A Characterization of Reversible Markov Chains by a Rotational Representation
Let P = (pij), i, j = 1,2,..., n be the matrix of a recurrent Markov chain with stationary vector$\nu > 0$and let R = (rij), i, j = 1,2,..., n be a matrix, where rij= vip ij. If R is a symmetric matrix, we improve Alpern's rotational representation of P. By this representation we characteriz...
Saved in:
Published in: | The Annals of probability Vol. 19; no. 2; pp. 605 - 608 |
---|---|
Main Authors: | , |
Format: | Journal Article |
Language: | English |
Published: |
Hayward, CA
Institute of Mathematical Statistics
01-04-1991
The Institute of Mathematical Statistics |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Let P = (pij), i, j = 1,2,..., n be the matrix of a recurrent Markov chain with stationary vector$\nu > 0$and let R = (rij), i, j = 1,2,..., n be a matrix, where rij= vip
ij. If R is a symmetric matrix, we improve Alpern's rotational representation of P. By this representation we characterize the reversible Markov chains. |
---|---|
AbstractList | Let P = (p_{ij}), i, j = 1,2,\ldots, n be the matrix of a recurrent Markov chain with stationary vector \nu > 0 and let R = (r_{ij}), i, j = 1,2,\ldots, n be a matrix, where r_{ij} = v_ip_{ij}. If R is a symmetric matrix, we improve Alpern's rotational representation of P. By this representation we characterize the reversible Markov chains. Let P = (pij), i, j = 1,2,..., n be the matrix of a recurrent Markov chain with stationary vector$\nu > 0$and let R = (rij), i, j = 1,2,..., n be a matrix, where rij= vip ij. If R is a symmetric matrix, we improve Alpern's rotational representation of P. By this representation we characterize the reversible Markov chains. |
Author | M. C. Valsero Blanco del Tio, P. Rodriguez |
Author_xml | – sequence: 1 givenname: P. Rodriguez surname: del Tio fullname: del Tio, P. Rodriguez – sequence: 2 fullname: M. C. Valsero Blanco |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=4974385$$DView record in Pascal Francis |
BookMark | eNplkMtLw0AQxhepYFu9evKQg9e0-37cLMUXtAjFgrew2Wxwa8yG3Viof72pCfXgaZiZ3_fN8E3AqPa1BeAawRnCiM61b-YICa4UpJScgTFGXKZS0bcRGEOoUIqEkhdgEuMOQsiFoGOwXiTLdx20aW1w37p1vk58mWzs3obo8somax0-_P5IuTom-SHRyca3v6SuOrAJNtq6H1yC81JX0V4NdQq2D_evy6d09fL4vFysUkMQb1NZkAJpDqkWxDLGsCFW5URwiagmghFIS4ULxbHgzEhjSyK57HrFcmwMJVNw1_s2we9s9_uXqVyRNcF96nDIvHbZcrsapkPp4sn-4uksZr2FCT7GYMuTGsHsmOd_we1wU0ejqzLo2rh4UlElKJGsw256bBdbH05rjDsPzsgPKhuBKg |
CODEN | APBYAE |
CitedBy_id | crossref_primary_10_1080_07362990701670209 crossref_primary_10_1080_07362999808809568 |
ContentType | Journal Article |
Copyright | Copyright 1991 Institute of Mathematical Statistics 1992 INIST-CNRS |
Copyright_xml | – notice: Copyright 1991 Institute of Mathematical Statistics – notice: 1992 INIST-CNRS |
DBID | IQODW AAYXX CITATION |
DOI | 10.1214/aop/1176990443 |
DatabaseName | Pascal-Francis CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Mathematics |
