ON THE CHANGES CAUSED BY AN UNDERLYING COUPLED ROTATIONAL MOTION ON THE NATURAL FREQUENCIES OF A MASS–SPRING SYSTEM

When a system of N masses, linked together by springs, is disturbed from its static equilibrium position, then it will vibrate in a manner characterized by the N natural frequencies of the system. Should the whole system be in rotation with constant rotation speed then these natural frequencies are...

Full description

Saved in:
Bibliographic Details
Published in:Journal of sound and vibration Vol. 236; no. 1; pp. 33 - 48
Main Authors: CLARKE, N.S., MORGAN, E.A.
Format: Journal Article
Language:English
Published: London Elsevier Ltd 07-09-2000
Elsevier
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract When a system of N masses, linked together by springs, is disturbed from its static equilibrium position, then it will vibrate in a manner characterized by the N natural frequencies of the system. Should the whole system be in rotation with constant rotation speed then these natural frequencies are all decreased by an amount depending upon the rotation rate. However, if the rotation speed is increased beyond a certain level then the motion will become “unstable”, i.e., no longer vibrational. Only rotational speeds below this level are considered here. In this work, the system is mounted upon a turntable in such a manner that the masses may move only radially and the turntable is set rotating and the masses released. As the total angular momentum is conserved then the motions of the masses are coupled with the rotation of the turntable; that is, the rotation speed is no longer constant but is intimately linked to the motions taking place upon it. The effect on the natural frequencies of this coupling, and also of the initial positions and velocities when coupling is present are investigated. Two cases are pursued, one in which the displacements from the equilibrium position are “small” and the other where the coupling is “weak”. In both cases, all the natural frequencies increase from their values at constant rotation; that is, the coupling is a stabilizing influence. Initially, a single mass system is considered in order to gain insight before the more general N -mass system is tackled. Damping is ignored throughout.
AbstractList When a system of N masses, linked together by springs, is disturbed from its static equilibrium position, then it will vibrate in a manner characterized by the N natural frequencies of the system. Should the whole system be in rotation with constant rotation speed then these natural frequencies are all decreased by an amount depending upon the rotation rate. However, if the rotation speed is increased beyond a certain level then the motion will become “unstable”, i.e., no longer vibrational. Only rotational speeds below this level are considered here. In this work, the system is mounted upon a turntable in such a manner that the masses may move only radially and the turntable is set rotating and the masses released. As the total angular momentum is conserved then the motions of the masses are coupled with the rotation of the turntable; that is, the rotation speed is no longer constant but is intimately linked to the motions taking place upon it. The effect on the natural frequencies of this coupling, and also of the initial positions and velocities when coupling is present are investigated. Two cases are pursued, one in which the displacements from the equilibrium position are “small” and the other where the coupling is “weak”. In both cases, all the natural frequencies increase from their values at constant rotation; that is, the coupling is a stabilizing influence. Initially, a single mass system is considered in order to gain insight before the more general N -mass system is tackled. Damping is ignored throughout.
Author CLARKE, N.S.
MORGAN, E.A.
Author_xml – sequence: 1
  givenname: N.S.
  surname: CLARKE
  fullname: CLARKE, N.S.
– sequence: 2
  givenname: E.A.
