A Characterization of Reversible Markov Chains by a Rotational Representation

Let P = (pij), i, j = 1,2,..., n be the matrix of a recurrent Markov chain with stationary vector$\nu > 0$and let R = (rij), i, j = 1,2,..., n be a matrix, where rij= vip ij. If R is a symmetric matrix, we improve Alpern's rotational representation of P. By this representation we characteriz...

Full description

Saved in:
Bibliographic Details
Published in:The Annals of probability Vol. 19; no. 2; pp. 605 - 608
Main Authors: del Tio, P. Rodriguez, M. C. Valsero Blanco
Format: Journal Article
Language:English
Published: Hayward, CA Institute of Mathematical Statistics 01-04-1991
The Institute of Mathematical Statistics
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Let P = (pij), i, j = 1,2,..., n be the matrix of a recurrent Markov chain with stationary vector$\nu > 0$and let R = (rij), i, j = 1,2,..., n be a matrix, where rij= vip ij. If R is a symmetric matrix, we improve Alpern's rotational representation of P. By this representation we characterize the reversible Markov chains.
AbstractList Let P = (p_{ij}), i, j = 1,2,\ldots, n be the matrix of a recurrent Markov chain with stationary vector \nu > 0 and let R = (r_{ij}), i, j = 1,2,\ldots, n be a matrix, where r_{ij} = v_ip_{ij}. If R is a symmetric matrix, we improve Alpern's rotational representation of P. By this representation we characterize the reversible Markov chains.
Let P = (pij), i, j = 1,2,..., n be the matrix of a recurrent Markov chain with stationary vector$\nu > 0$and let R = (rij), i, j = 1,2,..., n be a matrix, where rij= vip ij. If R is a symmetric matrix, we improve Alpern's rotational representation of P. By this representation we characterize the reversible Markov chains.
Author M. C. Valsero Blanco
del Tio, P. Rodriguez
Author_xml – sequence: 1
  givenname: P. Rodriguez
  surname: del Tio
  fullname: del Tio, P. Rodriguez
– sequence: 2
  fullname: M. C. Valsero Blanco
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=4974385$$DView record in Pascal Francis
BookMark eNplkMtLw0AQxhepYFu9evKQg9e0-37cLMUXtAjFgrew2Wxwa8yG3Viof72pCfXgaZiZ3_fN8E3AqPa1BeAawRnCiM61b-YICa4UpJScgTFGXKZS0bcRGEOoUIqEkhdgEuMOQsiFoGOwXiTLdx20aW1w37p1vk58mWzs3obo8somax0-_P5IuTom-SHRyca3v6SuOrAJNtq6H1yC81JX0V4NdQq2D_evy6d09fL4vFysUkMQb1NZkAJpDqkWxDLGsCFW5URwiagmghFIS4ULxbHgzEhjSyK57HrFcmwMJVNw1_s2we9s9_uXqVyRNcF96nDIvHbZcrsapkPp4sn-4uksZr2FCT7GYMuTGsHsmOd_we1wU0ejqzLo2rh4UlElKJGsw256bBdbH05rjDsPzsgPKhuBKg
CODEN APBYAE
CitedBy_id crossref_primary_10_1080_07362990701670209
crossref_primary_10_1080_07362999808809568
ContentType Journal Article
Copyright Copyright 1991 Institute of Mathematical Statistics
1992 INIST-CNRS
Copyright_xml – notice: Copyright 1991 Institute of Mathematical Statistics
– notice: 1992 INIST-CNRS
DBID IQODW
AAYXX
CITATION
DOI 10.1214/aop/1176990443
DatabaseName Pascal-Francis
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
EISSN 2168-894X
EndPage 608
ExternalDocumentID oai_CULeuclid_euclid_aop_1176990443
10_1214_aop_1176990443
4974385
2244365
GroupedDBID -~X
123
23M
2AX
3R3
5RE
63O
7DS
85S
AAFWJ
ABBHK
ABEHJ
ABFAN
ABPFR
ABTAH
ABXSQ
ABYAD
ABYWD
ABZEH
ACIPV
ACIWK
ACMTB
ACNCT
ACTMH
ACTWD
ACUBG
ADODI
ADULT
AELPN
AENEX
AEUPB
AFFOW
AFVYC
AFXHP
AFXKK
AI.
