chem. Eng. J.
– volume: 58
  start-page: 258
  year: 2014
  publication-title: Coord. Chem. Rev.
– volume: 109
  year: 2020
  publication-title: Prog. Mater. Sci.
– volume: 48
  start-page: 128
  year: 2015
  publication-title: Acc. Chem. Res.
– volume: 56
  start-page: 8392
  year: 2020
  publication-title: Chem. Commun.
– volume: 141
  start-page: 4730
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 1761
  year: 2019
  publication-title: ChemElectroChem
– volume: 4
  start-page: 1716
  year: 2013
  publication-title: Nat. Commun.
– volume: 44
  start-page: 699
  year: 2015
  publication-title: Chem. Soc. Rev.
– volume: 107
  start-page: 9243
  year: 2003
  publication-title: J. Phys. Chem. B
– volume: 6
  start-page: 6544
  year: 2015
  publication-title: Nat. Commun.
– volume: 4
  year: 2017
  publication-title: Adv. Sci.
– volume: 10
  start-page: 696
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 11
  start-page: 1689
  year: 2019
  publication-title: ChemCatChem
– volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 2
  start-page: 8667
  year: 2019
  publication-title: ACS Appl. Energy Mater.
– volume: 47
  start-page: 4981
  year: 2018
  publication-title: Chem. Soc. Rev.
– volume: 15
  start-page: 902
  year: 2005
  publication-title: J. Mater. Chem.
– volume: 569
  start-page: 245
  year: 2019
  publication-title: Nature
– volume: 6
  start-page: 968
  year: 2020
  publication-title: Chem
– volume: 581
  start-page: 171
  year: 2020
  publication-title: Nature.
– volume: 9
  start-page: 1656
  year: 2018
  publication-title: Nat. Commun.
– volume: 18
  start-page: 6071
  year: 2018
  publication-title: Nano Lett.
– volume: 36
  start-page: 925
  year: 2005
  publication-title: J. Raman Spectrosc.
– volume: 13
  start-page: 994
  year: 2018
  publication-title: Nat. Nanotechnol.
– volume: 16
  start-page: 742
  year: 2016
  publication-title: Nano Lett.
– volume: 13
  start-page: 624
  year: 2014
  publication-title: Nat. Mater.
– volume: 51
  start-page: 9265
  year: 2015
  publication-title: Chem. Commun.
– volume: 8
  year: 2017
  publication-title: Nat. Commun.
– volume: 32
  start-page: 3325
  year: 2020
  publication-title: Chem. Mater.
– volume: 9
  start-page: 2906
  year: 2018
  publication-title: Nat. Commun.
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 58
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 3
  start-page: 2602
  year: 2018
  publication-title: ACS Energy Lett.
– volume: 12
  start-page: 559
  year: 2021
  publication-title: Chem. Sci.
– volume: 47
  start-page: 100
  year: 2014
  publication-title: Acc. Chem. Res.
– volume: 7
  start-page: 87
  year: 2014
  publication-title: ChemSusChem
– volume: 286
  start-page: 211
  year: 2005
  publication-title: Appl. Catal., A
– volume: 5
  start-page: 31
  year: 2019
  publication-title: ACS Energy Lett.
– volume: 414
  start-page: 460
  year: 2019
  publication-title: J. Power Sources
– volume: 11
  start-page: 1858
  year: 2001
  publication-title: J. Mater. Chem.
– volume: 353
  start-page: 77
  year: 2017
  publication-title: J. Power Sources
– volume: 556
  start-page: 355
  year: 2018
  publication-title: Nature.
– volume: 19
  start-page: 2526
  year: 2009
  publication-title: J. Mater. Chem.
– volume: 347
  start-page: 193
  year: 2017
  publication-title: J. Power Sources
– volume: 505
  year: 2020
  publication-title: Appl. Surf. Sci.
– volume: 12
  start-page: 74
  year: 2013
  publication-title: Nat. Mater.
– volume: 5
  start-page: 1194
  year: 2019
  publication-title: Chem.
