Phenotypic analyses, protein localization, and bacteriostatic activity of Drosophila melanogaster transferrin-1

Transferrin-1 (Tsf1) is an extracellular insect protein with a high affinity for iron. The functions of Tsf1 are still poorly understood; however, Drosophila melanogaster Tsf1 has been shown to influence iron distribution in the fly body and to protect flies against some infections. The goal of this...

Full description

Saved in:
Bibliographic Details
Published in:Insect biochemistry and molecular biology Vol. 147; p. 103811
Main Authors: Weber, Jacob J, Brummett, Lisa M, Coca, Michelle E, Tabunoki, Hiroko, Kanost, Michael R, Ragan, Emily J, Park, Yoonseong, Gorman, Maureen J
Format: Journal Article
Language:English
Published: England 01-08-2022
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Transferrin-1 (Tsf1) is an extracellular insect protein with a high affinity for iron. The functions of Tsf1 are still poorly understood; however, Drosophila melanogaster Tsf1 has been shown to influence iron distribution in the fly body and to protect flies against some infections. The goal of this study was to better understand the physiological functions of Tsf1 in D. melanogaster by 1) investigating Tsf1 null phenotypes, 2) determining tissue-specific localization of Tsf1, 3) measuring the concentration of Tsf1 in hemolymph, 4) testing Tsf1 for bacteriostatic activity, and 5) evaluating the effect of metal and paraquat treatments on Tsf1 abundance. Flies lacking Tsf1 had more iron than wild-type flies in specialized midgut cells that take up iron from the diet; however, the absence of Tsf1 had no effect on the iron content of whole midguts, fat body, hemolymph, or heads. Thus, as previous studies have suggested, Tsf1 appears to have a minor role in iron transport. Tsf1 was abundant in hemolymph from larvae (0.4 μM), pupae (1.4 μM), adult females (4.4 μM) and adult males (22 μM). Apo-Tsf1 at 1 μM had bacteriostatic activity whereas holo-Tsf1 did not, suggesting that Tsf1 can inhibit microbial growth by sequestering iron in hemolymph and other extracellular environments. This hypothesis was supported by detection of secreted Tsf1 in tracheae, testes and seminal vesicles. Colocalization of Tsf1 with an endosome marker in oocytes suggested that Tsf1 may provide iron to developing eggs; however, eggs from mothers lacking Tsf1 had the same amount of iron as control eggs, and they hatched at a wild-type rate. Thus, the primary function of Tsf1 uptake by oocytes may be to defend against infection rather than to provide eggs with iron. In beetles, Tsf1 plays a role in protection against oxidative stress. In contrast, we found that flies lacking Tsf1 had a typical life span and greater resistance to paraquat-induced oxidative stress. In addition, Tsf1 abundance remained unchanged in response to ingestion of iron, cadmium or paraquat or to injection of iron. These results suggest that Tsf1 has a limited role in protection against oxidative stress in D. melanogaster.
AbstractList Transferrin-1 (Tsf1) is an extracellular insect protein with a high affinity for iron. The functions of Tsf1 are still poorly understood; however, Drosophila melanogaster Tsf1 has been shown to influence iron distribution in the fly body and to protect flies against some infections. The goal of this study was to better understand the physiological functions of Tsf1 in D. melanogaster by 1) investigating Tsf1 null phenotypes, 2) determining tissue-specific localization of Tsf1, 3) measuring the concentration of Tsf1 in hemolymph, 4) testing Tsf1 for bacteriostatic activity, and 5) evaluating the effect of metal and paraquat treatments on Tsf1 abundance. Flies lacking Tsf1 had more iron than wild-type flies in specialized midgut cells that take up iron from the diet; however, the absence of Tsf1 had no effect on the iron content of whole midguts, fat body, hemolymph, or heads. Thus, as previous studies have suggested, Tsf1 appears to have a minor role in iron transport. Tsf1 was abundant in hemolymph from larvae (0.4 μM), pupae (1.4 μM), adult females (4.4 μM) and adult males (22 μM). Apo-Tsf1 at 1 μM had bacteriostatic activity whereas holo-Tsf1 did not, suggesting that Tsf1 can inhibit microbial growth by sequestering iron in hemolymph and other extracellular environments. This hypothesis was supported by detection of secreted Tsf1 in tracheae, testes and seminal vesicles. Colocalization of Tsf1 with an endosome marker in oocytes suggested that Tsf1 may provide iron to developing eggs; however, eggs from mothers lacking Tsf1 had the same amount of iron as control eggs, and they hatched at a wild-type rate. Thus, the primary function of Tsf1 uptake by oocytes may be to defend against infection rather than to provide eggs with iron. In beetles, Tsf1 plays a role in protection against oxidative stress. In contrast, we found that flies lacking Tsf1 had a typical life span and greater resistance to paraquat-induced oxidative stress. In addition, Tsf1 abundance remained unchanged in response to ingestion of iron, cadmium or paraquat or to injection of iron. These results suggest that Tsf1 has a limited role in protection against oxidative stress in D. melanogaster.
Transferrin-1 (Tsf1) is an extracellular insect protein with a high affinity for iron. The functions of Tsf1 are still poorly understood; however, Drosophila melanogaster Tsf1 has been shown to influence iron distribution in the fly body and to protect flies against some infections. The goal of this study was to better understand the physiological functions of Tsf1 in D. melanogaster by 1) investigating Tsf1 null phenotypes, 2) determining tissue-specific localization of Tsf1, 3) measuring the concentration of Tsf1 in hemolymph, 4) testing Tsf1 for bacteriostatic activity, and 5) evaluating the effect of metal and paraquat treatments on Tsf1 abundance. Flies lacking Tsf1 had more iron than wild-type flies in specialized midgut cells that take up iron from the diet; however, the absence of Tsf1 had no effect on the iron content of whole midguts, fat body, hemolymph, or heads. Thus, as previous studies have suggested, Tsf1 appears to have a minor role in iron transport. Tsf1 was abundant in hemolymph from larvae (0.4 μM), pupae (1.4 μM), adult females (4.4 μM) and adult males (22 μM). Apo-Tsf1 at 1 μM had bacteriostatic activity whereas holo-Tsf1 did not, suggesting that Tsf1 can inhibit microbial growth by sequestering iron in hemolymph and other extracellular environments. This hypothesis was supported by detection of secreted Tsf1 in tracheae, testes and seminal vesicles. Colocalization of Tsf1 with an endosome marker in oocytes suggested that Tsf1 may provide iron to developing eggs; however, eggs from mothers lacking Tsf1 had the same amount of iron as control eggs, and they hatched at a wild-type rate. Thus, the primary function of Tsf1 uptake by oocytes may be to defend against infection rather than to provide eggs with iron. In beetles, Tsf1 plays a role in protection against oxidative stress. In contrast, we found that flies lacking Tsf1 had a typical life span and greater resistance to paraquat-induced oxidative stress. In addition, Tsf1 abundance remained unchanged in response to ingestion of iron, cadmium or paraquat or to injection of iron. These results suggest that Tsf1 has a limited role in protection against oxidative stress in D. melanogaster.Transferrin-1 (Tsf1) is an extracellular insect protein with a high affinity for iron. The functions of Tsf1 are still poorly understood; however, Drosophila melanogaster Tsf1 has been shown to influence iron distribution in the fly body and to protect flies against some infections. The goal of this study was to better understand the physiological functions of Tsf1 in D. melanogaster by 1) investigating Tsf1 null phenotypes, 2) determining tissue-specific localization of Tsf1, 3) measuring the concentration of Tsf1 in hemolymph, 4) testing Tsf1 for bacteriostatic activity, and 5) evaluating the effect of metal and paraquat treatments on Tsf1 abundance. Flies lacking Tsf1 had more iron than wild-type flies in specialized midgut cells that take up iron from the diet; however, the absence of Tsf1 had no effect on the iron content of whole midguts, fat body, hemolymph, or heads. Thus, as previous studies have suggested, Tsf1 appears to have a minor role in iron transport. Tsf1 was abundant in hemolymph from larvae (0.4 μM), pupae (1.4 μM), adult females (4.4 μM) and adult males (22 μM). Apo-Tsf1 at 1 μM had bacteriostatic activity whereas holo-Tsf1 did not, suggesting that Tsf1 can inhibit microbial growth by sequestering iron in hemolymph and other extracellular environments. This hypothesis was supported by detection of secreted Tsf1 in tracheae, testes and seminal vesicles. Colocalization of Tsf1 with an endosome marker in oocytes suggested that Tsf1 may provide iron to developing eggs; however, eggs from mothers lacking Tsf1 had the same amount of iron as control eggs, and they hatched at a wild-type rate. Thus, the primary function of Tsf1 uptake by oocytes may be to defend against infection rather than to provide eggs with iron. In beetles, Tsf1 plays a role in protection against oxidative stress. In contrast, we found that flies lacking Tsf1 had a typical life span and greater resistance to paraquat-induced oxidative stress. In addition, Tsf1 abundance remained unchanged in response to ingestion of iron, cadmium or paraquat or to injection of iron. These results suggest that Tsf1 has a limited role in protection against oxidative stress in D. melanogaster.
