Phenotypic analyses, protein localization, and bacteriostatic activity of Drosophila melanogaster transferrin-1
Transferrin-1 (Tsf1) is an extracellular insect protein with a high affinity for iron. The functions of Tsf1 are still poorly understood; however, Drosophila melanogaster Tsf1 has been shown to influence iron distribution in the fly body and to protect flies against some infections. The goal of this...
Saved in:
Published in: | Insect biochemistry and molecular biology Vol. 147; p. 103811 |
---|---|
Main Authors: | , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
England
01-08-2022
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Transferrin-1 (Tsf1) is an extracellular insect protein with a high affinity for iron. The functions of Tsf1 are still poorly understood; however, Drosophila melanogaster Tsf1 has been shown to influence iron distribution in the fly body and to protect flies against some infections. The goal of this study was to better understand the physiological functions of Tsf1 in D. melanogaster by 1) investigating Tsf1 null phenotypes, 2) determining tissue-specific localization of Tsf1, 3) measuring the concentration of Tsf1 in hemolymph, 4) testing Tsf1 for bacteriostatic activity, and 5) evaluating the effect of metal and paraquat treatments on Tsf1 abundance. Flies lacking Tsf1 had more iron than wild-type flies in specialized midgut cells that take up iron from the diet; however, the absence of Tsf1 had no effect on the iron content of whole midguts, fat body, hemolymph, or heads. Thus, as previous studies have suggested, Tsf1 appears to have a minor role in iron transport. Tsf1 was abundant in hemolymph from larvae (0.4 μM), pupae (1.4 μM), adult females (4.4 μM) and adult males (22 μM). Apo-Tsf1 at 1 μM had bacteriostatic activity whereas holo-Tsf1 did not, suggesting that Tsf1 can inhibit microbial growth by sequestering iron in hemolymph and other extracellular environments. This hypothesis was supported by detection of secreted Tsf1 in tracheae, testes and seminal vesicles. Colocalization of Tsf1 with an endosome marker in oocytes suggested that Tsf1 may provide iron to developing eggs; however, eggs from mothers lacking Tsf1 had the same amount of iron as control eggs, and they hatched at a wild-type rate. Thus, the primary function of Tsf1 uptake by oocytes may be to defend against infection rather than to provide eggs with iron. In beetles, Tsf1 plays a role in protection against oxidative stress. In contrast, we found that flies lacking Tsf1 had a typical life span and greater resistance to paraquat-induced oxidative stress. In addition, Tsf1 abundance remained unchanged in response to ingestion of iron, cadmium or paraquat or to injection of iron. These results suggest that Tsf1 has a limited role in protection against oxidative stress in D. melanogaster. |
---|---|
AbstractList | Transferrin-1 (Tsf1) is an extracellular insect protein with a high affinity for iron. The functions of Tsf1 are still poorly understood; however, Drosophila melanogaster Tsf1 has been shown to influence iron distribution in the fly body and to protect flies against some infections. The goal of this study was to better understand the physiological functions of Tsf1 in D. melanogaster by 1) investigating Tsf1 null phenotypes, 2) determining tissue-specific localization of Tsf1, 3) measuring the concentration of Tsf1 in hemolymph, 4) testing Tsf1 for bacteriostatic activity, and 5) evaluating the effect of metal and paraquat treatments on Tsf1 abundance. Flies lacking Tsf1 had more iron than wild-type flies in specialized midgut cells that take up iron from the diet; however, the absence of Tsf1 had no effect on the iron content of whole midguts, fat body, hemolymph, or heads. Thus, as previous studies have suggested, Tsf1 appears to have a minor role in iron transport. Tsf1 was abundant in hemolymph from larvae (0.4 μM), pupae (1.4 μM), adult females (4.4 μM) and adult males (22 μM). Apo-Tsf1 at 1 μM had bacteriostatic activity whereas holo-Tsf1 did not, suggesting that Tsf1 can inhibit microbial growth by sequestering iron in hemolymph and other extracellular environments. This hypothesis was supported by detection of secreted Tsf1 in tracheae, testes and seminal vesicles. Colocalization of Tsf1 with an endosome marker in oocytes suggested that Tsf1 may provide iron to developing eggs; however, eggs from mothers lacking Tsf1 had the same amount of iron as control eggs, and they hatched at a wild-type rate. Thus, the primary function of Tsf1 uptake by oocytes may be to defend against infection rather than to provide eggs with iron. In beetles, Tsf1 plays a role in protection against oxidative stress. In contrast, we found that flies lacking Tsf1 had a typical life span and greater resistance to paraquat-induced oxidative stress. In addition, Tsf1 abundance remained unchanged in response to ingestion of iron, cadmium or paraquat or to injection of iron. These results suggest that Tsf1 has a limited role in protection against oxidative stress in D. melanogaster. Transferrin-1 (Tsf1) is an extracellular insect protein with a high affinity for iron. The functions of Tsf1 are still poorly understood; however, Drosophila melanogaster Tsf1 has been shown to influence iron distribution in the fly body and to protect flies against some infections. The goal of this study was to better understand the physiological functions of Tsf1 in D. melanogaster by 1) investigating Tsf1 null phenotypes, 2) determining tissue-specific localization of Tsf1, 3) measuring the concentration of Tsf1 in hemolymph, 4) testing Tsf1 for bacteriostatic activity, and 5) evaluating the effect of metal and paraquat treatments on Tsf1 abundance. Flies lacking Tsf1 had more iron than wild-type flies in specialized midgut cells that take up iron from the diet; however, the absence of Tsf1 had no effect on the iron content of whole midguts, fat body, hemolymph, or heads. Thus, as previous studies have suggested, Tsf1 appears to have a minor role in iron transport. Tsf1 was abundant in hemolymph from larvae (0.4 μM), pupae (1.4 μM), adult females (4.4 μM) and adult males (22 μM). Apo-Tsf1 at 1 μM had bacteriostatic activity whereas holo-Tsf1 did not, suggesting that Tsf1 can inhibit microbial growth by sequestering iron in hemolymph and other extracellular environments. This hypothesis was supported by detection of secreted Tsf1 in tracheae, testes and seminal vesicles. Colocalization of Tsf1 with an endosome marker in oocytes suggested that Tsf1 may provide iron to developing eggs; however, eggs from mothers lacking Tsf1 had the same amount of iron as control eggs, and they hatched at a