Energy Loss and Microturbulence under Multipulse ECR Plasma Heating at the L-2M Stellarator

In experiments on multipulse on-axis electron cyclotron resonance heating (ECRH) of plasma by a series of microwave pulses at the L-2M stellarator, several phases of plasma energy loss were observed: the short stage of low-energy loss, the stage of rapid increase in energy loss, the quasi-steady sta...

Full description

Saved in:
Bibliographic Details
Published in:Plasma physics reports Vol. 45; no. 8; pp. 732 - 740
Main Authors: Batanov, G. M., Borzosekov, V. D., Vasilkov, D. G., Grebenshchikov, S. E., Kolik, L. V., Konchekov, E. M., Letunov, A. A., Petrov, A. E., Stepakhin, V. D., Kharchev, N. K., Kharchevskii, A. A.
Format: Journal Article
Language:English
Published: Moscow Pleiades Publishing 01-08-2019
Springer Nature B.V
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In experiments on multipulse on-axis electron cyclotron resonance heating (ECRH) of plasma by a series of microwave pulses at the L-2M stellarator, several phases of plasma energy loss were observed: the short stage of low-energy loss, the stage of rapid increase in energy loss, the quasi-steady stage, and the relaxation stage between the heating pulses. In the stage of rapid increase in energy loss, the energy loss power is two or more times higher than that in the relaxation stage at the same energy of the plasma column. Short-wavelength plasma density fluctuations were measured using both the ordinary and extraordinary microwave collective scattering technique. It is found that, in the quasi-steady stage, the amplitude of density fluctuations is much lower than that in the preceding heating stages. The fluctuation amplitude lowers just after the restructuring of the density profile and establishment of a steady-state hollow density profile due to the density pump-out effect. The amplitude of large-scale density fluctuations at the plasma periphery recorded by a Doppler reflectometer remains unchanged during the ECRH pulses and in the time intervals between them. However, when the stage of rapid increase in energy loss begins, the shape of the density fluctuation spectrum changes significantly. The initially narrow spectrum with one peak near the zero frequency broadens, the amplitude of the central peak decreases, and two additional peaks at frequencies of 0.7 and −0.7 MHz appear.
ISSN:1063-780X
1562-6938
DOI:10.1134/S1063780X19080014