EISSN | 2168-894X |
EndPage | 608 |
ExternalDocumentID | oai_CULeuclid_euclid_aop_1176990443 10_1214_aop_1176990443 4974385 2244365 |
GroupedDBID | -~X 123 23M 2AX 3R3 5RE 63O 7DS 85S AAFWJ ABBHK ABEHJ ABFAN ABPFR ABTAH ABXSQ ABYAD ABYWD ABZEH ACIPV ACIWK ACMTB ACNCT ACTMH ACTWD ACUBG ADODI ADULT AELPN AENEX AEUPB AFFOW AFVYC AFXHP AFXKK AI. AIHXQ ALMA_UNASSIGNED_HOLDINGS AS~ CJ0 CS3 D0L DQDLB DSRWC E3Z EBS ECEWR EFSUC EJD FEDTE FVMVE GR0 HDK HGD HQ6 HVGLF JAAYA JAS JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JSODD JST L7B MVM N9A OK1 P2P PQQKQ PUASD RBU REI RNS RPE SA0 SJN TN5 TR2 UPT VH1 VOH WH7 WHG WS9 XFK XSW ZGI ZY4 08R ABEFU H~9 IQODW UQL YXE ZCG AAYXX ABPQH ADACV AECCQ AETVE CITATION IPSME ABFLS ABHAC ADACO AS FH7 PQEST RBV X |
ID | FETCH-LOGICAL-c316t-8d3d1a604a73e5552c3e9b376814a375304f92d962765c8cef3868d9695b2cc43 |
IEDL.DBID | JAS |
ISSN | 0091-1798 |
IngestDate | Tue Jan 05 18:13:31 EST 2021 Thu Nov 21 22:52:59 EST 2024 Sun Oct 29 17:07:02 EDT 2023 Fri Feb 02 07:03:46 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Markov chain Recurrence Reversibility Symmetric matrix |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c316t-8d3d1a604a73e5552c3e9b376814a375304f92d962765c8cef3868d9695b2cc43 |
OpenAccessLink | https://projecteuclid.org/journals/annals-of-probability/volume-19/issue-2/A-Characterization-of-Reversible-Markov-Chains-by-a-Rotational-Representation/10.1214/aop/1176990443.pdf |
PageCount | 4 |
ParticipantIDs | projecteuclid_primary_oai_CULeuclid_euclid_aop_1176990443 crossref_primary_10_1214_aop_1176990443 pascalfrancis_primary_4974385 jstor_primary_2244365 |
PublicationCentury | 1900 |
PublicationDate | 1991-04-01 |
PublicationDateYYYYMMDD | 1991-04-01 |
PublicationDate_xml | – month: 04 year: 1991 text: 1991-04-01 day: 01 |
PublicationDecade | 1990 |
PublicationPlace | Hayward, CA |
PublicationPlace_xml | – name: Hayward, CA |
PublicationTitle | The Annals of probability |
PublicationYear | 1991 |
Publisher | Institute of Mathematical Statistics The Institute of Mathematical Statistics |
Publisher_xml | – name: Institute of Mathematical Statistics – name: The Institute of Mathematical Statistics |
SSID | ssj0006774 |
Score | 1.3933773 |
Snippet | Let P = (pij), i, j = 1,2,..., n be the matrix of a recurrent Markov chain with stationary vector$\nu > 0$and let R = (rij), i, j = 1,2,..., n be a matrix,... Let P = (p_{ij}), i, j = 1,2,\ldots, n be the matrix of a recurrent Markov chain with stationary vector \nu > 0 and let R = (r_{ij}), i, j = 1,2,\ldots, n be a... |
SourceID | projecteuclid crossref pascalfrancis jstor |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 605 |
SubjectTerms | 15A51 60J10 Exact sciences and technology Markov chains Markov processes Mathematics Matrices measure-preserving transformations Probability and statistics Probability theory and stochastic processes Recurrent Markov chains reversible Markov chains Rotation Sciences and techniques of general use Vertices |