AIHXQ
ALMA_UNASSIGNED_HOLDINGS
AS~
CJ0
CS3
D0L
DQDLB
DSRWC
E3Z
EBS
ECEWR
EFSUC
EJD
FEDTE
FVMVE
GR0
HDK
HGD
HQ6
HVGLF
JAAYA
JAS
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JSODD
JST
L7B
MVM
N9A
OK1
P2P
PQQKQ
PUASD
RBU
REI
RNS
RPE
SA0
SJN
TN5
TR2
UPT
VH1
VOH
WH7
WHG
WS9
XFK
XSW
ZGI
ZY4
08R
ABEFU
H~9
IQODW
UQL
YXE
ZCG
AAYXX
ABPQH
ADACV
AECCQ
AETVE
CITATION
IPSME
ABFLS
ABHAC
ADACO
AS
FH7
PQEST
RBV
X
ID FETCH-LOGICAL-c316t-8d3d1a604a73e5552c3e9b376814a375304f92d962765c8cef3868d9695b2cc43
IEDL.DBID JAS
ISSN 0091-1798
IngestDate Tue Jan 05 18:13:31 EST 2021
Thu Nov 21 22:52:59 EST 2024
Sun Oct 29 17:07:02 EDT 2023
Fri Feb 02 07:03:46 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Markov chain
Recurrence
Reversibility
Symmetric matrix
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-8d3d1a604a73e5552c3e9b376814a375304f92d962765c8cef3868d9695b2cc43
OpenAccessLink https://projecteuclid.org/journals/annals-of-probability/volume-19/issue-2/A-Characterization-of-Reversible-Markov-Chains-by-a-Rotational-Representation/10.1214/aop/1176990443.pdf
PageCount 4
ParticipantIDs projecteuclid_primary_oai_CULeuclid_euclid_aop_1176990443
crossref_primary_10_1214_aop_1176990443
pascalfrancis_primary_4974385
jstor_primary_2244365
PublicationCentury 1900
PublicationDate 1991-04-01
PublicationDateYYYYMMDD 1991-04-01
PublicationDate_xml – month: 04
  year: 1991
  text: 1991-04-01
  day: 01
PublicationDecade 1990
PublicationPlace Hayward, CA
PublicationPlace_xml – name: Hayward, CA
PublicationTitle The Annals of probability
PublicationYear 1991
Publisher Institute of Mathematical Statistics
The Institute of Mathematical Statistics
Publisher_xml – name: Institute of Mathematical Statistics
– name: The Institute of Mathematical Statistics
SSID ssj0006774
Score 1.3933773
Snippet Let P = (pij), i, j = 1,2,..., n be the matrix of a recurrent Markov chain with stationary vector$\nu > 0$and let R = (rij), i, j = 1,2,..., n be a matrix,...
Let P = (p_{ij}), i, j = 1,2,\ldots, n be the matrix of a recurrent Markov chain with stationary vector \nu > 0 and let R = (r_{ij}), i, j = 1,2,\ldots, n be a...