Transferrin-1 (Tsf1) is an extracellular insect protein with a high affinity for iron. The functions of Tsf1 are still poorly understood; however, Drosophila melanogaster Tsf1 has been shown to influence iron distribution in the fly body and to protect flies against some infections. The goal of this study was to better understand the physiological functions of Tsf1 in D. melanogaster by 1) investigating Tsf1 null phenotypes, 2) determining tissue-specific localization of Tsf1, 3) measuring the concentration of Tsf1 in hemolymph, 4) testing Tsf1 for bacteriostatic activity, and 5) evaluating the effect of metal and paraquat treatments on Tsf1 abundance. Flies lacking Tsf1 had more iron than wild-type flies in specialized midgut cells that take up iron from the diet; however, the absence of Tsf1 had no effect on the iron content of whole midguts, fat body, hemolymph, or heads. Thus, as previous studies have suggested, Tsf1 appears to have a minor role in iron transport. Tsf1 was abundant in hemolymph from larvae (0.4 μM), pupae (1.4 μM), adult females (4.4 μM) and adult males (22 μM). Apo-Tsf1 at 1 μM had bacteriostatic activity whereas holo-Tsf1 did not, suggesting that Tsf1 can inhibit microbial growth by sequestering iron in hemolymph and other extracellular environments. This hypothesis was supported by detection of secreted Tsf1 in tracheae, testes and seminal vesicles. Colocalization of Tsf1 with an endosome marker in oocytes suggested that Tsf1 may provide iron to developing eggs; however, eggs from mothers lacking Tsf1 had the same amount of iron as control eggs, and they hatched at a wild-type rate. Thus, the primary function of Tsf1 uptake by oocytes may be to defend against infection rather than to provide eggs with iron. In beetles, Tsf1 plays a role in protection against oxidative stress. In contrast, we found that flies lacking Tsf1 had a typical life span and greater resistance to paraquat-induced oxidative stress. In addition, Tsf1 abundance remained unchanged in response to ingestion of iron, cadmium or paraquat or to injection of iron. These results suggest that Tsf1 has a limited role in protection against oxidative stress in D. melanogaster .
ArticleNumber 103811
Author Weber, Jacob J
Tabunoki, Hiroko
Kanost, Michael R
Coca, Michelle E
Park, Yoonseong
Brummett, Lisa M
Gorman, Maureen J
Ragan, Emily J
AuthorAffiliation c Department of Chemistry and Biochemistry, Metropolitan State University of Denver, Denver, Colorado, 80217, U.S.A
b Department of Science of Biological Production, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
d Department of Entomology, Kansas State University, Manhattan, Kansas, 66506, U.S.A
a Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas, 66506, U.S.A
AuthorAffiliation_xml – name: a Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas, 66506, U.S.A
– name: b Department of Science of Biological Production, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
– name: d Department of Entomology, Kansas State University, Manhattan, Kansas, 66506, U.S.A
– name: c Department of Chemistry and Biochemistry, Metropolitan State University of Denver, Denver, Colorado, 80217, U.S.A
Author_xml – sequence: 1
  givenname: Jacob J
  surname: Weber
  fullname: Weber, Jacob J
  email: jjweber@ksu.edu
  organization: Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA. Electronic address: jjweber@ksu.edu
– sequence: 2
  givenname: Lisa M
  surname: Brummett
  fullname: Brummett, Lisa M
  email: lmbrumme@ksu.edu
  organization: Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA. Electronic address: lmbrumme@ksu.edu
– sequence: 3
  givenname: Michelle E
  surname: Coca
  fullname: Coca, Michelle E
  email: mcmora@ksu.edu
  organization: Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA. Electronic address: mcmora@ksu.edu
– sequence: 4
  givenname: Hiroko
  surname: Tabunoki
  fullname: Tabunoki, Hiroko
  email: h_tabuno@cc.tuat.ac.jp
  organization: Department of Science of Biological Production, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan. Electronic address: h_tabuno@cc.tuat.ac.jp
– sequence: 5
  givenname: Michael R
  surname: Kanost
  fullname: Kanost, Michael R
  email: kanost@ksu.edu
  organization: Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA. Electronic address: kanost@ksu.edu
– sequence: 6
  givenname: Emily J
  surname: Ragan
  fullname: Ragan, Emily J
  email: eragan@msudenver.edu
  organization: Department of Chemistry and Biochemistry, Metropolitan State University of Denver, Denver, CO, 80217, USA. Electronic address: eragan@msudenver.edu
– sequence: 7
  givenname: Yoonseong
  surname: Park
  fullname: Park, Yoonseong
  email: ypark@ksu.edu
  organization: Department of Entomology, Kansas State University, Manhattan, KS, 66506, USA. Electronic address: ypark@ksu.edu
– sequence: 8
  givenname: Maureen J
  surname: Gorman
  fullname: Gorman, Maureen J
  email: mgorman@ksu.edu
  organization: Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA. Electronic address: mgorman@ksu.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35781032$$D View this record in MEDLINE/PubMed
BookMark eNpVkUtLLDEQhYMoOj7-gAvppQt7zLuTjSA-7hUEXeg6pNNpJ0N30iYZYfz1ZhiVe1cFVeecquQ7BLs-eAvAKYJzBBG_XM5dO7ZzDDEuDSIQ2gEzJBpZQ0zhLphByVmNGioOwGFKSwghpazZBweENaI48AyE54X1Ia8nZyrt9bBONl1UUwzZOl8NwejBfersgr8o865qtck2upByaRaLye7D5XUV-uo2hhSmhRt0NdpB-_CmU9FWOWqfehuj8zU6Bnu9HpI9-a5H4PX-7uXmb_349Ofh5vqxNgQ1qNa0JailVmJuSIcN6gRnfU86gRvRScZ7AqEkDErUd9TwjjRMc01wwylnFJIjcLXNnVbtaDtjfTljUFN0o45rFbRT_0-8W6i38KGk4JILWQLOvwNieF_ZlNXokrFDeZgNq6QwFwxSyJgoUryVmvIDKdr-dw2CakNKLdWGlNqQUltSxXT274G_lh805AvgjZS2
CitedBy_id crossref_primary_10_1016_j_bcmd_2023_102777
crossref_primary_10_1371_journal_pbio_3002328
crossref_primary_10_1016_j_lfs_2023_122328
crossref_primary_10_1038_s41467_024_48165_9
crossref_primary_10_1016_j_ibmb_2024_104109
Cites_doi 10.4161/intv.23889
10.2174/138161207780363095
