Neuron mapping in the Molly fish optic tectum: An emphasis on the adult neurogenesis process

Teleost fish exhibit the most pronounced and widespread adult neurogenesis. Recently, functional development and the fate of newborn neurons have been reported in the optic tectum (OT) of fish. To determine the role of neurogenesis in the OT, this study used histological, immunohistochemical, and el...

Full description

Saved in:
Bibliographic Details
Published in:Microscopy research and technique Vol. 87; no. 10; pp. 2336 - 2354
Main Authors: Hussein, Manal T., Sayed, Ramy K. A., Mokhtar, Doaa M.
Format: Journal Article
Language:English
Published: Hoboken, USA John Wiley & Sons, Inc 01-10-2024
Wiley Subscription Services, Inc
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Teleost fish exhibit the most pronounced and widespread adult neurogenesis. Recently, functional development and the fate of newborn neurons have been reported in the optic tectum (OT) of fish. To determine the role of neurogenesis in the OT, this study used histological, immunohistochemical, and electron microscopic investigations on 18 adult Molly fish specimens (Poecilia sphenops). The OT of the Molly fish was a bilateral lobed structure located in the dorsal part of the mesencephalon. It exhibited a laminated structure made up of alternating fiber and cellular layers, which were organized into six main layers. The stratum opticum (SO) was supplied by optic nerve fibers, in which the neuropil was the main component. Radial bipolar neurons that possessed bundles of microtubules were observed in the stratum fibrosum et griseum superficiale (SFGS). Furthermore, oligodendrocytes with their processes wrapped around the nerve fibers could be observed. The stratum album centrale (SAC) consisted mainly of the axons of the stratum griseum centrale (SGC) and the large tectal, pyriform, and horizontal neurons. The neuronal cells of the SO and large tectal cells of the SAC expressed autophagy‐related protein‐5 (APG5). Interleukin‐1β (IL‐1β) was expressed in both neurons and glia cells of SGC. Additionally, inducible nitric oxide synthase (iNOS) was expressed in the neuropil of the SAC synaptic layer and granule cells of the stratum periventriculare (SPV). Also, transforming growth factor beta (TGF‐β), SRY‐box transcription factor 9 (SOX9), and myostatin were clearly expressed in the proliferative neurons. In all strata, S100 protein and Oligodendrocyte Lineage Transcription Factor 2 (Olig2) were expressed by microglia, oligodendrocytes, and astrocytes. In conclusion, it was possible to identify different varieties of neurons in the optic tectum, each with a distinct role. The existence of astrocytes, proliferative neurons, and stem cells highlights the regenerative capacity of OT. Research Highlights The OT of the Molly fish exhibited a laminated structure made up of alternating fiber and cellular layers, which were organized into six main layers. Radial bipolar neurons that possessed bundles of microtubules were observed in the stratum fibrosum et griseum superficiale (SFGS). The stratum album central (SAC) consisted mainly of the axons of the stratum griseum centrale (SGC) and the large tectal, pyriform, and horizontal neurons. Inducible nitric oxide synthase (iNOS) was expressed in the neuropil of the SAC synaptic layer and granule cells of the stratum periventricular (SPV). Also, transforming growth factor beta (TGF‐β), SRY‐box transcription factor 9 (SOX9), and myostatin were clearly expressed in the proliferative neurons. The existence of astrocytes, proliferative neurons, and stem cells highlights the regenerative capacity of OT. Schematic illustration shows cell types in all layers of the optic tectum and their positive immunoreactions.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1059-910X
1097-0029
1097-0029
DOI:10.1002/jemt.24617