wild-type rate. Thus, the primary function of Tsf1 uptake by oocytes may be to defend against infection rather than to provide eggs with iron. In beetles, Tsf1 plays a role in protection against oxidative stress. In contrast, we found that flies lacking Tsf1 had a typical life span and greater resistance to paraquat-induced oxidative stress. In addition, Tsf1 abundance remained unchanged in response to ingestion of iron, cadmium or paraquat or to injection of iron. These results suggest that Tsf1 has a limited role in protection against oxidative stress in D. melanogaster.Transferrin-1 (Tsf1) is an extracellular insect protein with a high affinity for iron. The functions of Tsf1 are still poorly understood; however, Drosophila melanogaster Tsf1 has been shown to influence iron distribution in the fly body and to protect flies against some infections. The goal of this study was to better understand the physiological functions of Tsf1 in D. melanogaster by 1) investigating Tsf1 null phenotypes, 2) determining tissue-specific localization of Tsf1, 3) measuring the concentration of Tsf1 in hemolymph, 4) testing Tsf1 for bacteriostatic activity, and 5) evaluating the effect of metal and paraquat treatments on Tsf1 abundance. Flies lacking Tsf1 had more iron than wild-type flies in specialized midgut cells that take up iron from the diet; however, the absence of Tsf1 had no effect on the iron content of whole midguts, fat body, hemolymph, or heads. Thus, as previous studies have suggested, Tsf1 appears to have a minor role in iron transport. Tsf1 was abundant in hemolymph from larvae (0.4 μM), pupae (1.4 μM), adult females (4.4 μM) and adult males (22 μM). Apo-Tsf1 at 1 μM had bacteriostatic activity whereas holo-Tsf1 did not, suggesting that Tsf1 can inhibit microbial growth by sequestering iron in hemolymph and other extracellular environments. This hypothesis was supported by detection of secreted Tsf1 in tracheae, testes and seminal vesicles. Colocalization of Tsf1 with an endosome marker in oocytes suggested that Tsf1 may provide iron to developing eggs; however, eggs from mothers lacking Tsf1 had the same amount of iron as control eggs, and they hatched at a wild-type rate. Thus, the primary function of Tsf1 uptake by oocytes may be to defend against infection rather than to provide eggs with iron. In beetles, Tsf1 plays a role in protection against oxidative stress. In contrast, we found that flies lacking Tsf1 had a typical life span and greater resistance to paraquat-induced oxidative stress. In addition, Tsf1 abundance remained unchanged in response to ingestion of iron, cadmium or paraquat or to injection of iron. These results suggest that Tsf1 has a limited role in protection against oxidative stress in D. melanogaster. Transferrin-1 (Tsf1) is an extracellular insect protein with a high affinity for iron. The functions of Tsf1 are still poorly understood; however, Drosophila melanogaster Tsf1 has been shown to influence iron distribution in the fly body and to protect flies against some infections. The goal of this study was to better understand the physiological functions of Tsf1 in D. melanogaster by 1) investigating Tsf1 null phenotypes, 2) determining tissue-specific localization of Tsf1, 3) measuring the concentration of Tsf1 in hemolymph, 4) testing Tsf1 for bacteriostatic activity, and 5) evaluating the effect of metal and paraquat treatments on Tsf1 abundance. Flies lacking Tsf1 had more iron than wild-type flies in specialized midgut cells that take up iron from the diet; however, the absence of Tsf1 had no effect on the iron content of whole midguts, fat body, hemolymph, or heads. Thus, as previous studies have suggested, Tsf1 appears to have a minor role in iron transport. Tsf1 was abundant in hemolymph from larvae (0.4 μM), pupae (1.4 μM), adult females (4.4 μM) and adult males (22 μM). Apo-Tsf1 at 1 μM had bacteriostatic activity whereas holo-Tsf1 did not, suggesting that Tsf1 can inhibit microbial growth by sequestering iron in hemolymph and other extracellular environments. This hypothesis was supported by detection of secreted Tsf1 in tracheae, testes and seminal vesicles. Colocalization of Tsf1 with an endosome marker in oocytes suggested that Tsf1 may provide iron to developing eggs; however, eggs from mothers lacking Tsf1 had the same amount of iron as control eggs, and they hatched at a wild-type rate. Thus, the primary function of Tsf1 uptake by oocytes may be to defend against infection rather than to provide eggs with iron. In beetles, Tsf1 plays a role in protection against oxidative stress. In contrast, we found that flies lacking Tsf1 had a typical life span and greater resistance to paraquat-induced oxidative stress. In addition, Tsf1 abundance remained unchanged in response to ingestion of iron, cadmium or paraquat or to injection of iron. These results suggest that Tsf1 has a limited role in protection against oxidative stress in D. melanogaster . |
ArticleNumber | 103811 |
Author | Weber, Jacob J Tabunoki, Hiroko Kanost, Michael R Coca, Michelle E Park, Yoonseong Brummett, Lisa M Gorman, Maureen J Ragan, Emily J |
AuthorAffiliation | c Department of Chemistry and Biochemistry, Metropolitan State University of Denver, Denver, Colorado, 80217, U.S.A b Department of Science of Biological Production, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan d Department of Entomology, Kansas State University, Manhattan, Kansas, 66506, U.S.A a Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas, 66506, U.S.A |
AuthorAffiliation_xml | – name: a Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas, 66506, U.S.A – name: b Department of Science of Biological Production, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan – name: d Department of Entomology, Kansas State University, Manhattan, Kansas, 66506, U.S.A – name: c Department of Chemistry and Biochemistry, Metropolitan State University of Denver, Denver, Colorado, 80217, U.S.A |