10.1371/journal.pone.0079021
10.1007/s00251-014-0798-x
10.1523/JNEUROSCI.0459-11.2011
10.1038/nature09715
10.1016/j.parint.2014.12.005
10.1093/ajcp/96.2.215
10.1101/gr.213694.116
10.7554/eLife.01699
10.1371/journal.pone.0123671
10.1194/jlr.RA119000198
10.7554/eLife.03191
10.1073/pnas.1914830117
10.1111/j.1432-1033.1995.tb20254.x
10.3390/ijms18071456
10.1046/j.1432-1327.1999.00173.x
10.1016/j.bbrc.2020.07.025
10.1039/d0mt00065e
10.1128/MCB.23.1.178-185.2003
10.1016/j.jinsphys.2007.06.009
10.1038/sj.emboj.7601735
10.1016/j.bbagen.2011.08.004
10.1186/s12864-015-2327-1
10.1016/j.cois.2021.12.004
10.1016/j.cbpb.2008.02.009
10.1038/cr.2010.102
10.1242/dev.66.1.57
10.1016/0040-8166(90)90042-8
10.1016/j.gde.2009.08.006
10.1038/nature11133
10.1016/j.bbagen.2011.08.003
10.1139/o01-153
10.1111/1744-7917.12783
10.1186/s13104-018-4041-y
10.1039/C8MT00015H
10.1016/j.ijpara.2007.06.004
10.1016/j.bbagen.2010.03.004
10.1016/S0021-9258(19)62337-9
10.1016/j.cbd.2015.11.002
10.1074/mcp.M300114-MCP200
10.1371/journal.pgen.1006907
10.3389/fphar.2014.00113
10.1039/c0mt00043d
10.1007/BF00695327
10.1093/nar/gkx976
10.1038/7727
10.1534/genetics.118.300224
10.1038/nature12962
10.1080/13102818.2004.10817097
10.1534/genetics.119.302964
10.1021/pr5000957
10.1016/S0300-483X(03)00159-8
10.1073/pnas.1208703109
10.1111/imb.12007
10.1023/B:BIOM.0000027691.86757.e2
10.1007/s12035-014-9003-3
10.1002/(SICI)1520-6327(200005)44:1<17::AID-ARCH3>3.0.CO;2-O
10.1096/fj.12-213595
10.1016/j.bbagen.2011.10.013
10.1016/j.imbio.2006.02.004
10.1016/S0021-9258(19)49647-6
10.1016/j.celrep.2018.12.053
10.1038/nature05954
10.3390/nu5051622
10.1371/journal.ppat.1009270
10.1111/j.1365-2583.2010.01014.x
10.1016/j.bbagen.2011.06.002
10.1007/s00018-009-0051-1
10.1002/iub.1211
10.1074/jbc.M114.599597
10.1093/femsml/uqab008
10.1016/j.biochi.2009.05.003
10.1002/biof.1148
10.1016/j.bbagen.2011.07.011
10.3389/fphys.2017.01134
10.1073/pnas.84.7.1769
10.1073/pnas.94.23.12337
10.1534/genetics.117.300077
10.1016/j.ibmb.2020.103438
10.1021/acs.jafc.8b02505
10.1016/j.bbamcr.2019.118535
10.1016/j.ibmb.2016.12.006
10.1534/genetics.107.075150
10.1016/0005-2795(72)90283-8
10.1021/bi00415a061
10.1016/j.freeradbiomed.2006.07.001
10.1128/jb.119.3.736-747.1974
ContentType Journal Article
Copyright Copyright © 2022 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: Copyright © 2022 Elsevier Ltd. All rights reserved.
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
5PM
DOI 10.1016/j.ibmb.2022.103811
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Zoology
EISSN 1879-0240
EndPage 103811
ExternalDocumentID 10_1016_j_ibmb_2022_103811
35781032
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R37 GM041247
– fundername: NHGRI NIH HHS
  grantid: P41 HG000739
– fundername: NIH HHS
  grantid: P40 OD010949
– fundername: NIH HHS
  grantid: P40 OD018537
– fundername: NIGMS NIH HHS
  grantid: R01 GM041247
– fundername: NIGMS NIH HHS
  grantid: R35 GM141859
– fundername: NHGRI NIH HHS
  grantid: U41 HG000739
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29I
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
AACTN
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXKI
AAXUO
ABFNM
ABGRD
ABGSF
ABJNI
ABMAC
ABUDA
ABXDB
ACDAQ
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
ADQTV
ADUVX
AEBSH
AEHWI
AEKER
AENEX
AEQOU
AFJKZ
AFKWA
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CGR
CS3
CUY
CVF
DU5
EBS
ECM
EFJIC
EIF
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HLW
HVGLF
HZ~
IHE
J1W
KOM
LW9
LX3
M41
MO0
N9A
NPM
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SBG
SDF
SDG
SES
SEW
SPCBC
SSA
SSU
SSZ
T5K
UHS
WH7
WUQ
Y6R
~G-
~KM
AAYXX
CITATION
7X8
5PM
ID FETCH-LOGICAL-c3171-a4b31b4e926c3d2c1d865ff3d8278d956f300935091fd4c6d375a6a3276465403
ISSN 0965-1748
1879-0240
IngestDate Tue Sep 17 21:31:00 EDT 2024
Sat Oct 26 03:55:27 EDT 2024
Thu Sep 26 15:26:15 EDT 2024
Sat Nov 02 12:29:23 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Hemolymph
Oxidative stress
Transferrin
Iron
Immunity
Insect
Language English
License Copyright © 2022 Elsevier Ltd. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3171-a4b31b4e926c3d2c1d865ff3d8278d956f300935091fd4c6d375a6a3276465403
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-2005-6223
0000-0003-1823-9952
OpenAccessLink http://manuscript.elsevier.com/S0965174822000935/pdf/S0965174822000935.pdf
PMID 35781032
PQID 2685040558
PQPubID 23479
PageCount 1
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9869689
proquest_miscellaneous_2685040558
crossref_primary_10_1016_j_ibmb_2022_103811
pubmed_primary_35781032
PublicationCentury 2000
PublicationDate 2022-08-01
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Insect biochemistry and molecular biology
PublicationTitleAlternate Insect Biochem Mol Biol
PublicationYear 2022
References Bailey (10.1016/j.ibmb.2022.103811_bib7) 1988; 27
Iatsenko (10.1016/j.ibmb.2022.103811_bib40) 2020; 117
Zhou (10.1016/j.ibmb.2022.103811_bib93) 2017; 13
Anderson (10.1016/j.ibmb.2022.103811_bib3) 1987; 84
Zhang (10.1016/j.ibmb.2022.103811_bib90) 2014; 289
Weinberg (10.1016/j.ibmb.2022.103811_bib81) 2007; 13
Dietzl (10.1016/j.ibmb.2022.103811_bib19) 2007; 448
Hrdina (10.1016/j.ibmb.2022.103811_bib37) 2021; 49
Zhang (10.1016/j.ibmb.2022.103811_bib91) 2018; 66
Calap-Quintana (10.1016/j.ibmb.2022.103811_bib14) 2017; 18
Geiser (10.1016/j.ibmb.2022.103811_bib26) 2012; 1820
Whiten (10.1016/j.ibmb.2022.103811_bib82) 2018; 8
Casas-Vila (10.1016/j.ibmb.2022.103811_bib15) 2017; 27
Lee (10.1016/j.ibmb.2022.103811_bib51) 2006; 41
Xiao (10.1016/j.ibmb.2022.103811_bib83) 2019; 26
Mehta (10.1016/j.ibmb.2022.103811_bib58) 2009; 91
Mizutani (10.1016/j.ibmb.2022.103811_bib61) 2012; 1820
Heigwer (10.1016/j.ibmb.2022.103811_bib35) 2018; 208
Neidhardt (10.1016/j.ibmb.2022.103811_bib63) 1974; 119
Giansanti (10.1016/j.ibmb.2022.103811_bib27) 2012; 1820
Han (10.1016/j.ibmb.2022.103811_bib31) 2011; 3
Shukla (10.1016/j.ibmb.2022.103811_bib71) 2016; 53