– volume: 11
  start-page: 1218
  year: 2018
  publication-title: Energy Environ. Sci.
– volume: 57
  start-page: 626
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 11
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 61
  start-page: 617
  year: 2019
  publication-title: Nano Energy
– volume: 8
  start-page: 412
  year: 2020
  publication-title: J. Mater. Chem. A
– volume: 5
  start-page: 2842
  year: 2020
  publication-title: ACS Energy Lett.
– volume: 118
  start-page: 6134
  year: 2018
  publication-title: Chem. Rev.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 144
  start-page: 1188
  year: 1997
  publication-title: J. Electrochem. Soc.
– volume: 128
  start-page: 4872
  year: 2006
  publication-title: J. Am. Chem. Soc.
– volume: 152
  start-page: A236
  year: 2005
  publication-title: J. Electrochem. Soc.
– volume: 57
  start-page: 3943
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 51
  start-page: 933
  year: 2012
  publication-title: Angew. Chem., Int. Ed.
– volume: 124
  year: 2002
  publication-title: J. Am. Chem. Soc.
– volume: 381
  start-page: 499
  year: 1996
  publication-title: Nature
– volume: 17
  start-page: 6273
  year: 2017
  publication-title: Nano Lett.
– volume: 18
  start-page: 4926
  year: 2002
  publication-title: Langmuir
– volume: 177
  start-page: 1173
  year: 2004
  publication-title: J. Solid State Chem.
– volume: 11
  start-page: 2459
  year: 2017
  publication-title: ACS Nano
– volume: 11
  start-page: 2032
  year: 2011
  publication-title: Nano Lett.
– volume: 27
  start-page: 3609
  year: 2015
  publication-title: Chem. Mater.
– volume: 49
  start-page: 2809
  year: 2011
  publication-title: Carbon
– volume: 89
  start-page: 372
  year: 1990
  publication-title: J. Solid State Chem.
– volume: 41
  start-page: 100
  year: 2020
  publication-title: J. Energy Chem.
– volume: 582
  start-page: 842
  year: 2021
  publication-title: J. Colloid Interface Sci.
– volume: 45
  start-page: 6742
  year: 2016
  publication-title: Chem. Soc. Rev.
– volume: 51
  start-page: 579
  year: 2018
  publication-title: Nano Energy
– volume: 19
  start-page: 894
  year: 2020
  publication-title: Nat. Mater.
– volume: 3
  start-page: 488
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 29
  start-page: 1684
  year: 2017
  publication-title: Chem. Mater.
– volume: 17
  year: 2019
  publication-title: Small
– volume: 4
  year: 2014
  publication-title: Adv. Energy Mater.
– volume: 10
  start-page: 5203
  year: 2019
  publication-title: Nat. Commun.
– volume: 154
  start-page: A228
  year: 2007
  publication-title: J. Electrochem. Soc.
– volume: 18
  start-page: 2402
  year: 2018
  publication-title: Nano Lett.
– volume: 45
  start-page: 4042
  year: 2016
  publication-title: Chem. Soc. Rev.
– volume: 4
  start-page: 771
  year: 2020
  publication-title: Joule
– volume: 27
  start-page: 5813
  year: 2015
  publication-title: Chem. Mater.
– volume: 22
  year: 2020
  publication-title: Phys. Chem. Chem. Phys.
– volume: 20
  start-page: 9476
  year: 2010
  publication-title: J. Mater. Chem.
– volume: 15
  start-page: 1369
  year: 2005
  publication-title: J. Mater. Chem.
– volume: 19
  start-page: 3199
  year: 2019
  publication-title: Nano Lett.
– volume: 33
  year: 2020
  publication-title: Adv. Mater.
– volume: 110
  start-page: 3653
  year: 1988
  publication-title: J. Am. Chem. Soc.
– volume: 403
  year: 2021
  publication-title: Chem. Eng. J.
– volume: 14
  start-page: 622
  year: 2015
  publication-title: Nat. Mater.