Author_xml | – sequence: 1 givenname: Jacob J surname: Weber fullname: Weber, Jacob J email: jjweber@ksu.edu organization: Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA. Electronic address: jjweber@ksu.edu – sequence: 2 givenname: Lisa M surname: Brummett fullname: Brummett, Lisa M email: lmbrumme@ksu.edu organization: Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA. Electronic address: lmbrumme@ksu.edu – sequence: 3 givenname: Michelle E surname: Coca fullname: Coca, Michelle E email: mcmora@ksu.edu organization: Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA. Electronic address: mcmora@ksu.edu – sequence: 4 givenname: Hiroko surname: Tabunoki fullname: Tabunoki, Hiroko email: h_tabuno@cc.tuat.ac.jp organization: Department of Science of Biological Production, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan. Electronic address: h_tabuno@cc.tuat.ac.jp – sequence: 5 givenname: Michael R surname: Kanost fullname: Kanost, Michael R email: kanost@ksu.edu organization: Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA. Electronic address: kanost@ksu.edu – sequence: 6 givenname: Emily J surname: Ragan fullname: Ragan, Emily J email: eragan@msudenver.edu organization: Department of Chemistry and Biochemistry, Metropolitan State University of Denver, Denver, CO, 80217, USA. Electronic address: eragan@msudenver.edu – sequence: 7 givenname: Yoonseong surname: Park fullname: Park, Yoonseong email: ypark@ksu.edu organization: Department of Entomology, Kansas State University, Manhattan, KS, 66506, USA. Electronic address: ypark@ksu.edu – sequence: 8 givenname: Maureen J surname: Gorman fullname: Gorman, Maureen J email: mgorman@ksu.edu organization: Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA. Electronic address: mgorman@ksu.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35781032$$D View this record in MEDLINE/PubMed |
BookMark | eNpVkUtLLDEQhYMoOj7-gAvppQt7zLuTjSA-7hUEXeg6pNNpJ0N30iYZYfz1ZhiVe1cFVeecquQ7BLs-eAvAKYJzBBG_XM5dO7ZzDDEuDSIQ2gEzJBpZQ0zhLphByVmNGioOwGFKSwghpazZBweENaI48AyE54X1Ia8nZyrt9bBONl1UUwzZOl8NwejBfersgr8o865qtck2upByaRaLye7D5XUV-uo2hhSmhRt0NdpB-_CmU9FWOWqfehuj8zU6Bnu9HpI9-a5H4PX-7uXmb_349Ofh5vqxNgQ1qNa0JailVmJuSIcN6gRnfU86gRvRScZ7AqEkDErUd9TwjjRMc01wwylnFJIjcLXNnVbtaDtjfTljUFN0o45rFbRT_0-8W6i38KGk4JILWQLOvwNieF_ZlNXokrFDeZgNq6QwFwxSyJgoUryVmvIDKdr-dw2CakNKLdWGlNqQUltSxXT274G_lh805AvgjZS2 |
CitedBy_id | crossref_primary_10_1016_j_bcmd_2023_102777 crossref_primary_10_1371_journal_pbio_3002328 crossref_primary_10_1016_j_lfs_2023_122328 crossref_primary_10_1038_s41467_024_48165_9 crossref_primary_10_1016_j_ibmb_2024_104109 |
Cites_doi | 10.4161/intv.23889 10.2174/138161207780363095 10.1371/journal.pone.0079021 10.1007/s00251-014-0798-x 10.1523/JNEUROSCI.0459-11.2011 10.1038/nature09715 10.1016/j.parint.2014.12.005 10.1093/ajcp/96.2.215 10.1101/gr.213694.116 10.7554/eLife.01699 10.1371/journal.pone.0123671 10.1194/jlr.RA119000198 10.7554/eLife.03191 10.1073/pnas.1914830117 10.1111/j.1432-1033.1995.tb20254.x 10.3390/ijms18071456 10.1046/j.1432-1327.1999.00173.x 10.1016/j.bbrc.2020.07.025 10.1039/d0mt00065e 10.1128/MCB.23.1.178-185.2003 10.1016/j.jinsphys.2007.06.009 10.1038/sj.emboj.7601735 10.1016/j.bbagen.2011.08.004 10.1186/s12864-015-2327-1 10.1016/j.cois.2021.12.004 10.1016/j.cbpb.2008.02.009 10.1038/cr.2010.102 10.1242/dev.66.1.57 10.1016/0040-8166(90)90042-8 10.1016/j.gde.2009.08.006 10.1038/nature11133 10.1016/j.bbagen.2011.08.003 10.1139/o01-153 10.1111/1744-7917.12783 10.1186/s13104-018-4041-y 10.1039/C8MT00015H 10.1016/j.ijpara.2007.06.004 10.1016/j.bbagen.2010.03.004 10.1016/S0021-9258(19)62337-9 10.1016/j.cbd.2015.11.002 10.1074/mcp.M300114-MCP200 10.1371/journal.pgen.1006907 10.3389/fphar.2014.00113 10.1039/c0mt00043d 10.1007/BF00695327 10.1093/nar/gkx976 10.1038/7727 10.1534/genetics.118.300224 10.1038/nature12962 10.1080/13102818.2004.10817097 10.1534/genetics.119.302964 10.1021/pr5000957 10.1016/S0300-483X(03)00159-8 10.1073/pnas.1208703109 10.1111/imb.12007 10.1023/B:BIOM.0000027691.86757.e2 10.1007/s12035-014-9003-3 10.1002/(SICI)1520-6327(200005)44:1<17::AID-ARCH3>3.0.CO;2-O 10.1096/fj.12-213595 10.1016/j.bbagen.2011.10.013 10.1016/j.imbio.2006.02.004 10.1016/S0021-9258(19)49647-6 10.1016/j.celrep.2018.12.053 10.1038/nature05954 10.3390/nu5051622 10.1371/journal.ppat.1009270 10.1111/j.1365-2583.2010.01014.x 10.1016/j.bbagen.2011.06.002 10.1007/s00018-009-0051-1 10.1002/iub.1211 10.1074/jbc.M114.599597 10.1093/femsml/uqab008 10.1016/j.biochi.2009.05.003 10.1002/biof.1148 10.1016/j.bbagen.2011.07.011 10.3389/fphys.2017.01134 10.1073/pnas.84.7.1769 10.1073/pnas.94.23.12337 10.1534/genetics.117.300077 10.1016/j.ibmb.2020.103438 10.1021/acs.jafc.8b02505 10.1016/j.bbamcr.2019.118535 10.1016/j.ibmb.2016.12.006 10.1534/genetics.107.075150 10.1016/0005-2795(72)90283-8 10.1021/bi00415a061 10.1016/j.freeradbiomed.2006.07.001 10.1128/jb.119.3.736-747.1974 |
ContentType | Journal Article |
Copyright | Copyright © 2022 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: Copyright © 2022 Elsevier Ltd. All rights reserved. |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 5PM |
DOI | 10.1016/j.ibmb.2022.103811 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Zoology |
EISSN | 1879-0240 |
EndPage | 103811 |
ExternalDocumentID | 10_1016_j_ibmb_2022_103811 35781032 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R37 GM041247 – fundername: NHGRI NIH HHS grantid: P41 HG000739 – fundername: NIH HHS grantid: P40 OD010949 – fundername: NIH HHS grantid: P40 OD018537 – fundername: NIGMS NIH HHS grantid: R01 GM041247 – fundername: NIGMS NIH HHS grantid: R35 GM141859 – fundername: NHGRI NIH HHS grantid: U41 HG000739 |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29I 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM AACTN AAEDT AAEDW AAHBH AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXKI AAXUO ABFNM ABGRD ABGSF ABJNI ABMAC ABUDA ABXDB ACDAQ ACGFS ACIUM ACRLP ADBBV ADEZE ADMUD ADQTV ADUVX AEBSH AEHWI AEKER AENEX AEQOU AFJKZ AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CGR CS3 CUY CVF DU5 EBS ECM EFJIC EIF EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HLW HVGLF HZ~ IHE J1W KOM LW9 LX3 M41 MO0 N9A NPM O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SBG SDF SDG SES SEW SPCBC SSA SSU SSZ T5K UHS WH7 WUQ Y6R ~G- ~KM AAYXX CITATION 7X8 5PM |
ID | FETCH-LOGICAL-c3171-a4b31b4e926c3d2c1d865ff3d8278d956f300935091fd4c6d375a6a3276465403 |
ISSN | 0965-1748 1879-0240 |
IngestDate | Tue Sep 17 21:31:00 EDT 2024 Sat Oct 26 03:55:27 EDT 2024 Thu Sep 26 15:26:15 EDT 2024 Sat Nov 02 12:29:23 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Hemolymph Oxidative stress Transferrin Iron Immunity Insect |
Language | English |
License | Copyright © 2022 Elsevier Ltd. All rights reserved. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3171-a4b31b4e926c3d2c1d865ff3d8278d956f300935091fd4c6d375a6a3276465403 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-2005-6223 0000-0003-1823-9952 |
OpenAccessLink | http://manuscript.elsevier.com/S0965174822000935/pdf/S0965174822000935.pdf |
PMID | 35781032 |
PQID | 2685040558 |
PQPubID | 23479 |
PageCount | 1 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9869689 proquest_miscellaneous_2685040558 crossref_primary_10_1016_j_ibmb_2022_103811 pubmed_primary_35781032 |
PublicationCentury | 2000 |
PublicationDate | 2022-08-01 |
PublicationDateYYYYMMDD | 2022-08-01 |
PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Insect biochemistry and molecular biology |
PublicationTitleAlternate | Insect Biochem Mol Biol |
PublicationYear | 2022 |
References | Bailey (10.1016/j.ibmb.2022.103811_bib7) 1988; 27 Iatsenko (10.1016/j.ibmb.2022.103811_bib40) 2020; 117 Zhou (10.1016/j.ibmb.2022.103811_bib93) 2017; 13 Anderson (10.1016/j.ibmb.2022.103811_bib3) 1987; 84 Zhang (10.1016/j.ibmb.2022.103811_bib90) 2014; 289 Weinberg (10.1016/j.ibmb.2022.103811_bib81) 2007; 13 Dietzl (10.1016/j.ibmb.2022.103811_bib19) 2007; 448 Hrdina (10.1016/j.ibmb.2022.103811_bib37) 2021; 49 Zhang (10.1016/j.ibmb.2022.103811_bib91) 2018; 66 Calap-Quintana (10.1016/j.ibmb.2022.103811_bib14) 2017; 18 Geiser (10.1016/j.ibmb.2022.103811_bib26) 2012; 1820 Whiten (10.1016/j.ibmb.2022.103811_bib82) 2018; 8 Casas-Vila (10.1016/j.ibmb.2022.103811_bib15) 2017; 27 Lee (10.1016/j.ibmb.2022.103811_bib51) 2006; 41 Xiao (10.1016/j.ibmb.2022.103811_bib83) 2019; 26 Mehta (10.1016/j.ibmb.2022.103811_bib58) 2009; 91 Mizutani (10.1016/j.ibmb.2022.103811_bib61) 2012; 1820 Heigwer (10.1016/j.ibmb.2022.103811_bib35) 2018; 208 Neidhardt (10.1016/j.ibmb.2022.103811_bib63) 1974; 119 Giansanti (10.1016/j.ibmb.2022.103811_bib27) 2012; 1820 Han (10.1016/j.ibmb.2022.103811_bib31) 2011; 3 Shukla (10.1016/j.ibmb.2022.103811_bib71) 2016; 53 Missirlis (10.1016/j.ibmb.2022.103811_bib60) 2007; 177 Li (10.1016/j.ibmb.2022.103811_bib55) 2010; 20 Harizanova (10.1016/j.ibmb.2022.103811_bib32) 2004; 18 Graveley (10.1016/j.ibmb.2022.103811_bib29) 2011; 471 Tuthill (10.1016/j.ibmb.2022.103811_bib77) 2020; 61 Brummett (10.1016/j.ibmb.2022.103811_bib13) 2017; 81 Gkouvatsos (10.1016/j.ibmb.2022.103811_bib28) 2012; 1820 Najera (10.1016/j.ibmb.2022.103811_bib62) 2021; 28 Poulson (10.1016/j.ibmb.2022.103811_bib68) 1950; 35 Kim (10.1016/j.ibmb.2022.103811_bib43) 2010; 19 Day (10.1016/j.ibmb.2022.103811_bib16) 1992; 267 Hamill (10.1016/j.ibmb.2022.103811_bib30) 1991; 96 Huebers (10.1016/j.ibmb.2022.103811_bib38) 1988; 158 Brown (10.1016/j.ibmb.2022.103811_bib12) 2014; 512 Mandilaras (10.1016/j.ibmb.2022.103811_bib56) 2013; 5 Gaetke (10.1016/j.ibmb.2022.103811_bib23) 2003; 189 Weber (10.1016/j.ibmb.2022.103811_bib79) 2020; 125 Bernstein (10.1016/j.ibmb.2022.103811_bib10) 1987; 110 Korsloot (10.1016/j.ibmb.2022.103811_bib44) 2004 Yuva-Aydemir (10.1016/j.ibmb.2022.103811_bib88) 2011; 31 Zirin (10.1016/j.ibmb.2022.103811_bib94) 2020; 214 Weber (10.1016/j.ibmb.2022.103811_bib80) 2020 Kim (10.1016/j.ibmb.2022.103811_bib42) 2008; 150 Simmons (10.1016/j.ibmb.2022.103811_bib72) 2013; 22 Galaris (10.1016/j.ibmb.2022.103811_bib24) 2019; 1866 Baker (10.1016/j.ibmb.2022.103811_bib9) 2002; 80 Xiao (10.1016/j.ibmb.2022.103811_bib84) 2014; 3 Leader (10.1016/j.ibmb.2022.103811_bib50) 2018; 46 Yoshiga (10.1016/j.ibmb.2022.103811_bib86) 1999; 260 Fan (10.1016/j.ibmb.2022.103811_bib20) 2013; 8 Lang (10.1016/j.ibmb.2022.103811_bib49) 2012; 109 Ward (10.1016/j.ibmb.2022.103811_bib78) 2003; 23 Aisen (10.1016/j.ibmb.2022.103811_bib2) 1978; 253 Pham (10.1016/j.ibmb.2022.103811_bib67) 2010; 1800 Zschätzsch (10.1016/j.ibmb.2022.103811_bib95) 2014; 3 Anderson (10.1016/j.ibmb.2022.103811_bib4) 2014; 5 Hattori (10.1016/j.ibmb.2022.103811_bib33) 2015; 10 Hirai (10.1016/j.ibmb.2022.103811_bib36) 2000; 44 Rodríguez-García (10.1016/j.ibmb.2022.103811_bib70) 2021; 17 Kosman (10.1016/j.ibmb.2022.103811_bib45) 2020; 12 Ong (10.1016/j.ibmb.2022.103811_bib65) 2006; 211 Zhou (10.1016/j.ibmb.2022.103811_bib92) 2007; 53 Farnaud (10.1016/j.ibmb.2022.103811_bib21) 2003; 40 Lehane (10.1016/j.ibmb.2022.103811_bib52) 2008; 38 Orsi (10.1016/j.ibmb.2022.103811_bib66) 2004; 17 Tabunoki (10.1016/j.ibmb.2022.103811_bib74) 2019; 12 Tang (10.1016/j.ibmb.2022.103811_bib75) 2013; 27 Bai (10.1016/j.ibmb.2022.103811_bib6) 2016; 17 Denholm (10.1016/j.ibmb.2022.103811_bib18) 2009; 19 Levy (10.1016/j.ibmb.2022.103811_bib54) 1999; 21 Miguel-Aliaga (10.1016/j.ibmb.2022.103811_bib59) 2018; 210 Xue (10.1016/j.ibmb.2022.103811_bib85) 2020; 531 Anderson (10.1016/j.ibmb.2022.103811_bib5) 2009; 66 Bainbridge (10.1016/j.ibmb.2022.103811_bib8) 1981; 66 Lambert (10.1016/j.ibmb.2022.103811_bib48) 2012; 1820 Kurama (10.1016/j.ibmb.2022.103811_bib47) 1995; 228 Levy (10.1016/j.ibmb.2022.103811_bib53) 2004; 3 Yoshiga (10.1016/j.ibmb.2022.103811_bib87) 1997; 94 Aisen (10.1016/j.ibmb.2022.103811_bib1) 1972; 257 Bonilla (10.1016/j.ibmb.2022.103811_bib11) 2015; 16 Kosman (10.1016/j.ibmb.2022.103811_bib46) 2018; 10 De Domenico (10.1016/j.ibmb.2022.103811_bib17) 2007; 26 Hayashi (10.1016/j.ibmb.2022.103811_bib34) 1993; 53 Qu (10.1016/j.ibmb.2022.103811_bib69) 2014; 13 Galay (10.1016/j.ibmb.2022.103811_bib25) 2015; 64 Marra (10.1016/j.ibmb.2022.103811_bib57) 2021; 2 Sorvina (10.1016/j.ibmb.2022.103811_bib73) 2013; 2 Hughes (10.1016/j.ibmb.2022.103811_bib39) 2014; 66 Zeigerer (10.1016/j.ibmb.2022.103811_bib89) 2012; 485 Frazer (10.1016/j.ibmb.2022.103811_bib22) 2014; 40 Jenssen (10.1016/j.ibmb.2022.103811_bib41) 2009; 91 Tang (10.1016/j.ibmb.2022.103811_bib76) 2013; 65 Nichol (10.1016/j.ibmb.2022.103811_bib64) 1990; 22 |
References_xml | – volume: 2 year: 2013 ident: 10.1016/j.ibmb.2022.103811_bib73 article-title: Bacterial challenge initiates endosome-lysosome response in Drosophila immune tissues publication-title: IntraVital doi: 10.4161/intv.23889 contributor: fullname: Sorvina – volume: 13 start-page: 801 year: 2007 ident: 10.1016/j.ibmb.2022.103811_bib81 article-title: Antibiotic properties and applications of lactoferrin publication-title: Curr. Pharmaceut. Des. doi: 10.2174/138161207780363095 contributor: fullname: Weinberg – volume: 8 year: 2013 ident: 10.1016/j.ibmb.2022.103811_bib20 article-title: Hrs promotes ubiquitination and mediates endosomal trafficking of smoothened in Drosophila hedgehog signaling publication-title: PLoS One doi: 10.1371/journal.pone.0079021 contributor: fullname: Fan – volume: 66 start-page: 651 year: 2014 ident: 10.1016/j.ibmb.2022.103811_bib39 article-title: Evolutionary diversification of the vertebrate transferrin multi-gene family publication-title: Immunogenetics doi: 10.1007/s00251-014-0798-x contributor: fullname: Hughes – volume: 31 start-page: 7005 year: 2011 ident: 10.1016/j.ibmb.2022.103811_bib88 article-title: Spinster controls Dpp signaling during glial migration in the Drosophila eye publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.0459-11.2011 contributor: fullname: Yuva-Aydemir – volume: 471 start-page: 473 year: 2011 ident: 10.1016/j.ibmb.2022.103811_bib29 article-title: The developmental transcriptome of Drosophila melanogaster publication-title: Nature doi: 10.1038/nature09715 contributor: fullname: Graveley – volume: 64 