Missirlis (10.1016/j.ibmb.2022.103811_bib60) 2007; 177
Li (10.1016/j.ibmb.2022.103811_bib55) 2010; 20
Harizanova (10.1016/j.ibmb.2022.103811_bib32) 2004; 18
Graveley (10.1016/j.ibmb.2022.103811_bib29) 2011; 471
Tuthill (10.1016/j.ibmb.2022.103811_bib77) 2020; 61
Brummett (10.1016/j.ibmb.2022.103811_bib13) 2017; 81
Gkouvatsos (10.1016/j.ibmb.2022.103811_bib28) 2012; 1820
Najera (10.1016/j.ibmb.2022.103811_bib62) 2021; 28
Poulson (10.1016/j.ibmb.2022.103811_bib68) 1950; 35
Kim (10.1016/j.ibmb.2022.103811_bib43) 2010; 19
Day (10.1016/j.ibmb.2022.103811_bib16) 1992; 267
Hamill (10.1016/j.ibmb.2022.103811_bib30) 1991; 96
Huebers (10.1016/j.ibmb.2022.103811_bib38) 1988; 158
Brown (10.1016/j.ibmb.2022.103811_bib12) 2014; 512
Mandilaras (10.1016/j.ibmb.2022.103811_bib56) 2013; 5
Gaetke (10.1016/j.ibmb.2022.103811_bib23) 2003; 189
Weber (10.1016/j.ibmb.2022.103811_bib79) 2020; 125
Bernstein (10.1016/j.ibmb.2022.103811_bib10) 1987; 110
Korsloot (10.1016/j.ibmb.2022.103811_bib44) 2004
Yuva-Aydemir (10.1016/j.ibmb.2022.103811_bib88) 2011; 31
Zirin (10.1016/j.ibmb.2022.103811_bib94) 2020; 214
Weber (10.1016/j.ibmb.2022.103811_bib80) 2020
Kim (10.1016/j.ibmb.2022.103811_bib42) 2008; 150
Simmons (10.1016/j.ibmb.2022.103811_bib72) 2013; 22
Galaris (10.1016/j.ibmb.2022.103811_bib24) 2019; 1866
Baker (10.1016/j.ibmb.2022.103811_bib9) 2002; 80
Xiao (10.1016/j.ibmb.2022.103811_bib84) 2014; 3
Leader (10.1016/j.ibmb.2022.103811_bib50) 2018; 46
Yoshiga (10.1016/j.ibmb.2022.103811_bib86) 1999; 260
Fan (10.1016/j.ibmb.2022.103811_bib20) 2013; 8
Lang (10.1016/j.ibmb.2022.103811_bib49) 2012; 109
Ward (10.1016/j.ibmb.2022.103811_bib78) 2003; 23
Aisen (10.1016/j.ibmb.2022.103811_bib2) 1978; 253
Pham (10.1016/j.ibmb.2022.103811_bib67) 2010; 1800
Zschätzsch (10.1016/j.ibmb.2022.103811_bib95) 2014; 3
Anderson (10.1016/j.ibmb.2022.103811_bib4) 2014; 5
Hattori (10.1016/j.ibmb.2022.103811_bib33) 2015; 10
Hirai (10.1016/j.ibmb.2022.103811_bib36) 2000; 44
Rodríguez-García (10.1016/j.ibmb.2022.103811_bib70) 2021; 17
Kosman (10.1016/j.ibmb.2022.103811_bib45) 2020; 12
Ong (10.1016/j.ibmb.2022.103811_bib65) 2006; 211
Zhou (10.1016/j.ibmb.2022.103811_bib92) 2007; 53
Farnaud (10.1016/j.ibmb.2022.103811_bib21) 2003; 40
Lehane (10.1016/j.ibmb.2022.103811_bib52) 2008; 38
Orsi (10.1016/j.ibmb.2022.103811_bib66) 2004; 17
Tabunoki (10.1016/j.ibmb.2022.103811_bib74) 2019; 12
Tang (10.1016/j.ibmb.2022.103811_bib75) 2013; 27
Bai (10.1016/j.ibmb.2022.103811_bib6) 2016; 17
Denholm (10.1016/j.ibmb.2022.103811_bib18) 2009; 19
Levy (10.1016/j.ibmb.2022.103811_bib54) 1999; 21
Miguel-Aliaga (10.1016/j.ibmb.2022.103811_bib59) 2018; 210
Xue (10.1016/j.ibmb.2022.103811_bib85) 2020; 531
Anderson (10.1016/j.ibmb.2022.103811_bib5) 2009; 66
Bainbridge (10.1016/j.ibmb.2022.103811_bib8) 1981; 66
Lambert (10.1016/j.ibmb.2022.103811_bib48) 2012; 1820
Kurama (10.1016/j.ibmb.2022.103811_bib47) 1995; 228
Levy (10.1016/j.ibmb.2022.103811_bib53) 2004; 3
Yoshiga (10.1016/j.ibmb.2022.103811_bib87) 1997; 94
Aisen (10.1016/j.ibmb.2022.103811_bib1) 1972; 257
Bonilla (10.1016/j.ibmb.2022.103811_bib11) 2015; 16
Kosman (10.1016/j.ibmb.2022.103811_bib46) 2018; 10
De Domenico (10.1016/j.ibmb.2022.103811_bib17) 2007; 26
Hayashi (10.1016/j.ibmb.2022.103811_bib34) 1993; 53
Qu (10.1016/j.ibmb.2022.103811_bib69) 2014; 13
Galay (10.1016/j.ibmb.2022.103811_bib25) 2015; 64
Marra (10.1016/j.ibmb.2022.103811_bib57) 2021; 2
Sorvina (10.1016/j.ibmb.2022.103811_bib73) 2013; 2
Hughes (10.1016/j.ibmb.2022.103811_bib39) 2014; 66
Zeigerer (10.1016/j.ibmb.2022.103811_bib89) 2012; 485
Frazer (10.1016/j.ibmb.2022.103811_bib22) 2014; 40
Jenssen (10.1016/j.ibmb.2022.103811_bib41) 2009; 91
Tang (10.1016/j.ibmb.2022.103811_bib76) 2013; 65
Nichol (10.1016/j.ibmb.2022.103811_bib64) 1990; 22
References_xml – volume: 2
  year: 2013
  ident: 10.1016/j.ibmb.2022.103811_bib73
  article-title: Bacterial challenge initiates endosome-lysosome response in Drosophila immune tissues
  publication-title: IntraVital
  doi: 10.4161/intv.23889
  contributor:
    fullname: Sorvina
– volume: 13
  start-page: 801
  year: 2007
  ident: 10.1016/j.ibmb.2022.103811_bib81
  article-title: Antibiotic properties and applications of lactoferrin
  publication-title: Curr. Pharmaceut. Des.
  doi: 10.2174/138161207780363095
  contributor:
    fullname: Weinberg
– volume: 8
  year: 2013
  ident: 10.1016/j.ibmb.2022.103811_bib20
  article-title: Hrs promotes ubiquitination and mediates endosomal trafficking of smoothened in Drosophila hedgehog signaling
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0079021
  contributor:
    fullname: Fan
– volume: 66
  start-page: 651
  year: 2014
  ident: 10.1016/j.ibmb.2022.103811_bib39
  article-title: Evolutionary diversification of the vertebrate transferrin multi-gene family
  publication-title: Immunogenetics
  doi: 10.1007/s00251-014-0798-x
  contributor:
    fullname: Hughes
– volume: 31
  start-page: 7005
  year: 2011
  ident: 10.1016/j.ibmb.2022.103811_bib88
  article-title: Spinster controls Dpp signaling during glial migration in the Drosophila eye
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.0459-11.2011
  contributor:
    fullname: Yuva-Aydemir
– volume: 471
  start-page: 473
  year: 2011
  ident: 10.1016/j.ibmb.2022.103811_bib29
  article-title: The developmental transcriptome of Drosophila melanogaster
  publication-title: Nature
  doi: 10.1038/nature09715
  contributor:
    fullname: Graveley
– volume: 64
  start-page: 182
  year: 2015
  ident: 10.1016/j.ibmb.2022.103811_bib25
  article-title: Iron metabolism in hard ticks (Acari: ixodidae): the antidote to their toxic diet
  publication-title: Parasitol. Int.
  doi: 10.1016/j.parint.2014.12.005
  contributor:
    fullname: Galay
– volume: 96
  start-page: 215
  year: 1991
  ident: 10.1016/j.ibmb.2022.103811_bib30
  article-title: Congenital atransferrinemia A case report and review of the literature
  publication-title: Am. J. Clin. Pathol.