– volume: 10
  year: 2018
  publication-title: Nanoscale
– volume: 8
  start-page: 405
  year: 2017
  publication-title: Nat. Commun.
– volume: 55
  year: 2016
  publication-title: Angew. Chem., Int. Ed.
– volume: 9
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 8
  year: 2020
  publication-title: J. Mater. Chem A
– volume: 192
  start-page: 4244
  year: 1976
  publication-title: Science
– volume: 17
  start-page: 1741
  year: 2017
  publication-title: Nano Lett.
– volume: 12
  start-page: 8670
  year: 2018
  publication-title: ACS Nano
– volume: 30
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 139
  start-page: 9775
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 12
  start-page: 1592
  year: 2002
  publication-title: J. Mater. Chem.
– volume: 28
  start-page: 9281
  year: 2016
  ident: e_1_2_7_72_1
  publication-title: Adv. Mater.
  contributor:
    fullname: Wu Y.
– ident: e_1_2_7_92_1
  doi: 10.1002/adfm.201802564
– ident: e_1_2_7_26_1
  doi: 10.1021/cm301515z
– ident: e_1_2_7_131_1
  doi: 10.1021/acs.nanolett.7b02958
– ident: e_1_2_7_86_1
  doi: 10.1038/nmat3478
– ident: e_1_2_7_59_1
  doi: 10.1149/1.2432056
– ident: e_1_2_7_157_1
  doi: 10.1021/acsnano.0c08630
– ident: e_1_2_7_179_1
  doi: 10.1016/j.apcata.2005.03.009
– ident: e_1_2_7_192_1
  doi: 10.1021/acsenergylett.7b00865
– ident: e_1_2_7_170_1
  doi: 10.1021/ja0584471
– ident: e_1_2_7_106_1
  doi: 10.1002/adma.202001113
– ident: e_1_2_7_113_1
  doi: 10.1021/acs.nanolett.7b04889
– ident: e_1_2_7_58_1
  doi: 10.1149/1.2140678
– ident: e_1_2_7_177_1
  doi: 10.1016/j.ijhydene.2019.11.038
– ident: e_1_2_7_20_1
  doi: 10.1038/nmat4251
– ident: e_1_2_7_79_1
  doi: 10.1039/C8TA06670A
– ident: e_1_2_7_201_1
  doi: 10.1021/acsami.9b03159
– ident: e_1_2_7_82_1
  doi: 10.1039/C7EE03016A
– ident: e_1_2_7_159_1
  doi: 10.1126/science.1241488
– ident: e_1_2_7_200_1
  doi: 10.1126/sciadv.aay4092
– ident: e_1_2_7_23_1
  doi: 10.1016/j.jpowsour.2008.12.148
– ident: e_1_2_7_166_1
  doi: 10.1039/C8TA09600G
– ident: e_1_2_7_190_1
  doi: 10.1021/ja207176c
– ident: e_1_2_7_17_1
  doi: 10.1002/cnma.202000384
– ident: e_1_2_7_111_1
  doi: 10.1039/C9TA07822C
– ident: e_1_2_7_37_1
  doi: 10.1039/C4TA05769D
– ident: e_1_2_7_163_1
  doi: 10.1038/ncomms2664
– ident: e_1_2_7_66_1
  doi: 10.1002/chem.202003987
– ident: e_1_2_7_96_1
  doi: 10.1039/C8EE01651H
– ident: e_1_2_7_128_1
  doi: 10.1039/b100040n
– ident: e_1_2_7_67_1
  doi: 10.1016/j.cej.2020.126314
– ident: e_1_2_7_145_1