start-page: 182 year: 2015 ident: 10.1016/j.ibmb.2022.103811_bib25 article-title: Iron metabolism in hard ticks (Acari: ixodidae): the antidote to their toxic diet publication-title: Parasitol. Int. doi: 10.1016/j.parint.2014.12.005 contributor: fullname: Galay – volume: 96 start-page: 215 year: 1991 ident: 10.1016/j.ibmb.2022.103811_bib30 article-title: Congenital atransferrinemia A case report and review of the literature publication-title: Am. J. Clin. Pathol. doi: 10.1093/ajcp/96.2.215 contributor: fullname: Hamill – volume: 27 start-page: 1273 year: 2017 ident: 10.1016/j.ibmb.2022.103811_bib15 article-title: The developmental proteome of Drosophila melanogaster publication-title: Genome Res. doi: 10.1101/gr.213694.116 contributor: fullname: Casas-Vila – volume: 3 year: 2014 ident: 10.1016/j.ibmb.2022.103811_bib95 article-title: Regulation of branching dynamics by axon-intrinsic asymmetries in Tyrosine Kinase Receptor signaling publication-title: Elife doi: 10.7554/eLife.01699 contributor: fullname: Zschätzsch – volume: 10 year: 2015 ident: 10.1016/j.ibmb.2022.103811_bib33 article-title: Proteome analysis of watery saliva secreted by green rice leafhopper, nephotettix cincticeps publication-title: PLoS One doi: 10.1371/journal.pone.0123671 contributor: fullname: Hattori – volume: 61 start-page: 275 year: 2020 ident: 10.1016/j.ibmb.2022.103811_bib77 article-title: Tissue-specific analysis of lipid species in Drosophila during overnutrition by UHPLC-MS/MS and MALDI-MSI publication-title: J. Lipid Res. doi: 10.1194/jlr.RA119000198 contributor: fullname: Tuthill – volume: 3 year: 2014 ident: 10.1016/j.ibmb.2022.103811_bib84 article-title: The metal transporter ZIP13 supplies iron into the secretory pathway in Drosophila melanogaster publication-title: Elife doi: 10.7554/eLife.03191 contributor: fullname: Xiao – volume: 117 start-page: 7317 year: 2020 ident: 10.1016/j.ibmb.2022.103811_bib40 article-title: Iron sequestration by transferrin 1 mediates nutritional immunity in Drosophila melanogaster publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1914830117 contributor: fullname: Iatsenko – volume: 228 start-page: 229 year: 1995 ident: 10.1016/j.ibmb.2022.103811_bib47 article-title: Molecular characterization of an insect transferrin and its selective incorporation into eggs during oogenesis publication-title: Eur. J. Biochem. doi: 10.1111/j.1432-1033.1995.tb20254.x contributor: fullname: Kurama – volume: 18 year: 2017 ident: 10.1016/j.ibmb.2022.103811_bib14 article-title: Drosophila melanogaster models of metal-related human diseases and metal toxicity publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms18071456 contributor: fullname: Calap-Quintana – volume: 260 start-page: 414 year: 1999 ident: 10.1016/j.ibmb.2022.103811_bib86 article-title: Drosophila melanogaster transferrin. Cloning, deduced protein sequence, expression during the life cycle, gene localization and up-regulation on bacterial infection publication-title: Eur. J. Biochem. doi: 10.1046/j.1432-1327.1999.00173.x contributor: fullname: Yoshiga – volume: 531 start-page: 305 year: 2020 ident: 10.1016/j.ibmb.2022.103811_bib85 article-title: Transferrin1 modulates rotenone-induced Parkinson's disease through affecting iron homeostasis in Drosophila melanogaster publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2020.07.025 contributor: fullname: Xue – volume: 12 start-page: 1323 year: 2020 ident: 10.1016/j.ibmb.2022.103811_bib45 article-title: A holistic view of mammalian (vertebrate) cellular iron uptake publication-title: Metallomics doi: 10.1039/d0mt00065e contributor: fullname: Kosman – volume: 23 start-page: 178 year: 2003 ident: 10.1016/j.ibmb.2022.103811_bib78 article-title: Iron status in mice carrying a targeted disruption of lactoferrin publication-title: Mol. Cell Biol. doi: 10.1128/MCB.23.1.178-185.2003 contributor: fullname: Ward – volume: 53 start-page: 1169 year: 2007 ident: 10.1016/j.ibmb.2022.103811_bib92 article-title: Fate of blood meal iron in mosquitoes publication-title: J. Insect Physiol. doi: 10.1016/j.jinsphys.2007.06.009 contributor: fullname: Zhou – volume: 26 start-page: 2823 year: 2007 ident: 10.1016/j.ibmb.2022.103811_bib17 article-title: Ferroxidase activity is required for the stability of cell surface ferroportin in cells expressing GPI-ceruloplasmin publication-title: EMBO J. doi: 10.1038/sj.emboj.7601735 contributor: fullname: De Domenico – volume: 1820 start-page: 218 year: 2012 ident: 10.1016/j.ibmb.2022.103811_bib27 article-title: Physiological roles of ovotransferrin publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbagen.2011.08.004 contributor: fullname: Giansanti – volume: 16 start-page: 1096 year: 2015 ident: 10.1016/j.ibmb.2022.103811_bib11 article-title: Combining RNA-seq and proteomic profiling to identify seminal fluid proteins in the migratory grasshopper Melanoplus sanguinipes (F) publication-title: BMC Genom. doi: 10.1186/s12864-015-2327-1 contributor: fullname: Bonilla – volume: 35 start-page: 130 year: 1950 ident: 10.1016/j.ibmb.2022.103811_bib68 article-title: Chemical differentiation of the larval mid gut of Drosophila publication-title: Genetics contributor: fullname: Poulson – volume: 49 start-page: 71 year: 2021 ident: 10.1016/j.ibmb.2022.103811_bib37 article-title: The roles of metals in insect-microbe interactions and immunity publication-title: Curr. Opin. Insect Sci. doi: 10.1016/j.cois.2021.12.004 contributor: fullname: Hrdina – volume: 150 start-page: 161 year: 2008 ident: 10.1016/j.ibmb.2022.103811_bib42 article-title: Insect transferrin functions as an antioxidant protein in a beetle larva publication-title: Comp. Biochem. Physiol. B Biochem. Mol. Biol. doi: 10.1016/j.cbpb.2008.02.009 contributor: fullname: Kim – volume: 20 start-page: 1148 year: 2010 ident: 10.1016/j.ibmb.2022.103811_bib55 article-title: Identification of iron-loaded ferritin as an essential mitogen for cell proliferation and postembryonic development in Drosophila publication-title: Cell Res. doi: 10.1038/cr.2010.102 contributor: fullname: Li – volume: 66 start-page: 57 year: 1981 ident: 10.1016/j.ibmb.2022.103811_bib8 article-title: Staging the metamorphosis of Drosophila melanogaster publication-title: Development doi: 10.1242/dev.66.1.57 contributor: fullname: Bainbridge – volume: 22 start-page: 767 year: 1990 ident: 10.1016/j.ibmb.2022.103811_bib64 article-title: The localization of ferritin in insects publication-title: Tissue Cell doi: 10.1016/0040-8166(90)90042-8 contributor: fullname: Nichol – volume: 19 start-page: 526 year: 2009 ident: 10.1016/j.ibmb.2022.103811_bib18 article-title: Bringing together components of the fly renal system