  doi: 10.1093/ajcp/96.2.215
  contributor:
    fullname: Hamill
– volume: 27
  start-page: 1273
  year: 2017
  ident: 10.1016/j.ibmb.2022.103811_bib15
  article-title: The developmental proteome of Drosophila melanogaster
  publication-title: Genome Res.
  doi: 10.1101/gr.213694.116
  contributor:
    fullname: Casas-Vila
– volume: 3
  year: 2014
  ident: 10.1016/j.ibmb.2022.103811_bib95
  article-title: Regulation of branching dynamics by axon-intrinsic asymmetries in Tyrosine Kinase Receptor signaling
  publication-title: Elife
  doi: 10.7554/eLife.01699
  contributor:
    fullname: Zschätzsch
– volume: 10
  year: 2015
  ident: 10.1016/j.ibmb.2022.103811_bib33
  article-title: Proteome analysis of watery saliva secreted by green rice leafhopper, nephotettix cincticeps
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0123671
  contributor:
    fullname: Hattori
– volume: 61
  start-page: 275
  year: 2020
  ident: 10.1016/j.ibmb.2022.103811_bib77
  article-title: Tissue-specific analysis of lipid species in Drosophila during overnutrition by UHPLC-MS/MS and MALDI-MSI
  publication-title: J. Lipid Res.
  doi: 10.1194/jlr.RA119000198
  contributor:
    fullname: Tuthill
– volume: 3
  year: 2014
  ident: 10.1016/j.ibmb.2022.103811_bib84
  article-title: The metal transporter ZIP13 supplies iron into the secretory pathway in Drosophila melanogaster
  publication-title: Elife
  doi: 10.7554/eLife.03191
  contributor:
    fullname: Xiao
– volume: 117
  start-page: 7317
  year: 2020
  ident: 10.1016/j.ibmb.2022.103811_bib40
  article-title: Iron sequestration by transferrin 1 mediates nutritional immunity in Drosophila melanogaster
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1914830117
  contributor:
    fullname: Iatsenko
– volume: 228
  start-page: 229
  year: 1995
  ident: 10.1016/j.ibmb.2022.103811_bib47
  article-title: Molecular characterization of an insect transferrin and its selective incorporation into eggs during oogenesis
  publication-title: Eur. J. Biochem.
  doi: 10.1111/j.1432-1033.1995.tb20254.x
  contributor:
    fullname: Kurama
– volume: 18
  year: 2017
  ident: 10.1016/j.ibmb.2022.103811_bib14
  article-title: Drosophila melanogaster models of metal-related human diseases and metal toxicity
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms18071456
  contributor:
    fullname: Calap-Quintana
– volume: 260
  start-page: 414
  year: 1999
  ident: 10.1016/j.ibmb.2022.103811_bib86
  article-title: Drosophila melanogaster transferrin. Cloning, deduced protein sequence, expression during the life cycle, gene localization and up-regulation on bacterial infection
  publication-title: Eur. J. Biochem.
  doi: 10.1046/j.1432-1327.1999.00173.x
  contributor:
    fullname: Yoshiga
– volume: 531
  start-page: 305
  year: 2020
  ident: 10.1016/j.ibmb.2022.103811_bib85
  article-title: Transferrin1 modulates rotenone-induced Parkinson's disease through affecting iron homeostasis in Drosophila melanogaster
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2020.07.025
  contributor:
    fullname: Xue
– volume: 12
  start-page: 1323
  year: 2020
  ident: 10.1016/j.ibmb.2022.103811_bib45
  article-title: A holistic view of mammalian (vertebrate) cellular iron uptake
  publication-title: Metallomics
  doi: 10.1039/d0mt00065e
  contributor:
    fullname: Kosman
– volume: 23
  start-page: 178
  year: 2003
  ident: 10.1016/j.ibmb.2022.103811_bib78
  article-title: Iron status in mice carrying a targeted disruption of lactoferrin
  publication-title: Mol. Cell Biol.
  doi: 10.1128/MCB.23.1.178-185.2003
  contributor:
    fullname: Ward
– volume: 53
  start-page: 1169
  year: 2007
  ident: 10.1016/j.ibmb.2022.103811_bib92
  article-title: Fate of blood meal iron in mosquitoes
  publication-title: J. Insect Physiol.
  doi: 10.1016/j.jinsphys.2007.06.009
  contributor:
    fullname: Zhou
– volume: 26
  start-page: 2823
  year: 2007
  ident: 10.1016/j.ibmb.2022.103811_bib17
  article-title: Ferroxidase activity is required for the stability of cell surface ferroportin in cells expressing GPI-ceruloplasmin
  publication-title: EMBO J.
  doi: 10.1038/sj.emboj.7601735
  contributor:
    fullname: De Domenico
– volume: 1820
  start-page: 218
  year: 2012
  ident: 10.1016/j.ibmb.2022.103811_bib27
  article-title: Physiological roles of ovotransferrin
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbagen.2011.08.004
  contributor:
    fullname: Giansanti
– volume: 16
  start-page: 1096
  year: 2015
  ident: 10.1016/j.ibmb.2022.103811_bib11
  article-title: Combining RNA-seq and proteomic profiling to identify seminal fluid proteins in the migratory grasshopper Melanoplus sanguinipes (F)
  publication-title: BMC Genom.
  doi: 10.1186/s12864-015-2327-1
  contributor:
    fullname: Bonilla
– volume: 35
  start-page: 130
  year: 1950
  ident: 10.1016/j.ibmb.2022.103811_bib68
  article-title: Chemical differentiation of the larval mid gut of Drosophila
  publication-title: Genetics
  contributor:
    fullname: Poulson
– volume: 49
  start-page: 71
  year: 2021
  ident: 10.1016/j.ibmb.2022.103811_bib37
  article-title: The roles of metals in insect-microbe interactions and immunity
  publication-title: Curr. Opin. Insect Sci.
  doi: 10.1016/j.cois.2021.12.004
  contributor:
    fullname: Hrdina
– volume: 150
  start-page: 161
  year: 2008
  ident: 10.1016/j.ibmb.2022.103811_bib42
  article-title: Insect transferrin functions as an antioxidant protein in a beetle larva
  publication-title: Comp. Biochem. Physiol. B Biochem. Mol. Biol.
  doi: 10.1016/j.cbpb.2008.02.009
  contributor:
    fullname: Kim
– volume: 20
  start-page: 1148
  year: 2010
  ident: 10.1016/j.ibmb.2022.103811_bib55
  article-title: Identification of iron-loaded ferritin as an essential mitogen for cell proliferation and postembryonic development in Drosophila
  publication-title: Cell Res.
  doi: 10.1038/cr.2010.102
  contributor:
    fullname: Li
– volume: 66
  start-page: 57
  year: 1981
  ident: 10.1016/j.ibmb.2022.103811_bib8
  article-title: Staging the metamorphosis of Drosophila melanogaster
  publication-title: Development
  doi: 10.1242/dev.66.1.57
  contributor:
    fullname: Bainbridge
– volume: 22
  start-page: 767
  year: 1990
  ident: 10.1016/j.ibmb.2022.103811_bib64
  article-title: The localization of ferritin in insects
  publication-title: Tissue Cell
  doi: 10.1016/0040-8166(90)90042-8
  contributor:
    fullname: Nichol
– volume: 19
  start-page: 526
  year: 2009
  ident: 10.1016/j.ibmb.2022.103811_bib18
  article-title: Bringing together components of the fly renal system
  publication-title: Curr. Opin. Genet. Dev. Differ. Gene. Regul.
  doi: 10.1016/j.gde.2009.08.006
  contributor:
    fullname: Denholm
– volume: 91
  start-page: 19
  year: 2009
  ident: 10.1016/j.ibmb.2022.103811_bib41
  article-title: Antimicrobial properties of lactoferrin. Biochimie
  publication-title: Adv. Lactoferrin Res.