SourceID projecteuclid
crossref
pascalfrancis
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 605
SubjectTerms 15A51
60J10
Exact sciences and technology
Markov chains
Markov processes
Mathematics
Matrices
measure-preserving transformations
Probability and statistics
Probability theory and stochastic processes
Recurrent Markov chains
reversible Markov chains
Rotation
Sciences and techniques of general use
Vertices
Title A Characterization of Reversible Markov Chains by a Rotational Representation
URI https://www.jstor.org/stable/2244365
http://projecteuclid.org/euclid.aop/1176990443
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFH4RTnjwB2JExfRA4mlhXbuuOxKUcBAPKIk30nZtQkI2ImDif2-7lSEHE09L95p1ed_S17597ytAXyUpM0yzIA5lFNDM6EASkwQCEyV5KGzUdansyVvy-sGfnp1MTn9fC-NolSUvsPyLbxdIcqUHNsxQwuIGNDj2Irj1bMsSr7ScYie1yb0wY4TpQBTrAcYJsxMupeQo8FTcQ0eEFBvrC1MdYuHaVf5D79Rqmf2KNOPz_73jBZz5lSQaVtBfwonO23A6rWVYN21ouaVkpcR8BdMhGtXqzFXxJSoMmumSmGEfjlzdTvHlei3zDZLfSKBZsfXZQttxfShVyjswHz-_jyaBP0whUASzbcAzkmHBQioSouM4jhTRqbTTC8dUELtpCalJo8ydxcNixZU2hDNu22ksI6UouYZmXuT6BpDGqYmI4VIRQ4lWqaQsVDqkUqooE3EXHveeXqwrzYyF22tYTBYWk8UBky50SkfW3bwXu9A7Aqa2U7v9Idza0yOgarsTyx7NX_xdfzke8_aPMe-gVdHAHCvnHprbz53uQWOT7R7KL-4H24DTvg
link.rule.ids 230,315,782,786,817,887,27933,27934,58023,58256
linkProvider JSTOR
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB58HNSDb3F95iB4Kts0j6ZHWV1W3PXgA7yVJE1AWNrF3RX89yZNt7oHwVNJJzRlvpJJpt98AbjSacYtNzxisUoiWlgTKWLTSGKilYili7o-lT14Th_fxO2dl8m5WtTCeFplzQus_-K7BZIam64LM5RwtgrrzOuVBRncdr7laaO1nGEvtikaacYE066sJl2MU-6mXErJUugJ7ENPhZRT5w0bjrHw7ZABMXM9fi9-xZr-zv_eche2m7Ukugng78GKKfdha9QKsU73YdMvJoMW8wGMblCv1WcO5ZeosujJ1NQM93DkK3eqT9_rvZwi9YUkeqpmTb7QdZz8FCuVh_Dav3vpDaLmOIVIE8xnkShIgSWPqUyJYYwlmphMuQlGYCqJ27bE1GZJ4U_j4UwLbSwRXLh2xlSiNSVHsFZWpTkGZHBmE2KF0sRSYnSmKI-1ialSOikk68D1wtP5JKhm5H634TDJHSb5DyYdOKwd2XZrvNiB8yVgWjt1GyAinD1bAqq1e7ns3uuwudtclsc8-WPMS9gYvIyG-fD-8eEUNgMpzHN0zmBt9jE357A6LeYX9df3DRiv1ww
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB58gOjBt7jqag6CXso2zaPpcVldFB-ID_BWkjSBBWkXd1fw35s0tboHwVNJZyBlJsxk0m--AJzqNOOWGx6xWCURLayJFLFpJDHRSsTSZV1_lH31lN6_iotLT5Nz_t0L42GVNS6w_ovvNkjqzfTGhe25VEMJZ4uwzFxRwwMVbhtzedrwLWfYE26Khp4xwbQnq3EP45S7sEspmUs_AYHo4ZBy4ixiw1UWfhxOQcxMv42KX_lmuPH_L92E9WZPifphEWzBgim3Ye2uJWSdbMOq31QGTuYduOujQcvTHNowUWXRo6khGm4C5Dt4qg-vNSonSH0iiR6raXNu6BTHP01L5S68DC-fB1dRc61CpAnm00gUpMCSx1SmxDDGEk1MplygEZhK4sqXmNosKfytPJxpoY0lggs3zphKtKZkD5bKqjT7gAzObEKsUJpYSozOFOWxNjFVSieFZB04-7Z2Pg7sGbmvOpxfcueX_McvHditjdmqNVbsQHfOOa2cukKICCfP5pzVyj1t9uDltnnbPObnPPhjzhNYebgY5rfX9zeHsBqwYR6qcwRL0_eZ6cLipJgd1wvwCyoQ2ZI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Characterization+of+Reversible+Markov+Chains+by+a+Rotational+Representation&rft.jtitle=The+Annals+of+probability&rft.au=del+Tio%2C+P.+Rodriguez&rft.au=M.+C.+Valsero+Blanco&rft.date=1991-04-01&rft.pub=Institute+of+Mathematical+Statistics&rft.issn=0091-1798&rft.eissn=2168-894X&rft.volume=19&rft.issue=2&rft.spage=605&rft.epage=608&rft_id=info:doi/10.1214%2Faop%2F1176990443&rft.externalDocID=2244365
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0091-1798&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0091-1798&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0091-1798&client=summon