  doi: 10.1016/j.nanoen.2020.104891
– ident: e_1_2_7_153_1
  doi: 10.1002/adfm.202005223
– ident: e_1_2_7_28_1
  doi: 10.1021/acs.nanolett.6b04339
– ident: e_1_2_7_46_1
  doi: 10.1039/B414922J
– ident: e_1_2_7_142_1
  doi: 10.1039/C9CC09316H
– ident: e_1_2_7_98_1
  doi: 10.1021/acsenergylett.7b01278
– ident: e_1_2_7_162_1
  doi: 10.1021/acsnano.6b07668
– ident: e_1_2_7_93_1
  doi: 10.1021/acsenergylett.8b01426
– ident: e_1_2_7_80_1
  doi: 10.1002/aenm.201300600
– ident: e_1_2_7_165_1
  doi: 10.1002/adfm.201804306
– ident: e_1_2_7_108_1
  doi: 10.1021/jp048859g
– ident: e_1_2_7_1_1
  doi: 10.1038/nmat4792
– ident: e_1_2_7_105_1
  doi: 10.1016/j.mtener.2018.12.003
– ident: e_1_2_7_71_1
  doi: 10.1038/nature14340
– ident: e_1_2_7_103_1
  doi: 10.1016/j.nanoen.2019.05.005
– ident: e_1_2_7_117_1
  doi: 10.1016/0022-4596(90)90279-7
– ident: e_1_2_7_135_1
  doi: 10.1038/s41560-018-0147-7
– ident: e_1_2_7_65_1
  doi: 10.1038/s41560-018-0108-1
– ident: e_1_2_7_97_1
  doi: 10.1002/aenm.201702463
– ident: e_1_2_7_160_1
  doi: 10.1038/ncomms7544
– ident: e_1_2_7_164_1
  doi: 10.1002/adma.201504705
– ident: e_1_2_7_85_1
  doi: 10.1021/acsenergylett.9b02048
– ident: e_1_2_7_152_1
  doi: 10.1039/C9NH00571D
– ident: e_1_2_7_169_1
  doi: 10.1021/jp030209
– ident: e_1_2_7_125_1
  doi: 10.1038/s41560-021-00865-y
– ident: e_1_2_7_185_1
  doi: 10.1021/acs.chemrev.7b00212
– ident: e_1_2_7_47_1
  doi: 10.1021/acs.jpclett.7b03374
– ident: e_1_2_7_102_1
  doi: 10.1021/acsenergylett.8b01423
– ident: e_1_2_7_132_1
  doi: 10.1021/acs.nanolett.8b03030
– ident: e_1_2_7_191_1
  doi: 10.1002/adfm.201801568
– ident: e_1_2_7_15_1
  doi: 10.1016/j.pmatsci.2019.100631
– ident: e_1_2_7_60_1
  doi: 10.1021/jacs.7b04471
– ident: e_1_2_7_63_1
  doi: 10.1021/cm901452z
– ident: e_1_2_7_138_1
  doi: 10.1002/adma.201802569
– ident: e_1_2_7_22_1
  doi: 10.1021/la011677i
– ident: e_1_2_7_19_1
  doi: 10.1039/D0CC01107J
– ident: e_1_2_7_84_1
  doi: 10.1021/acs.accounts.0c00362
– ident: e_1_2_7_25_1
  doi: 10.1021/nn901689k
– ident: e_1_2_7_35_1
  doi: 10.1039/C8DT04374D
– ident: e_1_2_7_118_1
  doi: 10.1039/b005559j
– ident: e_1_2_7_183_1
  doi: 10.1016/j.jpowsour.2017.02.062
– ident: e_1_2_7_197_1
  doi: 10.1021/acs.nanolett.9b00697
– ident: e_1_2_7_4_1
  doi: 10.1038/s41586-018-0008-3
– ident: e_1_2_7_124_1
  doi: 10.1021/acs.chemmater.5b04605
– ident: e_1_2_7_87_1
  doi: 10.1002/eem2.12131
– ident: e_1_2_7_100_1
  doi: 10.1002/anie.201713291
– ident: e_1_2_7_180_1
  doi: 10.1002/jrs.1385