Title | A Characterization of Reversible Markov Chains by a Rotational Representation |
URI | https://www.jstor.org/stable/2244365 http://projecteuclid.org/euclid.aop/1176990443 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFH4RTnjwB2JExfRA4mlhXbuuOxKUcBAPKIk30nZtQkI2ImDif2-7lSEHE09L95p1ed_S17597ytAXyUpM0yzIA5lFNDM6EASkwQCEyV5KGzUdansyVvy-sGfnp1MTn9fC-NolSUvsPyLbxdIcqUHNsxQwuIGNDj2Irj1bMsSr7ScYie1yb0wY4TpQBTrAcYJsxMupeQo8FTcQ0eEFBvrC1MdYuHaVf5D79Rqmf2KNOPz_73jBZz5lSQaVtBfwonO23A6rWVYN21ouaVkpcR8BdMhGtXqzFXxJSoMmumSmGEfjlzdTvHlei3zDZLfSKBZsfXZQttxfShVyjswHz-_jyaBP0whUASzbcAzkmHBQioSouM4jhTRqbTTC8dUELtpCalJo8ydxcNixZU2hDNu22ksI6UouYZmXuT6BpDGqYmI4VIRQ4lWqaQsVDqkUqooE3EXHveeXqwrzYyF22tYTBYWk8UBky50SkfW3bwXu9A7Aqa2U7v9Idza0yOgarsTyx7NX_xdfzke8_aPMe-gVdHAHCvnHprbz53uQWOT7R7KL-4H24DTvg |
link.rule.ids | 230,315,782,786,817,887,27933,27934,58023,58256 |
linkProvider | JSTOR |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB58HNSDb3F95iB4Kts0j6ZHWV1W3PXgA7yVJE1AWNrF3RX89yZNt7oHwVNJJzRlvpJJpt98AbjSacYtNzxisUoiWlgTKWLTSGKilYili7o-lT14Th_fxO2dl8m5WtTCeFplzQus_-K7BZIam64LM5RwtgrrzOuVBRncdr7laaO1nGEvtikaacYE066sJl2MU-6mXErJUugJ7ENPhZRT5w0bjrHw7ZABMXM9fi9-xZr-zv_eche2m7Ukugng78GKKfdha9QKsU73YdMvJoMW8wGMblCv1WcO5ZeosujJ1NQM93DkK3eqT9_rvZwi9YUkeqpmTb7QdZz8FCuVh_Dav3vpDaLmOIVIE8xnkShIgSWPqUyJYYwlmphMuQlGYCqJ27bE1GZJ4U_j4UwLbSwRXLh2xlSiNSVHsFZWpTkGZHBmE2KF0sRSYnSmKI-1ialSOikk68D1wtP5JKhm5H634TDJHSb5DyYdOKwd2XZrvNiB8yVgWjt1GyAinD1bAqq1e7ns3uuwudtclsc8-WPMS9gYvIyG-fD-8eEUNgMpzHN0zmBt9jE357A6LeYX9df3DRiv1ww |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB58gOjBt7jqag6CXso2zaPpcVldFB-ID_BWkjSBBWkXd1fw35s0tboHwVNJZyBlJsxk0m--AJzqNOOWGx6xWCURLayJFLFpJDHRSsTSZV1_lH31lN6_iotLT5Nz_t0L42GVNS6w_ovvNkjqzfTGhe25VEMJZ4uwzFxRwwMVbhtzedrwLWfYE26Khp4xwbQnq3EP45S7sEspmUs_AYHo4ZBy4ixiw1UWfhxOQcxMv42KX_lmuPH_L92E9WZPifphEWzBgim3Ye2uJWSdbMOq31QGTuYduOujQcvTHNowUWXRo6khGm4C5Dt4qg-vNSonSH0iiR6raXNu6BTHP01L5S68DC-fB1dRc61CpAnm00gUpMCSx1SmxDDGEk1MplygEZhK4sqXmNosKfytPJxpoY0lggs3zphKtKZkD5bKqjT7gAzObEKsUJpYSozOFOWxNjFVSieFZB04-7Z2Pg7sGbmvOpxfcueX_McvHditjdmqNVbsQHfOOa2cukKICCfP5pzVyj1t9uDltnnbPObnPPhjzhNYebgY5rfX9zeHsBqwYR6qcwRL0_eZ6cLipJgd1wvwCyoQ2ZI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Characterization+of+Reversible+Markov+Chains+by+a+Rotational+Representation&rft.jtitle=The+Annals+of+probability&rft.au=del+Tio%2C+P.+Rodriguez&rft.au=M.+C.+Valsero+Blanco&rft.date=1991-04-01&rft.pub=Institute+of+Mathematical+Statistics&rft.issn=0091-1798&rft.eissn=2168-894X&rft.volume=19&rft.issue=2&rft.spage=605&rft.epage=608&rft_id=info:doi/10.1214%2Faop%2F1176990443&rft.externalDocID=2244365 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0091-1798&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0091-1798&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0091-1798&client=summon |