publication-title: Curr. Opin. Genet. Dev. Differ. Gene. Regul. doi: 10.1016/j.gde.2009.08.006 contributor: fullname: Denholm – volume: 91 start-page: 19 year: 2009 ident: 10.1016/j.ibmb.2022.103811_bib41 article-title: Antimicrobial properties of lactoferrin. Biochimie publication-title: Adv. Lactoferrin Res. contributor: fullname: Jenssen – volume: 485 start-page: 465 year: 2012 ident: 10.1016/j.ibmb.2022.103811_bib89 article-title: Rab5 is necessary for the biogenesis of the endolysosomal system in vivo publication-title: Nature doi: 10.1038/nature11133 contributor: fullname: Zeigerer – year: 2004 ident: 10.1016/j.ibmb.2022.103811_bib44 contributor: fullname: Korsloot – volume: 1820 start-page: 203 year: 2012 ident: 10.1016/j.ibmb.2022.103811_bib61 article-title: X-ray structures of transferrins and related proteins publication-title: Biochim. Biophys. Acta Gen. Subj. doi: 10.1016/j.bbagen.2011.08.003 contributor: fullname: Mizutani – volume: 80 start-page: 27 year: 2002 ident: 10.1016/j.ibmb.2022.103811_bib9 article-title: Lactoferrin and transferrin: functional variations on a common structural framework publication-title: Biochem. Cell. Biol. doi: 10.1139/o01-153 contributor: fullname: Baker – volume: 28 start-page: 495 year: 2021 ident: 10.1016/j.ibmb.2022.103811_bib62 article-title: Phylogenetic and sequence analyses of insect transferrins suggest that only transferrin 1 has a role in iron homeostasis publication-title: Insect Sci. doi: 10.1111/1744-7917.12783 contributor: fullname: Najera – volume: 12 start-page: 7 year: 2019 ident: 10.1016/j.ibmb.2022.103811_bib74 article-title: Development of a new method for collecting hemolymph and measuring phenoloxidase activity in Tribolium castaneum publication-title: BMC Res. Notes doi: 10.1186/s13104-018-4041-y contributor: fullname: Tabunoki – volume: 10 start-page: 370 year: 2018 ident: 10.1016/j.ibmb.2022.103811_bib46 article-title: The teleos of metallo-reduction and metallo-oxidation in eukaryotic iron and copper trafficking publication-title: Metallomics doi: 10.1039/C8MT00015H contributor: fullname: Kosman – volume: 38 start-page: 93 year: 2008 ident: 10.1016/j.ibmb.2022.103811_bib52 article-title: Differential expression of fat body genes in Glossina morsitans morsitans following infection with Trypanosoma brucei brucei publication-title: Int. J. Parasitol. doi: 10.1016/j.ijpara.2007.06.004 contributor: fullname: Lehane – volume: 1800 start-page: 824 year: 2010 ident: 10.1016/j.ibmb.2022.103811_bib67 article-title: Insect ferritins: typical or atypical? publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbagen.2010.03.004 contributor: fullname: Pham – volume: 253 start-page: 1930 year: 1978 ident: 10.1016/j.ibmb.2022.103811_bib2 article-title: Stoichiometric and site characteristics of the binding of iron to human transferrin publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(19)62337-9 contributor: fullname: Aisen – volume: 17 start-page: 1 year: 2016 ident: 10.1016/j.ibmb.2022.103811_bib6 article-title: Phylogenomic analysis of transferrin family from animals and plants publication-title: Comp. Biochem. Physiol. D-Genomics Proteomics doi: 10.1016/j.cbd.2015.11.002 contributor: fullname: Bai – volume: 3 start-page: 156 year: 2004 ident: 10.1016/j.ibmb.2022.103811_bib53 article-title: Proteomic analysis of the systemic immune response of Drosophila publication-title: Mol. Cell. Proteomics doi: 10.1074/mcp.M300114-MCP200 contributor: fullname: Levy – volume: 13 year: 2017 ident: 10.1016/j.ibmb.2022.103811_bib93 article-title: A Drosophila model for toxicogenomics: genetic variation in susceptibility to heavy metal exposure publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1006907 contributor: fullname: Zhou – volume: 5 start-page: 113 year: 2014 ident: 10.1016/j.ibmb.2022.103811_bib4 article-title: Mechanisms of iron metabolism in Caenorhabditis elegans publication-title: Front. Pharmacol. doi: 10.3389/fphar.2014.00113 contributor: fullname: Anderson – volume: 3 start-page: 103 year: 2011 ident: 10.1016/j.ibmb.2022.103811_bib31 article-title: Molecular mechanism of intestinal iron absorption publication-title: Metallomics doi: 10.1039/c0mt00043d contributor: fullname: Han – volume: 158 start-page: 291 year: 1988 ident: 10.1016/j.ibmb.2022.103811_bib38 article-title: Iron binding proteins and their roles in the tobacco hornworm, Manduca sexta (L.) publication-title: J. Comp. Physiol. B Biochem. Syst. Environ. Physiol. doi: 10.1007/BF00695327 contributor: fullname: Huebers – volume: 46 start-page: D809 year: 2018 ident: 10.1016/j.ibmb.2022.103811_bib50 article-title: FlyAtlas 2: a new version of the Drosophila melanogaster expression atlas with RNA-Seq, miRNA-Seq and sex-specific data publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkx976 contributor: fullname: Leader – volume: 21 start-page: 396 year: 1999 ident: 10.1016/j.ibmb.2022.103811_bib54 article-title: Transferrin receptor is necessary for development of erythrocytes and the nervous system publication-title: Nat. Genet. doi: 10.1038/7727 contributor: fullname: Levy – volume: 210 start-page: 357 year: 2018 ident: 10.1016/j.ibmb.2022.103811_bib59 article-title: Anatomy and physiology of the digestive tract of Drosophila melanogaster publication-title: Genetics doi: 10.1534/genetics.118.300224 contributor: fullname: Miguel-Aliaga – volume: 512 start-page: 393 year: 2014 ident: 10.1016/j.ibmb.2022.103811_bib12 article-title: Diversity and dynamics of the Drosophila transcriptome publication-title: Nature doi: 10.1038/nature12962 contributor: fullname: Brown – volume: 18 start-page: 118 year: 2004 ident: 10.1016/j.ibmb.2022.103811_bib32 article-title: Developmental and organ-specific expression of transferrin in Drosophila melanogaster publication-title: Biotechnol. Biotechnol. Equip. doi: 10.1080/13102818.2004.10817097 contributor: fullname: Harizanova – volume: 214 start-page: 755 year: 2020 ident: 10.1016/j.ibmb.2022.103811_bib94 article-title: Large-scale transgenic Drosophila Resource collections for loss- and gain-of-function studies publication-title: Genetics doi: 10.1534/genetics.119.302964 contributor: fullname: Zirin – volume: 13 start-page: 2931 year: 2014 ident: 10.1016/j.ibmb.2022.103811_bib69 article-title: Proteomic analysis of insect molting fluid with a focus on enzymes involved in chitin degradation publication-title: J. Proteome Res. doi: 10.1021/pr5000957 contributor: fullname: Qu – volume: 53 start-page: 201 year: 1993 ident: 10.1016/j.ibmb.2022.103811_bib34 article-title: Studies on familial hypotransferrinemia: unique clinical course and molecular pathology publication-title: Am. J. Hum. Genet. contributor: fullname: Hayashi – volume: 189 start-page: 147 year: 2003 ident: 10.1016/j.ibmb.2022.103811_bib23 article-title: Copper toxicity, oxidative stress, and antioxidant nutrients publication-title: Toxicology doi: 10.1016/S0300-483X(03)00159-8 contributor: fullname: Gaetke – volume: 109 start-page: 13337 year: 2012 ident: 10.1016/j.ibmb.2022.103811_bib49 article-title: Multicopper oxidase-1 is a ferroxidase essential for iron homeostasis in Drosophila melanogaster publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1208703109 contributor: fullname: Lang – volume: 22 start-page: 115 year: 2013 ident: 10.1016/j.ibmb.2022.103811_bib72 article-title: Sperm and seminal fluid proteomes of the field cricket Teleogryllus oceanicus: identification of novel proteins transferred to females at mating publication-title: Insect Mol. Biol. doi: 10.1111/imb.12007 contributor: fullname: Simmons – volume: 17 start-page: 189 year: 2004 ident: 10.1016/j.ibmb.2022.103811_bib66 article-title: The antimicrobial activity of lactoferrin: current status and perspectives publication-title: Biometals doi: 10.1023/B:BIOM.0000027691.86757.e2 contributor: fullname: Orsi – volume: 53 start-page: 254 year: 2016 ident: 10.1016/j.ibmb.2022.103811_bib71 article-title: Metabolomic analysis provides insights on paraquat-induced Parkinson-like symptoms in Drosophila melanogaster publication-title: Mol. Neurobiol. doi: 10.1007/s12035-014-9003-3 contributor: fullname: Shukla – year: 2020 ident: 10.1016/j.ibmb.2022.103811_bib80 article-title: Structural insight into the novel iron-coordination and domain interactions of transferrin-1 from a model insect publication-title: Manduca sexta. Protein Sci. contributor: fullname: Weber – volume: 44 start-page: 17 year: 2000 ident: 10.1016/j.ibmb.2022.103811_bib36 article-title: A juvenile hormone-repressible transferrin-like protein from the bean bug, Riptortus clavatus: cDNA sequence analysis and protein identification during diapause and vitellogenesis publication-title: Arch. Insect Biochem. Physiol. doi: 10.1002/(SICI)1520-6327(200005)44:1<17::AID-ARCH3>3.0.CO;2-O contributor: fullname: Hirai – volume: 27 start-page: 288 year: 2013 ident: 10.1016/j.ibmb.2022.103811_bib75 article-title: Ferritin is the key to dietary iron absorption and tissue iron detoxification in Drosophila melanogaster publication-title: Faseb. J. doi: 10.1096/fj.12-213595 contributor: fullname: Tang – volume: 1820 start-page: 188 year: 2012 ident: 10.1016/j.ibmb.2022.103811_bib28 article-title: Regulation of iron transport and the role of transferrin publication-title: Biochim. Biophys. Acta Gen. Subj. doi: 10.1016/j.bbagen.2011.10.013 contributor: fullname: Gkouvatsos – volume: 211 start-page: 295 year: 2006 ident: 10.1016/j.ibmb.2022.103811_bib65 article-title: Iron-withholding strategy in innate immunity publication-title: Immunobiology doi: 10.1016/j.imbio.2006.02.004 contributor: fullname: Ong – volume: 267 start-page: 13857 year: 1992 ident: 10.1016/j.ibmb.2022.103811_bib16 article-title: Studies of the N-terminal half of human lactoferrin produced from the cloned cDNA demonstrate that interlobe interactions modulate iron release publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(19)49647-6 contributor: fullname: Day – volume: 26 start-page: 748 year: 2019 ident: 10.1016/j.ibmb.2022.103811_bib83 article-title: Transferrin 1 functions in iron trafficking and genetically interacts with ferritin in Drosophila melanogaster publication-title: Cell Rep. doi: 10.1016/j.celrep.2018.12.053 contributor: fullname: Xiao – volume: 448 start-page: 151 year: 2007 ident: 10.1016/j.ibmb.2022.103811_bib19 article-title: A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila publication-title: Nature doi: 10.1038/nature05954 contributor: fullname: Dietzl – volume: 5 start-page: 1622 year: 2013 ident: 10.1016/j.ibmb.2022.103811_bib56 article-title: Iron absorption in Drosophila melanogaster publication-title: Nutrients doi: 10.3390/nu5051622 contributor: fullname: Mandilaras – volume: 17 year: 2021 ident: 10.1016/j.ibmb.2022.103811_bib70 article-title: Transferrin-mediated iron sequestration suggests a novel therapeutic strategy for controlling Nosema disease in the honey bee, Apis mellifera publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1009270 contributor: fullname: Rodríguez-García – volume: 19 start-page: 567 year: 2010 ident: 10.1016/j.ibmb.2022.103811_bib43 article-title: A viral histone H4 suppresses expression of a transferrin that plays a role in the immune response of the diamondback moth, Plutella xylostella publication-title: Insect Mol. Biol. doi: 10.1111/j.1365-2583.2010.01014.x contributor: fullname: Kim – volume: 1820 start-page: 244 year: 2012 ident: 10.1016/j.ibmb.2022.103811_bib48 article-title: Molecular evolution of the transferrin family and associated receptors publication-title: Biochim. Biophys. Acta Gen. Subj. doi: 10.1016/j.bbagen.2011.06.002 contributor: fullname: Lambert – volume: 66 start-page: 3241 year: 2009 ident: 10.1016/j.ibmb.2022.103811_bib5 article-title: Mammalian iron transport publication-title: Cell. Mol. Life Sci. doi: 10.1007/s00018-009-0051-1 contributor: fullname: Anderson – volume: 65 start-page: 863 year: 2013 ident: 10.1016/j.ibmb.2022.103811_bib76 article-title: Iron homeostasis in insects: insights from Drosophila studies publication-title: IUBMB Life doi: 10.1002/iub.1211 contributor: fullname: Tang – volume: 289 start-page: 35891 year: 2014 ident: 10.1016/j.ibmb.2022.103811_bib90 article-title: Functional analysis of insect molting fluid proteins on the protection and regulation of ecdysis publication-title: J. Biol. Chem. doi: 10.1074/jbc.M114.599597 contributor: fullname: Zhang – volume: 2 start-page: uqab008 year: 2021 ident: 10.1016/j.ibmb.2022.103811_bib57 article-title: The iron transporter Transferrin 1 mediates homeostasis of the endosymbiotic relationship between Drosophila melanogaster and Spiroplasma poulsonii publication-title: microLife doi: 10.1093/femsml/uqab008 contributor: fullname: Marra – volume: 91 start-page: 1331 year: 2009 ident: 10.1016/j.ibmb.2022.103811_bib58 article-title: Ferritin accumulation under iron scarcity in Drosophila iron cells publication-title: Biochimie doi: 10.1016/j.biochi.2009.05.003 contributor: fullname: Mehta – volume: 40 start-page: 206 year: 2014 ident: 10.1016/j.ibmb.2022.103811_bib22 article-title: The regulation of iron transport publication-title: Biofactors doi: 10.1002/biof.1148 contributor: fullname: Frazer – volume: 1820 start-page: 437 year: 2012 ident: 10.1016/j.ibmb.2022.103811_bib26 article-title: Insect transferrins: multifunctional proteins publication-title: Biochim. Biophys. Acta