– ident: e_1_2_7_146_1
  doi: 10.1021/acs.chemmater.9b02568
– ident: e_1_2_7_199_1
  doi: 10.1002/smll.201901901
– ident: e_1_2_7_16_1
  doi: 10.1016/j.cej.2019.123678
– ident: e_1_2_7_38_1
  doi: 10.1021/acsami.9b04583
– ident: e_1_2_7_178_1
  doi: 10.1016/j.jcis.2018.05.075
– ident: e_1_2_7_150_1
  doi: 10.1016/j.jallcom.2019.153135
– ident: e_1_2_7_76_1
  doi: 10.1103/PhysRevB.39.10047
– ident: e_1_2_7_61_1
  doi: 10.1039/C9TA11098D
– ident: e_1_2_7_78_1
  doi: 10.1002/cssc.201300874
– ident: e_1_2_7_172_1
  doi: 10.1002/adma.201907818
– ident: e_1_2_7_6_1
  doi: 10.1021/ja810109g
– ident: e_1_2_7_57_1
  doi: 10.1021/acsenergylett.0c01138
– ident: e_1_2_7_69_1
  doi: 10.1038/ncomms6716
– ident: e_1_2_7_129_1
  doi: 10.1039/a908139i
– ident: e_1_2_7_3_1
  doi: 10.1038/nchem.1589
– ident: e_1_2_7_7_1
  doi: 10.1021/cm0616026
– ident: e_1_2_7_123_1
  doi: 10.1149/1.1837571
– ident: e_1_2_7_49_1
  doi: 10.1126/science.174.4008.493
– ident: e_1_2_7_75_1
  doi: 10.1557/JMR.1990.1703
– ident: e_1_2_7_44_1
  doi: 10.1021/cm960071q
– ident: e_1_2_7_2_1
  doi: 10.1016/j.mattod.2015.11.003
– ident: e_1_2_7_130_1
  doi: 10.1021/acsaem.9b01632
– ident: e_1_2_7_36_1
  doi: 10.1021/la3021589
– ident: e_1_2_7_50_1
  doi: 10.1039/D0SC03226C
– ident: e_1_2_7_148_1
  doi: 10.1039/C9TA08418E
– ident: e_1_2_7_42_1
  doi: 10.1039/c0nr00246a
– ident: e_1_2_7_137_1
  doi: 10.1038/s41467-018-07646-4
– ident: e_1_2_7_11_1
  doi: 10.1021/ar500346b
– ident: e_1_2_7_33_1
  doi: 10.1039/D0CP02537B
– ident: e_1_2_7_101_1
  doi: 10.1016/j.chempr.2019.02.014
– ident: e_1_2_7_14_1
  doi: 10.1002/adma.201705851
– ident: e_1_2_7_27_1
  doi: 10.1039/C3TC31993H
– ident: e_1_2_7_127_1
  doi: 10.1016/j.jssc.2003.10.022
– ident: e_1_2_7_182_1
  doi: 10.1007/s12274-017-1437-2
– ident: e_1_2_7_94_1
  doi: 10.1021/ja026143y
– ident: e_1_2_7_204_1
  doi: 10.1002/anie.201601935
– ident: e_1_2_7_29_1
  doi: 10.1126/science.1194975
– ident: e_1_2_7_54_1
  doi: 10.1021/acs.nanolett.6b05062
– ident: e_1_2_7_77_1
  doi: 10.1007/s11665-011-9937-9
– ident: e_1_2_7_51_1
  doi: 10.1016/j.carbon.2011.03.008
– ident: e_1_2_7_9_1
  doi: 10.1038/s41565-018-0298-5
– ident: e_1_2_7_18_1
  doi: 10.1002/cctc.201802019
– ident: e_1_2_7_10_1
  doi: 10.1021/acsami.7b15617
– ident: e_1_2_7_56_1
  doi: 10.1073/pnas.1803576115
– ident: e_1_2_7_198_1
  doi: 10.1002/aenm.201900145
– ident: e_1_2_7_31_1
  doi: 10.1038/381499a0
– ident: e_1_2_7_109_1
  doi: 10.1016/j.nanoen.2019.01.053
– ident: e_1_2_7_194_1
