Generalized B-Fredholm Banach algebra elements

Given a (not necessarily continuous) homomorphism between Banach algebras T : A → B , an element a ∈ A will be said to be B-Fredholm (respectively, generalized B-Fredholm) relative to T , if T ( a ) ∈ B is Drazin invertible (respectively, Koliha–Drazin invertible). In this article, the aforementione...

Full description

Saved in:
Bibliographic Details
Published in:Mediterranean journal of mathematics Vol. 13; no. 5; pp. 3729 - 3746
Main Authors: Cvetković, Miloš D., Boasso, Enrico, Živković-Zlatanović, Snežana Č.
Format: Journal Article
Language:English
Published: Cham Springer International Publishing 01-10-2016
Springer Nature B.V
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Given a (not necessarily continuous) homomorphism between Banach algebras T : A → B , an element a ∈ A will be said to be B-Fredholm (respectively, generalized B-Fredholm) relative to T , if T ( a ) ∈ B is Drazin invertible (respectively, Koliha–Drazin invertible). In this article, the aforementioned elements will be characterized and their main properties will be studied. In addition, perturbation properties will be also considered.
ISSN:1660-5446
1660-5454
DOI:10.1007/s00009-016-0711-y