Gen. Subj. doi: 10.1016/j.bbagen.2011.07.011 contributor: fullname: Geiser – volume: 8 year: 2018 ident: 10.1016/j.ibmb.2022.103811_bib82 article-title: Ironing out the details: exploring the role of iron and heme in blood-sucking arthropods publication-title: Front. Physiol. doi: 10.3389/fphys.2017.01134 contributor: fullname: Whiten – volume: 40 start-page: 395 year: 2003 ident: 10.1016/j.ibmb.2022.103811_bib21 article-title: Lactoferrin—a multifunctional protein with antimicrobial properties. Molecular immunology, innate mechanisms of epithelial host defence publication-title: Spotlight Antimicrob. Pept. contributor: fullname: Farnaud – volume: 84 start-page: 1769 year: 1987 ident: 10.1016/j.ibmb.2022.103811_bib3 article-title: Structure of human lactoferrin at 3.2-A resolution publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.84.7.1769 contributor: fullname: Anderson – volume: 94 start-page: 12337 year: 1997 ident: 10.1016/j.ibmb.2022.103811_bib87 article-title: Mosquito transferrin, an acute-phase protein that is up-regulated upon infection publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.94.23.12337 contributor: fullname: Yoshiga – volume: 208 start-page: 853 year: 2018 ident: 10.1016/j.ibmb.2022.103811_bib35 article-title: RNA interference (RNAi) screening in Drosophila publication-title: Genetics doi: 10.1534/genetics.117.300077 contributor: fullname: Heigwer – volume: 125 year: 2020 ident: 10.1016/j.ibmb.2022.103811_bib79 article-title: Iron binding and release properties of transferrin-1 from Drosophila melanogaster and Manduca sexta: implications for insect iron homeostasis publication-title: Insect Biochem. Mol. Biol. doi: 10.1016/j.ibmb.2020.103438 contributor: fullname: Weber – volume: 66 start-page: 11426 year: 2018 ident: 10.1016/j.ibmb.2022.103811_bib91 article-title: Role for transferrin in triggering apoptosis in helicoverpa armigera cells treated with 2-tridecanone publication-title: J. Agric. Food Chem. doi: 10.1021/acs.jafc.8b02505 contributor: fullname: Zhang – volume: 110 start-page: 690 year: 1987 ident: 10.1016/j.ibmb.2022.103811_bib10 article-title: Hereditary hypotransferrinemia with hemosiderosis, a murine disorder resembling human atransferrinemia publication-title: J. Lab. Clin. Med. contributor: fullname: Bernstein – volume: 1866 year: 2019 ident: 10.1016/j.ibmb.2022.103811_bib24 article-title: Iron homeostasis and oxidative stress: an intimate relationship publication-title: Biochim. Biophys. Acta Mol. Cell Res. doi: 10.1016/j.bbamcr.2019.118535 contributor: fullname: Galaris – volume: 81 start-page: 1 year: 2017 ident: 10.1016/j.ibmb.2022.103811_bib13 article-title: The immune properties of Manduca sexta transferrin publication-title: Insect Biochem. Mol. Biol. doi: 10.1016/j.ibmb.2016.12.006 contributor: fullname: Brummett – volume: 177 start-page: 89 year: 2007 ident: 10.1016/j.ibmb.2022.103811_bib60 article-title: Homeostatic mechanisms for iron storage revealed by genetic manipulations and live imaging of Drosophila ferritin publication-title: Genetics doi: 10.1534/genetics.107.075150 contributor: fullname: Missirlis – volume: 257 start-page: 314 year: 1972 ident: 10.1016/j.ibmb.2022.103811_bib1 article-title: Lactoferrin and transferrin: a comparative study publication-title: Biochim. Biophys. Acta Protein Struct. doi: 10.1016/0005-2795(72)90283-8 contributor: fullname: Aisen – volume: 27 start-page: 5804 year: 1988 ident: 10.1016/j.ibmb.2022.103811_bib7 article-title: Molecular structure of serum transferrin at 3.3-.ANG. resolution publication-title: Biochemistry doi: 10.1021/bi00415a061 contributor: fullname: Bailey – volume: 41 start-page: 1151 year: 2006 ident: 10.1016/j.ibmb.2022.103811_bib51 article-title: Transferrin inhibits stress-induced apoptosis in a beetle publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2006.07.001 contributor: fullname: Lee – volume: 119 start-page: 736 year: 1974 ident: 10.1016/j.ibmb.2022.103811_bib63 article-title: Culture medium for enterobacteria publication-title: J. Bacteriol. doi: 10.1128/jb.119.3.736-747.1974 contributor: fullname: Neidhardt |
SSID | ssj0004457 |
Score | 2.438502 |
Snippet | Transferrin-1 (Tsf1) is an extracellular insect protein with a high affinity for iron. The functions of Tsf1 are still poorly understood; however, Drosophila... Transferrin-1 (Tsf1) is an extracellular insect protein with a high affinity for iron. The functions of Tsf1 are still poorly understood; however, Drosophila... |
SourceID | pubmedcentral proquest crossref pubmed |
SourceType | Open Access Repository Aggregation Database Index Database |
StartPage | 103811 |
SubjectTerms | Animals Drosophila melanogaster - metabolism Female Iron - metabolism Male Oxidative Stress Paraquat - toxicity Phenotype Transferrin - chemistry |
Title | Phenotypic analyses, protein localization, and bacteriostatic activity of Drosophila melanogaster transferrin-1 |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35781032 https://www.proquest.com/docview/2685040558 https://pubmed.ncbi.nlm.nih.gov/PMC9869689 |
Volume | 147 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbtswECUcB0VzKdp0ibuBBXpzZEQ7dQwcBUlgpAXqAEYvAqmlUVqTgR0f-vedEUlLSnpID70IBiWLst7zcEjOvCHksyhh3Cg932FVDBOUnEcOP0q4g1mXIWdVnjclWc6-xZcLdpIG6WBgi4y1bf8VaWgDrDFz9h_Q3t4UGuAzYA5HQB2Oj8L963Up1d3v20aHFQVHtB1o9BhqOW7GLpN7aSM3hVZsVphchF_LTUUJ8CNPVk2dg7qpNf2LS_WDo7ICVpYAfxdVHaXjdh3cc7lGNWRRYyUuXUqu6WNpy_COjexTZ0tIs-YCbLNod6mAdMulCSKe1WveLttO4SfYiH_cdmiTKeZcbKQyhbjrlfqpuosaMB-2IXXWDrM4cVB-TQ9Tf2mzxlvrdRrzi2rv2nY_GBn0IsXNpBZLMcEuJ-3FfRnuyy_Z6dVsls3TxXyH7HpgwYIh2T0-TxcXbcpt0IjIbp_J5GPp0MH7ffR9ngcTmfvxuB0HZ_6cPDMzE3qsKfWCDEq5T55OLYr75Ml31SD3kqiWZNSS7JAaitEuxQ7hfEH7BKOWYFRVtCUY7RKM9gj2ilydpvPpmWMqdzg5-KOuwwPhuyIoEy_K_cLL3YJFYVX5BQMTUMCUvPJxKQ2d1aoI8qjw45BH3PfiCPX9jvzXZCiVLA8IdYVblX4kwPMVAfiSPPFYHoQ89wK_AEMzImP7brNbLdCS2cjFmwyRyBCJTCMxIp_s68_g7eHmGJel2qwzL2IhDGhhyEbkjYZjez9UhELhyRGJe0BtL0CN9v4ZWV83Wu0JQ_Wp5O0j-n1H9tq_wnsyvFttyg9kZ11sPhr2_QEDNLJ3 |
link.rule.ids | 230,315,782,786,887,27934,27935 |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phenotypic+analyses%2C+protein+localization%2C+and+bacteriostatic+activity+of+Drosophila+melanogaster+transferrin-1&rft.jtitle=Insect+biochemistry+and+molecular+biology&rft.au=Weber%2C+Jacob+J&rft.au=Brummett%2C+Lisa+M&rft.au=Coca%2C+Michelle+E&rft.au=Tabunoki%2C+Hiroko&rft.date=2022-08-01&rft.issn=1879-0240&rft.eissn=1879-0240&rft.volume=147&rft.spage=103811&rft_id=info:doi/10.1016%2Fj.ibmb.2022.103811&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0965-1748&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0965-1748&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0965-1748&client=summon |