  doi: 10.1039/C8NR02365D
– ident: e_1_2_7_112_1
  doi: 10.1038/s41467-018-04060-8
– ident: e_1_2_7_30_1
  doi: 10.1021/nl200464j
– ident: e_1_2_7_45_1
  doi: 10.1002/celc.201801803
– ident: e_1_2_7_134_1
  doi: 10.1021/acs.nanolett.5b04610
– ident: e_1_2_7_89_1
  doi: 10.1002/anie.201106307
– ident: e_1_2_7_34_1
  doi: 10.1021/ja0584471
– ident: e_1_2_7_40_1
  doi: 10.1039/b107436a
– ident: e_1_2_7_156_1
  doi: 10.1021/jacs.9b00574
– ident: e_1_2_7_175_1
  doi: 10.1039/c0jm01722a
– ident: e_1_2_7_176_1
  doi: 10.1021/ja00219a048
– ident: e_1_2_7_155_1
  doi: 10.1021/cm500641a
– ident: e_1_2_7_90_1
  doi: 10.1038/s41563-018-0063-z
– ident: e_1_2_7_81_1
  doi: 10.1039/C5TA03087K
– ident: e_1_2_7_151_1
  doi: 10.1016/j.tibtech.2019.09.001
– ident: e_1_2_7_158_1
  doi: 10.1038/s41563-020-0657-0
– ident: e_1_2_7_167_1
  doi: 10.1021/acsnano.8b04614
– ident: e_1_2_7_114_1
  doi: 10.1021/acs.nanolett.7b05403
– ident: e_1_2_7_104_1
  doi: 10.1002/adfm.201907684
– ident: e_1_2_7_83_1
  doi: 10.1038/s41586-019-1175-6
– ident: e_1_2_7_121_1
  doi: 10.1016/j.chempr.2020.02.001
– ident: e_1_2_7_12_1
  doi: 10.1038/s41586-020-2241-9
– ident: e_1_2_7_21_1
  doi: 10.1021/acs.nanolett.5b00284
– ident: e_1_2_7_136_1
  doi: 10.1021/ar400076j
– ident: e_1_2_7_74_1
  doi: 10.1002/advs.201700146
– ident: e_1_2_7_39_1
  doi: 10.1038/s41467-018-04949-4
– ident: e_1_2_7_202_1
  doi: 10.1021/acs.chemmater.6b05092
– ident: e_1_2_7_203_1
  doi: 10.1021/acs.chemmater.0c00648
– ident: e_1_2_7_120_1
  doi: 10.1039/C8TA09338E
– ident: e_1_2_7_168_1
  doi: 10.1039/C8DT04610G
– ident: e_1_2_7_195_1
  doi: 10.1039/C8TA11085A
– ident: e_1_2_7_53_1
  doi: 10.1002/aenm.201900993
– ident: e_1_2_7_41_1
  doi: 10.1021/acs.chemmater.5b02512
– ident: e_1_2_7_43_1
  doi: 10.1021/acsami.0c10183
– ident: e_1_2_7_154_1
  doi: 10.1002/smll.201902085
– ident: e_1_2_7_161_1
  doi: 10.1016/j.apsusc.2019.144538
– ident: e_1_2_7_140_1
  doi: 10.1021/cm504717p
– ident: e_1_2_7_122_1
  doi: 10.1016/j.jpowsour.2019.01.031
– ident: e_1_2_7_193_1
  doi: 10.1038/ncomms14548
– ident: e_1_2_7_95_1
  doi: 10.1149/1.1836155
– ident: e_1_2_7_181_1
  doi: 10.1039/C5TA03394B
– ident: e_1_2_7_116_1
  doi: 10.1016/j.nanoen.2018.07.014
– ident: e_1_2_7_187_1
  doi: 10.1002/adfm.201809261
– ident: e_1_2_7_126_1
  doi: 10.1002/anie.198304121
– ident: e_1_2_7_24_1
  doi: 10.1038/nmat3944
– ident: e_1_2_7_189_1
  doi: 10.1039/C8CS00067K
– ident: e_1_2_7_55_1
  doi: 10.1039/C5CC02585K
– ident: e_1_2_7_99_1