  surname: MORGAN
  fullname: MORGAN, E.A.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1456676$$DView record in Pascal Francis
BookMark eNp1kE1rwkAQhpdioWp77XkPvSadzeZrj9sYNRATmw-opxA3G4jYKFkr9Nb_0H_YX9IEhZ56mmHmfZ8Z3gkatYdWIvRIQCcA9vNOnRvdAADdYC69QWMCzNJcy3ZHaAxgGJppw9sdmii161XMpOYYfcQRzpY-9pY8Wvgp9nie-jP8ssE8wnk085NwE0QL7MX5OuwXSZzxLIgjHuJVPDT4Coh4lif9dJ74r7kfeUEPi-eY4xVP05-v73SdDJx0k2b-6h7d1uVeyYdrnaJ87mfeUgvjReDxUBOUWCdNgnRKSpmoiEmISwhh0qGkrgxHMMcyalaaDGpDgqgkMEppXQG13G1p1ZJtgU6RfuGK7qBUJ-vi2DXvZfdZECiG0IohtGIIrRhC6w1PF8OxVKLc113Zikb9uUzLth27l7kXmeyfPzeyK5RoZCtk1XRSnIrq0Px34ReTn3ky
CODEN JSVIAG
CitedBy_id crossref_primary_10_1006_jsvi_2001_3958
ContentType Journal Article
Copyright 2000 Academic Press
2000 INIST-CNRS
Copyright_xml – notice: 2000 Academic Press
– notice: 2000 INIST-CNRS
DBID IQODW
AAYXX
CITATION
DOI 10.1006/jsvi.2000.2983
DatabaseName Pascal-Francis
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1095-8568
EndPage 48
ExternalDocumentID 10_1006_jsvi_2000_2983
1456676
S0022460X00929833
GroupedDBID --K
--M
--Z
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29L
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABFSI
ABJNI
ABMAC
ABNEU
ABTAH
ABYKQ
ACDAQ
ACFVG
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADFGL
ADMUD
ADTZH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHPGS
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CAG
COF
CS3
DM4
E.L
EBS
EFBJH
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FGOYB
FIRID
FNPLU
FYGXN
G-Q
HZ~
J1W
JJJVA
KOM
LG5
M24
M37
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSQ
SST
SSZ
T5K
T9H
TN5
XPP
ZMT
ZY4
~G-
08R
4.4
ABPIF
ABPTK
ABXDB
ADIYS
AEBSH
ASPBG
AVWKF
BBWZM
EJD
FEDTE
G-2
GBLVA
HMV
H~9
IHE
IQODW
NDZJH
P-8
SEW
SMS
SPG
VOH
WUQ
AAXKI
AAYXX
AFJKZ
AKRWK
CITATION
HVGLF
ID FETCH-LOGICAL-c315t-e0e7a339cd141181119e731fd27c9752f9a490f2e0cde09333fd0358ba5fe9b03
ISSN 0022-460X
IngestDate Thu Sep 26 17:28:04 EDT 2024
Sun Oct 29 17:09:58 EDT 2023
Fri Feb 23 02:21:27 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Natural frequency
Added mass
Vibration
Rotating disk
Angular momentum
Momentum
Modeling
Spring mass system
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c315t-e0e7a339cd141181119e731fd27c9752f9a490f2e0cde09333fd0358ba5fe9b03
PageCount 16
ParticipantIDs crossref_primary_10_1006_jsvi_2000_2983
pascalfrancis_primary_1456676
elsevier_sciencedirect_doi_10_1006_jsvi_2000_2983
PublicationCentury 2000
PublicationDate 2000-09-07
PublicationDateYYYYMMDD 2000-09-07
PublicationDate_xml – month: 09
  year: 2000
  text: 2000-09-07
  day: 07
PublicationDecade 2000
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Journal of sound and vibration
PublicationYear 2000
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References STOKER (RF1) 1950
JORDAN, SMITH (RF2) 1987
THOMPSON (RF4) 1981
KEVORKIAN, COLE (RF3) 1985
PRENTIS, LECKIE (RF5) 1963
PRENTIS (10.1006/jsvi.2000.2983_RF5) 1963
JORDAN (10.1006/jsvi.2000.2983_RF2) 1987
KEVORKIAN (10.1006/jsvi.2000.2983_RF3) 1985
STOKER (10.1006/jsvi.2000.2983_RF1) 1950
THOMPSON (10.1006/jsvi.2000.2983_RF4) 1981
References_xml – year: 1985
  ident: RF3
  publication-title: Perturbation Methods in Applied Mathematics
  contributor:
    fullname: COLE
– year: 1950
  ident: RF1
  publication-title: Nonlinear Vibrations in Mechanical and Electrical Systems
  contributor:
    fullname: STOKER
– year: 1987
  ident: RF2
  publication-title: Nonlinear Ordinary Differential Equations
  contributor:
    fullname: SMITH
– year: 1981
  ident: RF4
  publication-title: Theory of Vibration with Applications
  contributor:
    fullname: THOMPSON
– year: 1963
  ident: RF5
  publication-title: Mechanical Vibrations: An Introduction to Matrix Methods
  contributor:
    fullname: LECKIE
– year: 1985
  ident: 10.1006/jsvi.2000.2983_RF3
  contributor:
    fullname: KEVORKIAN
– year: 1963
  ident: 10.1006/jsvi.2000.2983_RF5
  contributor:
    fullname: PRENTIS
– year: 1950
  ident: 10.1006/jsvi.2000.2983_RF1
  contributor:
    fullname: STOKER
– year: 1987
  ident: 10.1006/jsvi.2000.2983_RF2
  contributor:
    fullname: JORDAN
– year: 1981
  ident: 10.1006/jsvi.2000.2983_RF4
  contributor:
    fullname: THOMPSON
SSID ssj0009434
Score 1.647118
Snippet When a system of N masses, linked together by springs, is disturbed from its static equilibrium position, then it will vibrate in a manner characterized by the...