  contributor:
    fullname: Jenssen
– volume: 485
  start-page: 465
  year: 2012
  ident: 10.1016/j.ibmb.2022.103811_bib89
  article-title: Rab5 is necessary for the biogenesis of the endolysosomal system in vivo
  publication-title: Nature
  doi: 10.1038/nature11133
  contributor:
    fullname: Zeigerer
– year: 2004
  ident: 10.1016/j.ibmb.2022.103811_bib44
  contributor:
    fullname: Korsloot
– volume: 1820
  start-page: 203
  year: 2012
  ident: 10.1016/j.ibmb.2022.103811_bib61
  article-title: X-ray structures of transferrins and related proteins
  publication-title: Biochim. Biophys. Acta Gen. Subj.
  doi: 10.1016/j.bbagen.2011.08.003
  contributor:
    fullname: Mizutani
– volume: 80
  start-page: 27
  year: 2002
  ident: 10.1016/j.ibmb.2022.103811_bib9
  article-title: Lactoferrin and transferrin: functional variations on a common structural framework
  publication-title: Biochem. Cell. Biol.
  doi: 10.1139/o01-153
  contributor:
    fullname: Baker
– volume: 28
  start-page: 495
  year: 2021
  ident: 10.1016/j.ibmb.2022.103811_bib62
  article-title: Phylogenetic and sequence analyses of insect transferrins suggest that only transferrin 1 has a role in iron homeostasis
  publication-title: Insect Sci.
  doi: 10.1111/1744-7917.12783
  contributor:
    fullname: Najera
– volume: 12
  start-page: 7
  year: 2019
  ident: 10.1016/j.ibmb.2022.103811_bib74
  article-title: Development of a new method for collecting hemolymph and measuring phenoloxidase activity in Tribolium castaneum
  publication-title: BMC Res. Notes
  doi: 10.1186/s13104-018-4041-y
  contributor:
    fullname: Tabunoki
– volume: 10
  start-page: 370
  year: 2018
  ident: 10.1016/j.ibmb.2022.103811_bib46
  article-title: The teleos of metallo-reduction and metallo-oxidation in eukaryotic iron and copper trafficking
  publication-title: Metallomics
  doi: 10.1039/C8MT00015H
  contributor:
    fullname: Kosman
– volume: 38
  start-page: 93
  year: 2008
  ident: 10.1016/j.ibmb.2022.103811_bib52
  article-title: Differential expression of fat body genes in Glossina morsitans morsitans following infection with Trypanosoma brucei brucei
  publication-title: Int. J. Parasitol.
  doi: 10.1016/j.ijpara.2007.06.004
  contributor:
    fullname: Lehane
– volume: 1800
  start-page: 824
  year: 2010
  ident: 10.1016/j.ibmb.2022.103811_bib67
  article-title: Insect ferritins: typical or atypical?
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbagen.2010.03.004
  contributor:
    fullname: Pham
– volume: 253
  start-page: 1930
  year: 1978
  ident: 10.1016/j.ibmb.2022.103811_bib2
  article-title: Stoichiometric and site characteristics of the binding of iron to human transferrin
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(19)62337-9
  contributor:
    fullname: Aisen
– volume: 17
  start-page: 1
  year: 2016
  ident: 10.1016/j.ibmb.2022.103811_bib6
  article-title: Phylogenomic analysis of transferrin family from animals and plants
  publication-title: Comp. Biochem. Physiol. D-Genomics Proteomics
  doi: 10.1016/j.cbd.2015.11.002
  contributor:
    fullname: Bai
– volume: 3
  start-page: 156
  year: 2004
  ident: 10.1016/j.ibmb.2022.103811_bib53
  article-title: Proteomic analysis of the systemic immune response of Drosophila
  publication-title: Mol. Cell. Proteomics
  doi: 10.1074/mcp.M300114-MCP200
  contributor:
    fullname: Levy
– volume: 13
  year: 2017
  ident: 10.1016/j.ibmb.2022.103811_bib93
  article-title: A Drosophila model for toxicogenomics: genetic variation in susceptibility to heavy metal exposure
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1006907
  contributor:
    fullname: Zhou
– volume: 5
  start-page: 113
  year: 2014
  ident: 10.1016/j.ibmb.2022.103811_bib4
  article-title: Mechanisms of iron metabolism in Caenorhabditis elegans
  publication-title: Front. Pharmacol.
  doi: 10.3389/fphar.2014.00113
  contributor:
    fullname: Anderson
– volume: 3
  start-page: 103
  year: 2011
  ident: 10.1016/j.ibmb.2022.103811_bib31
  article-title: Molecular mechanism of intestinal iron absorption
  publication-title: Metallomics
  doi: 10.1039/c0mt00043d
  contributor:
    fullname: Han
– volume: 158
  start-page: 291
  year: 1988
  ident: 10.1016/j.ibmb.2022.103811_bib38
  article-title: Iron binding proteins and their roles in the tobacco hornworm, Manduca sexta (L.)
  publication-title: J. Comp. Physiol. B Biochem. Syst. Environ. Physiol.
  doi: 10.1007/BF00695327
  contributor:
    fullname: Huebers
– volume: 46
  start-page: D809
  year: 2018
  ident: 10.1016/j.ibmb.2022.103811_bib50
  article-title: FlyAtlas 2: a new version of the Drosophila melanogaster expression atlas with RNA-Seq, miRNA-Seq and sex-specific data
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkx976
  contributor:
    fullname: Leader
– volume: 21
  start-page: 396
  year: 1999
  ident: 10.1016/j.ibmb.2022.103811_bib54
  article-title: Transferrin receptor is necessary for development of erythrocytes and the nervous system
  publication-title: Nat. Genet.
  doi: 10.1038/7727
  contributor:
    fullname: Levy
– volume: 210
  start-page: 357
  year: 2018
  ident: 10.1016/j.ibmb.2022.103811_bib59
  article-title: Anatomy and physiology of the digestive tract of Drosophila melanogaster
  publication-title: Genetics
  doi: 10.1534/genetics.118.300224
  contributor:
    fullname: Miguel-Aliaga
– volume: 512
  start-page: 393
  year: 2014
  ident: 10.1016/j.ibmb.2022.103811_bib12
  article-title: Diversity and dynamics of the Drosophila transcriptome
  publication-title: Nature
  doi: 10.1038/nature12962
  contributor:
    fullname: Brown
– volume: 18
  start-page: 118
  year: 2004
  ident: 10.1016/j.ibmb.2022.103811_bib32
  article-title: Developmental and organ-specific expression of transferrin in Drosophila melanogaster
  publication-title: Biotechnol. Biotechnol. Equip.
  doi: 10.1080/13102818.2004.10817097
  contributor:
    fullname: Harizanova
– volume: 214
  start-page: 755
  year: 2020
  ident: 10.1016/j.ibmb.2022.103811_bib94
  article-title: Large-scale transgenic Drosophila Resource collections for loss- and gain-of-function studies
  publication-title: Genetics
  doi: 10.1534/genetics.119.302964
  contributor:
    fullname: Zirin
– volume: 13
  start-page: 2931
  year: 2014
  ident: 10.1016/j.ibmb.2022.103811_bib69
  article-title: Proteomic analysis of insect molting fluid with a focus on enzymes involved in chitin degradation
  publication-title: J. Proteome Res.
  doi: 10.1021/pr5000957
  contributor:
    fullname: Qu
– volume: 53
  start-page: 201
  year: 1993
  ident: 10.1016/j.ibmb.2022.103811_bib34
  article-title: Studies on familial hypotransferrinemia: unique clinical course and molecular pathology
  publication-title: Am. J. Hum. Genet.
  contributor:
    fullname: Hayashi
– volume: 189
  start-page: 147
  year: 2003
  ident: 10.1016/j.ibmb.2022.103811_bib23
  article-title: Copper toxicity, oxidative stress, and antioxidant nutrients
  publication-title: Toxicology
  doi: 10.1016/S0300-483X(03)00159-8
  contributor:
    fullname: Gaetke
– volume: 109
  start-page: 13337
  year: 2012
  ident: 10.1016/j.ibmb.2022.103811_bib49
  article-title: Multicopper oxidase-1 is a ferroxidase essential for iron homeostasis in Drosophila melanogaster
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1208703109
  contributor:
    fullname: Lang
– volume: 22
  start-page: 115
  year: 2013
  ident: 10.1016/j.ibmb.2022.103811_bib72
  article-title: Sperm and seminal fluid proteomes of the field cricket Teleogryllus oceanicus: identification of novel proteins transferred to females at mating
  publication-title: Insect Mol. Biol.
  doi: 10.1111/imb.12007
  contributor:
    fullname: Simmons
– volume: 17
  start-page: 189
  year: 2004
  ident: 10.1016/j.ibmb.2022.103811_bib66
  article-title: The antimicrobial activity of lactoferrin: current status and perspectives
  publication-title: Biometals
  doi: 10.1023/B:BIOM.0000027691.86757.e2
  contributor:
    fullname: Orsi
– volume: 53
  start-page: 254
  year: 2016
  ident: 10.1016/j.ibmb.2022.103811_bib71
  article-title: Metabolomic analysis provides insights on paraquat-induced Parkinson-like symptoms in Drosophila melanogaster
  publication-title: Mol. Neurobiol.
  doi: 10.1007/s12035-014-9003-3
  contributor:
    fullname: Shukla
– year: 2020
  ident: 10.1016/j.ibmb.2022.103811_bib80
  article-title: Structural insight into the novel iron-coordination and domain interactions of transferrin-1 from a model insect
  publication-title: Manduca sexta. Protein Sci.
  contributor:
    fullname: Weber
– volume: 44
  start-page: 17
  year: 2000
  ident: 10.1016/j.ibmb.2022.103811_bib36
  article-title: A juvenile hormone-repressible transferrin-like protein from the bean bug, Riptortus clavatus: cDNA sequence analysis and protein identification during diapause and vitellogenesis
  publication-title: Arch. Insect Biochem. Physiol.
  doi: 10.1002/(SICI)1520-6327(200005)44:1<17::AID-ARCH3>3.0.CO;2-O
  contributor:
    fullname: Hirai
– volume: 27
  start-page: 288
  year: 2013
  ident: 10.1016/j.ibmb.2022.103811_bib75
  article-title: Ferritin is the key to dietary iron absorption and tissue iron detoxification in Drosophila melanogaster
  publication-title: Faseb. J.
  doi: 10.1096/fj.12-213595
  contributor:
    fullname: Tang
– volume: 1820
  start-page: 188
  year: 2012
  ident: 10.1016/j.ibmb.2022.103811_bib28
  article-title: Regulation of iron transport and the role of transferrin
  publication-title: Biochim. Biophys. Acta Gen. Subj.
  doi: 10.1016/j.bbagen.2011.10.013
  contributor:
    fullname: Gkouvatsos
– volume: 211
  start-page: 295
  year: 2006
  ident: 10.1016/j.ibmb.2022.103811_bib65
  article-title: Iron-withholding strategy in innate immunity
  publication-title: Immunobiology
  doi: 10.1016/j.imbio.2006.02.004
  contributor:
    fullname: Ong
– volume: 267
  start-page: 13857
  year: 1992
  ident: 10.1016/j.ibmb.2022.103811_bib16
  article-title: Studies of the N-terminal half of human lactoferrin produced from the cloned cDNA demonstrate that interlobe interactions modulate iron release
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(19)49647-6
  contributor:
    fullname: Day
– volume: 26
  start-page: 748
  year: 2019
  ident: 10.1016/j.ibmb.2022.103811_bib83
  article-title: Transferrin 1 functions in iron trafficking and genetically interacts with ferritin in Drosophila melanogaster
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2018.12.053
  contributor:
    fullname: Xiao
– volume: 448
  start-page: 151
  year: 2007
  ident: 10.1016/j.ibmb.2022.103811_bib19
  article-title: A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila
  publication-title: Nature
  doi: 10.1038/nature05954
  contributor:
    fullname: Dietzl
– volume: 5
  start-page: 1622
  year: 2013
  ident: 10.1016/j.ibmb.2022.103811_bib56
  article-title: Iron absorption in Drosophila melanogaster
  publication-title: Nutrients
  doi: 10.3390/nu5051622
  contributor:
    fullname: Mandilaras
– volume: 17
  year: 2021
  ident: 10.1016/j.ibmb.2022.103811_bib70
  article-title: Transferrin-mediated iron sequestration suggests a novel therapeutic strategy for controlling Nosema disease in the honey bee, Apis mellifera
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1009270
  contributor:
    fullname: Rodríguez-García
– volume: 19
  start-page: 567
  year: 2010
  ident: 10.1016/j.ibmb.2022.103811_bib43
  article-title: A viral histone H4 suppresses expression of a transferrin that plays a role in the immune response of the diamondback moth, Plutella xylostella
  publication-title: Insect Mol. Biol.
  doi: 10.1111/j.1365-2583.2010.01014.x
  contributor:
    fullname: Kim
– volume: 1820
  start-page: 244
  year: 2012
  ident: 10.1016/j.ibmb.2022.103811_bib48
  article-title: Molecular evolution of the transferrin family and associated receptors
  publication-title: Biochim. Biophys. Acta Gen. Subj.
  doi: 10.1016/j.bbagen.2011.06.002
  contributor:
    fullname: Lambert
– volume: 66
  start-page: 3241
  year: 2009
  ident: 10.1016/j.ibmb.2022.103811_bib5
  article-title: Mammalian iron transport
  publication-title: Cell. Mol. Life Sci.
  doi: 10.1007/s00018-009-0051-1
  contributor:
    fullname: Anderson
– volume: 65
  start-page: 863
  year: 2013
  ident: 10.1016/j.ibmb.2022.103811_bib76
  article-title: Iron homeostasis in insects: insights from Drosophila studies
  publication-title: IUBMB Life
  doi: 10.1002/iub.1211
  contributor:
    fullname: Tang
– volume: 289
  start-page: 35891
  year: 2014
  ident: 10.1016/j.ibmb.2022.103811_bib90
  article-title: Functional analysis of insect molting fluid proteins on the protection and regulation of ecdysis
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M114.599597
  contributor:
    fullname: Zhang
– volume: 2
  start-page: uqab008
  year: 2021
  ident: 10.1016/j.ibmb.2022.103811_bib57
  article-title: The iron transporter Transferrin 1 mediates homeostasis of the endosymbiotic relationship between Drosophila melanogaster and Spiroplasma poulsonii
  publication-title: microLife
  doi: 10.1093/femsml/uqab008
  contributor:
    fullname: Marra
– volume: 91
  start-page: 1331
  year: 2009
  ident: 10.1016/j.ibmb.2022.103811_bib58
  article-title: Ferritin accumulation under iron scarcity in Drosophila iron cells
  publication-title: Biochimie
  doi: 10.1016/j.biochi.2009.05.003
  contributor:
    fullname: Mehta
– volume: 40
  start-page: 206
  year: 2014
  ident: 10.1016/j.ibmb.2022.103811_bib22
  article-title: The regulation of iron transport
  publication-title: Biofactors
  doi: 10.1002/biof.1148
  contributor:
    fullname: Frazer
– volume: 1820
  start-page: 437
  year: 2012
  ident: 10.1016/j.ibmb.2022.103811_bib26
  article-title: Insect transferrins: multifunctional proteins
  publication-title: Biochim. Biophys. Acta Gen. Subj.
  doi: 10.1016/j.bbagen.2011.07.011
  contributor:
    fullname: Geiser
– volume: 8
  year: 2018
  ident: 10.1016/j.ibmb.2022.103811_bib82
  article-title: Ironing out the details: exploring the role of iron and heme in blood-sucking arthropods
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2017.01134
  contributor:
    fullname: Whiten
– volume: 40
  start-page: 395
  year: 2003
  ident: 10.1016/j.ibmb.2022.103811_bib21
  article-title: Lactoferrin—a multifunctional protein with antimicrobial properties. Molecular immunology, innate mechanisms of epithelial host defence
  publication-title: Spotlight Antimicrob. Pept.