  doi: 10.1038/nenergy.2016.119
– ident: e_1_2_7_149_1
  doi: 10.1016/j.jpowsour.2017.03.138
– ident: e_1_2_7_184_1
  doi: 10.1016/j.jcis.2020.08.097
– ident: e_1_2_7_115_1
  doi: 10.1016/j.ensm.2018.01.009
– ident: e_1_2_7_48_1
  doi: 10.1021/acs.nanolett.5b01013
– ident: e_1_2_7_68_1
  doi: 10.1016/j.jechem.2019.04.018
– ident: e_1_2_7_188_1
  doi: 10.1002/anie.201706426
– ident: e_1_2_7_107_1
  doi: 10.1039/C9TA08086D
– ident: e_1_2_7_64_1
  doi: 10.1038/natrevmats.2016.103
– ident: e_1_2_7_5_1
  doi: 10.1039/C5CS00937E
– ident: e_1_2_7_144_1
  doi: 10.1021/acscatal.0c02310
– ident: e_1_2_7_147_1
  doi: 10.1038/ncomms14424
– ident: e_1_2_7_73_1
  doi: 10.1038/ncomms14283
– ident: e_1_2_7_88_1
  doi: 10.1016/j.joule.2020.03.002
– ident: e_1_2_7_91_1
  doi: 10.1002/aenm.202002354
– ident: e_1_2_7_110_1
  doi: 10.1039/b415041d
– ident: e_1_2_7_119_1
  doi: 10.1002/smll.201702551
– ident: e_1_2_7_141_1
  doi: 10.1038/s41467-017-00467-x
– ident: e_1_2_7_174_1
  doi: 10.1039/D0EE01714K
– ident: e_1_2_7_32_1
  doi: 10.1016/j.clay.2019.04.021
– volume: 58
  start-page: 258
  year: 2014
  ident: e_1_2_7_171_1
  publication-title: Coord. Chem. Rev.
  contributor:
    fullname: Omwoma S.
– ident: e_1_2_7_13_1
  doi: 10.1039/C5CS00758E
– ident: e_1_2_7_62_1
  doi: 10.1002/aenm.202003335
– ident: e_1_2_7_173_1
  doi: 10.1039/D0TA08045D
– ident: e_1_2_7_139_1
  doi: 10.1039/C4CS00218K
– ident: e_1_2_7_143_1
  doi: 10.1016/j.nanoen.2020.104539
– ident: e_1_2_7_133_1
  doi: 10.1002/anie.201908982
– ident: e_1_2_7_186_1
  doi: 10.1016/j.jechem.2018.09.001
– ident: e_1_2_7_196_1
  doi: 10.1021/acsenergylett.9b00945
– ident: e_1_2_7_70_1
  doi: 10.1016/j.carbon.2004.09.005
– ident: e_1_2_7_8_1
  doi: 10.1039/b819629j
– ident: e_1_2_7_52_1
  doi: 10.1126/science.192.4244.1126
SSID ssj0017734
Score 2.5837872
Snippet Layered materials have received extensive attention for widespread applications such as energy storage and conversion, catalysis, and ion transport owing to...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Publisher
SubjectTerms Catalysis
Charge transport
Chemical reactions
Conversion
Diffusion layers
Diffusion rate
electrochemical performance
Energy storage
guest species
Intercalation
Interlayers
Ion diffusion
Ion transport
Layered materials
Materials science
Title Regulating Intercalation of Layered Compounds for Electrochemical Energy Storage and Electrocatalysis
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202104543