SourceID crossref
pascalfrancis
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 33
SubjectTerms Exact sciences and technology
Fundamental areas of phenomenology (including applications)
Physics
Solid mechanics
Structural and continuum mechanics
Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)
Vibrations and mechanical waves
Title ON THE CHANGES CAUSED BY AN UNDERLYING COUPLED ROTATIONAL MOTION ON THE NATURAL FREQUENCIES OF A MASS–SPRING SYSTEM
URI https://dx.doi.org/10.1006/jsvi.2000.2983
Volume 236
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9tAEF6chEKhlD5p0qbsodCDkCtpV489bhQ5butIrWWDfRKyHtCLG6I45_6H_sP-ks6-LJsQaAu9CLO2Vmbn25nZ0TczCL2rAAawn33brUQLMz8k9ipgge0HYe2Bf8pK2YdsnIfpIjpPaDIYmGS_fuy_ShrGQNYic_YvpL2dFAbgM8gcriB1uP6R3LNUsnjiMU8vktyK-TxPzq2zpcVTS2YUTJYqQDX_MoEvptnM1MO9zGQHHj2BJETA6GiafJ0naQxuo2AIceuS57mhSBDFprDyZT7TMZy7jm4nOjfJlxS34my---Y_nvDp50RlfOXDrfCz6QWX9INkyId7cQlHEq_CPlhmEmZ6dpJJHqCBs1DmR-lc8PLsyFfddYxS9lRZlD30KRWr6mZoY62qdN4xA6BKhBnobr_JVKShxyLSG7wtDTGXHgz8G1F5Cn5CDtCRBwoL9OUR_5gsPvXlmymhpu68uMGU_3SCD_tPuc-9eXRVdrDpWtUtZceFmT1Bj7VIMFegeYoGzfoZeiA5wFX3HG2yFIPksYYOVtDBZ0vMU9xDB2vo4B46WEEH6wk0dPAOdHA2whwL6Pz68VOBBivQvEDzUTKLx7buymFXxPVv7MZpwpIQVtUuFVnLrsuakLgtbO2Khb7XspIyp_Uap6obES8jbe0QP1qVgte4cshLdLj-vm5eIQyHC1qXtPIZDeDgEK2aiIH_2tDa92H66hi9N4tZXKniK4Uqsx0UYtlFD1WnEMt-jFyz1oV2HZVLWAAk7r3ndE8o_SPgUBGEwck_zPkaPez3wht0eHO9aU7RQVdv3mpI_QYb9IJ5
link.rule.ids 315,782,786,27933,27934
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ON+THE+CHANGES+CAUSED+BY+AN+UNDERLYING+COUPLED+ROTATIONAL+MOTION+ON+THE+NATURAL+FREQUENCIES+OF+A+MASS%E2%80%93SPRING+SYSTEM&rft.jtitle=Journal+of+sound+and+vibration&rft.au=CLARKE%2C+N.S.&rft.au=MORGAN%2C+E.A.&rft.date=2000-09-07&rft.pub=Elsevier+Ltd&rft.issn=0022-460X&rft.eissn=1095-8568&rft.volume=236&rft.issue=1&rft.spage=33&rft.epage=48&rft_id=info:doi/10.1006%2Fjsvi.2000.2983&rft.externalDocID=S0022460X00929833
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-460X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-460X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-460X&client=summon