  contributor:
    fullname: Farnaud
– volume: 84
  start-page: 1769
  year: 1987
  ident: 10.1016/j.ibmb.2022.103811_bib3
  article-title: Structure of human lactoferrin at 3.2-A resolution
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.84.7.1769
  contributor:
    fullname: Anderson
– volume: 94
  start-page: 12337
  year: 1997
  ident: 10.1016/j.ibmb.2022.103811_bib87
  article-title: Mosquito transferrin, an acute-phase protein that is up-regulated upon infection
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.94.23.12337
  contributor:
    fullname: Yoshiga
– volume: 208
  start-page: 853
  year: 2018
  ident: 10.1016/j.ibmb.2022.103811_bib35
  article-title: RNA interference (RNAi) screening in Drosophila
  publication-title: Genetics
  doi: 10.1534/genetics.117.300077
  contributor:
    fullname: Heigwer
– volume: 125
  year: 2020
  ident: 10.1016/j.ibmb.2022.103811_bib79
  article-title: Iron binding and release properties of transferrin-1 from Drosophila melanogaster and Manduca sexta: implications for insect iron homeostasis
  publication-title: Insect Biochem. Mol. Biol.
  doi: 10.1016/j.ibmb.2020.103438
  contributor:
    fullname: Weber
– volume: 66
  start-page: 11426
  year: 2018
  ident: 10.1016/j.ibmb.2022.103811_bib91
  article-title: Role for transferrin in triggering apoptosis in helicoverpa armigera cells treated with 2-tridecanone
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/acs.jafc.8b02505
  contributor:
    fullname: Zhang
– volume: 110
  start-page: 690
  year: 1987
  ident: 10.1016/j.ibmb.2022.103811_bib10
  article-title: Hereditary hypotransferrinemia with hemosiderosis, a murine disorder resembling human atransferrinemia
  publication-title: J. Lab. Clin. Med.
  contributor:
    fullname: Bernstein
– volume: 1866
  year: 2019
  ident: 10.1016/j.ibmb.2022.103811_bib24
  article-title: Iron homeostasis and oxidative stress: an intimate relationship
  publication-title: Biochim. Biophys. Acta Mol. Cell Res.
  doi: 10.1016/j.bbamcr.2019.118535
  contributor:
    fullname: Galaris
– volume: 81
  start-page: 1
  year: 2017
  ident: 10.1016/j.ibmb.2022.103811_bib13
  article-title: The immune properties of Manduca sexta transferrin
  publication-title: Insect Biochem. Mol. Biol.
  doi: 10.1016/j.ibmb.2016.12.006
  contributor:
    fullname: Brummett
– volume: 177
  start-page: 89
  year: 2007
  ident: 10.1016/j.ibmb.2022.103811_bib60
  article-title: Homeostatic mechanisms for iron storage revealed by genetic manipulations and live imaging of Drosophila ferritin
  publication-title: Genetics
  doi: 10.1534/genetics.107.075150
  contributor:
    fullname: Missirlis
– volume: 257
  start-page: 314
  year: 1972
  ident: 10.1016/j.ibmb.2022.103811_bib1
  article-title: Lactoferrin and transferrin: a comparative study
  publication-title: Biochim. Biophys. Acta Protein Struct.
  doi: 10.1016/0005-2795(72)90283-8
  contributor:
    fullname: Aisen
– volume: 27
  start-page: 5804
  year: 1988
  ident: 10.1016/j.ibmb.2022.103811_bib7
  article-title: Molecular structure of serum transferrin at 3.3-.ANG. resolution
  publication-title: Biochemistry
  doi: 10.1021/bi00415a061
  contributor:
    fullname: Bailey
– volume: 41
  start-page: 1151
  year: 2006
  ident: 10.1016/j.ibmb.2022.103811_bib51
  article-title: Transferrin inhibits stress-induced apoptosis in a beetle
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2006.07.001
  contributor:
    fullname: Lee
– volume: 119
  start-page: 736
  year: 1974
  ident: 10.1016/j.ibmb.2022.103811_bib63
  article-title: Culture medium for enterobacteria
  publication-title: J. Bacteriol.
  doi: 10.1128/jb.119.3.736-747.1974
  contributor:
    fullname: Neidhardt
SSID ssj0004457
Score 2.438502
Snippet Transferrin-1 (Tsf1) is an extracellular insect protein with a high affinity for iron. The functions of Tsf1 are still poorly understood; however, Drosophila...
Transferrin-1 (Tsf1) is an extracellular insect protein with a high affinity for iron. The functions of Tsf1 are still poorly understood; however, Drosophila...
SourceID pubmedcentral
proquest
crossref
pubmed
SourceType Open Access Repository
Aggregation Database
Index Database
StartPage 103811
SubjectTerms Animals
Drosophila melanogaster - metabolism
Female
Iron - metabolism
Male
Oxidative Stress
Paraquat - toxicity
Phenotype
Transferrin - chemistry
Title Phenotypic analyses, protein localization, and bacteriostatic activity of Drosophila melanogaster transferrin-1
URI https://www.ncbi.nlm.nih.gov/pubmed/35781032
https://www.proquest.com/docview/2685040558
https://pubmed.ncbi.nlm.nih.gov/PMC9869689
Volume 147
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbtswECUcB0VzKdp0ibuBBXpzZEQ7dQwcBUlgpAXqAEYvAqmlUVqTgR0f-vedEUlLSnpID70IBiWLst7zcEjOvCHksyhh3Cg932FVDBOUnEcOP0q4g1mXIWdVnjclWc6-xZcLdpIG6WBgi4y1bf8VaWgDrDFz9h_Q3t4UGuAzYA5HQB2Oj8L963Up1d3v20aHFQVHtB1o9BhqOW7GLpN7aSM3hVZsVphchF_LTUUJ8CNPVk2dg7qpNf2LS_WDo7ICVpYAfxdVHaXjdh3cc7lGNWRRYyUuXUqu6WNpy_COjexTZ0tIs-YCbLNod6mAdMulCSKe1WveLttO4SfYiH_cdmiTKeZcbKQyhbjrlfqpuosaMB-2IXXWDrM4cVB-TQ9Tf2mzxlvrdRrzi2rv2nY_GBn0IsXNpBZLMcEuJ-3FfRnuyy_Z6dVsls3TxXyH7HpgwYIh2T0-TxcXbcpt0IjIbp_J5GPp0MH7ffR9ngcTmfvxuB0HZ_6cPDMzE3qsKfWCDEq5T55OLYr75Ml31SD3kqiWZNSS7JAaitEuxQ7hfEH7BKOWYFRVtCUY7RKM9gj2ilydpvPpmWMqdzg5-KOuwwPhuyIoEy_K_cLL3YJFYVX5BQMTUMCUvPJxKQ2d1aoI8qjw45BH3PfiCPX9jvzXZCiVLA8IdYVblX4kwPMVAfiSPPFYHoQ89wK_AEMzImP7brNbLdCS2cjFmwyRyBCJTCMxIp_s68_g7eHmGJel2qwzL2IhDGhhyEbkjYZjez9UhELhyRGJe0BtL0CN9v4ZWV83Wu0JQ_Wp5O0j-n1H9tq_wnsyvFttyg9kZ11sPhr2_QEDNLJ3
link.rule.ids 230,315,782,786,887,27934,27935
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phenotypic+analyses%2C+protein+localization%2C+and+bacteriostatic+activity+of+Drosophila+melanogaster+transferrin-1&rft.jtitle=Insect+biochemistry+and+molecular+biology&rft.au=Weber%2C+Jacob+J&rft.au=Brummett%2C+Lisa+M&rft.au=Coca%2C+Michelle+E&rft.au=Tabunoki%2C+Hiroko&rft.date=2022-08-01&rft.issn=1879-0240&rft.eissn=1879-0240&rft.volume=147&rft.spage=103811&rft_id=info:doi/10.1016%2Fj.ibmb.2022.103811&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0965-1748&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0965-1748&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0965-1748&client=summon