https://www.proquest.com/docview/2612389204
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagEwy8EYWCPCAxRU1sJ07GiqbqAAhRkLpFfo4pIu3Av8dnp2k7IcEWS7Fl-ey7z4_7PoTuhRAsl5JFuShAwsymkdQxj9JCMqUNia2X85nO-Ms8H5dAk9Nl8Qd-iO7ADVaG99ewwIVshhvSUKEtZJK7LQtLGdB9uq2Cz-Ggr901AufhWjlL4IFXMl-zNsZkuFt9NyptoOY2YPURZ3L8_76eoKMWbeJRmB6naM_UZ-hwi4PwHJm3oEbvCtgfDzqjeWvhhcVP4hu0PDF4DdBfarDDuLgM0jmq5RrApc8fxDO3fXfeCYtad7_A4RBwnlygj0n5_jiNWu2FSDlEQaPEMEO1FUpQYRRPTGoKoonWynIuZCp1ZlxYo5niJlNxbLTVRrk6wgIFv6CXqFcvanOFcMK10VwqXjg8kFHm2iMs15bSxMFPKvroYT321Weg2KgCmTKpYOCqbuD6aLA2TdUutaYCDjSHukjM-oh4I_zSSjUaT5670vVfKt2gA_gOz1oGqLf8WplbtN_o1Z2fgD8AqN0L
link.rule.ids 315,782,786,1408,27933,27934,46064,46488
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwED7RMgADb0ShgAckpqhJ7MTJWEGqItoK0SJ1ixw_xhRROvDv8eXVdkJCjLZyVuTz4_PZ930A90IIFmUZcyIRo4SZCZxMudwJ4oxJpX3XFHI-wymfzKOnBGly-nUuTMkP0QTccGYU6zVOcAxI99asoUIZTCW3ZxYWMNqCXRba0YhZHPS1uUjgvLxYDj184uXNa95G1-9t22_vS2uwuQlZiz1ncPQPf3sMhxXgJP1yhJzAjs5P4WCDhvAM9FspSG8LpIgQWr8VDiMLQ0biG-U8CS4cKMG0JBbmkqRUz5EV3QBJihRCMrUneLtAEZGr5hOMDyHtyTm8D5LZ49Cp5BccaUEFdTzNNFVGSEGFltzTgY595SslDeciCzIVaruz0VByHUrX1cooLa2NMMjCL-gFtPNFri-BeFxpxTPJYwsJQspsez6LlKHUswiUig481J2ffpQsG2nJp-yn2HFp03Ed6Na-SavZtkyRBs0CL99lHfALL_zSStp_Goyb0tVfjO5gbzgbj9LR8-TlGvaxvnzl0oX21-dK30BrqVa3xWj8AQX-4TM
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFH_oBNGD3-J0ag6Cp7I2SZv2OFzLxDmGU9gtpPk4dsO5g_-9Sdt120nQY0ITSl7y3i8f7_cDeBBC0DjPqReLxEmYmdDLlc-8MMmpVBr7ppTzGUzYaBr3U0eT02TxV_wQzYGbWxmlv3YLfK5Md00aKpRxmeR2y0JDSnZhj1os7tjzCRk39wiMVffKUeBeeAXTFW2jj7vb7bfD0hprbiLWMuRkx___2RM4quEm6lXz4xR2dHEGhxskhOeg3yo5eltA5fmgtVppLjQzaCi-nZgncm7DCTAtkAW5KK20c2RNNoDSMoEQTez-3bonJArVfOJOhxzpyQV8ZOn708CrxRc8aSEF8QJNNVFGSEGElizQoU6wwkpJw5jIw1xF2sY1EkmmI-n7WhmlpW0jjOPgF-QSWsWs0FeAAqa0YrlkiQUEEaG2P0xjZQgJLP4kog2Pq7Hn84pjg1dsypi7gePNwLWhszINr9fagjsSNAu7sE_bgEsj_NIL7_Wz16Z0_ZdG97A_7md8-Dx6uYEDV109celA6-tzqW9hd6GWd-Vc_AFgxN_Z
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regulating+Intercalation+of+Layered+Compounds+for+Electrochemical+Energy+Storage+and+Electrocatalysis&rft.jtitle=Advanced+functional+materials&rft.au=Yang%2C+Beibei&rft.au=Tamirat%2C+Andebet+Gedamu&rft.au=Bin%2C+Duan&rft.au=Yao%2C+Yong&rft.date=2021-12-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=31&rft.issue=52&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.202104543&rft.externalDBID=10.1002%252Fadfm.202104543&rft.externalDocID=ADFM202104543
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon